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Abstract
This paper investigates the response of hours worked to a permanent technology shock.

Based on annual data from Canada, we argue that hours worked rise after a positive tech-
nology shock. We obtain a similar result using annual data from the United States. These
results contradict a large literature that claims that a positive technology shock causes
hours worked to fall. We find that the different results are due to the literature making a
specification error in the statistical model of per capita hours worked. Finally, we present
results suggesting that Canadian monetary policy has accommodated technology shocks.
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1 Introduction

This paper investigates the response of hours worked to a permanent technology shock. Based
on annual data from Canada and the United States, we argue that hours worked rises after
a positive technology shock. While this result is consistent with the analysis in Christiano,
Eichenbaum, and Vigfusson [CEV] (2003), it stands in sharp contrast to a large and growing
literature, according to which hours worked falls after a positive technology shock (see for
example Gali (1999) and Francis and Ramey (2001)).1

The assumption that we make to identify a technology shock is the same as in the literature.
Specifically we assume that the only type of shock which affects the long-run level of average
labor productivity is a permanent shock to technology. So the difference between our results
cannot be attributed to the nature of our identifying assumptions. Instead it is due to the
way hours worked are incorporated into our statistical analysis. Using quarterly U.S. time
series data, CEV (2003) make the following argument. Suppose that the analyst assumes that
per capita hours worked is a stationary stochastic process and works with the level of hours.
Using this ‘level specification’, the analyst would find that hours worked in the U.S. rises after
a technology shock. On the other hand suppose that the analyst assumed that hours worked
is a difference stationary process and works with the growth rate of hours worked. Using
this ‘difference specification’, the analyst would find that hours worked in the U.S. falls after a
technology shock. In this paper we show that exactly the same result holds for annual Canadian
and U.S. data.

The question is: Which set of results is correct, those based on the level specification or
those based on the difference specification? Not surprisingly, standard, univariate hypothesis
tests do not yield much information about whether per capita hours worked has a unit root
or not. These tests cannot reject either the null hypothesis that per capita hours worked
are difference stationary or the null hypothesis that they are stationary. As in CEV (2003),
we assess the relative plausibility of the two hypotheses and their associated implications by
asking the following encompassing question: ‘Which specification has an easier time explaining
the findings that emerge when the analyst proceeds using the competing specification?’

As discussed below and in CEV (2003), we expect that the specification that will do best on
the encompassing criterion is the one that predicts that the other model is misspecified. These
considerations lead us to think that the level specification will do better than the difference
specification. This is because, if the level specification is true, then an analyst who adopts the
difference specification is committing a specification error. But, if the difference specification
is true, an analyst who adopts the level specification is not committing a specification error.
While important, this consideration is not definitive because sampling considerations also en-
ter. Specifically, when the difference specification is true, then an econometrician who adopts
the level specification will encounter a weak instrument problem that implies large sampling
uncertainty and bias in the estimates of the response of hours worked to a technology shock.

To choose between the level and difference specifications, we use the kind of posterior odds
ratio considered in Christiano and Ljungqvist (1988) and CEV (2003). The prefered specifica-
tion is the one that can most easily explain three facts: (i) the level specification implies that
hours worked rises after a technology shock, (ii) the difference specification implies that hours
worked falls, and (iii) the outcome of a weak instruments test that we implement. Focusing only

1CEV (2003) base their analysis on quarterly U.S. time series data.
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on facts (i) and (ii), we find that the odds are roughly 2 to 1 in favor of the level specification
over the difference specification. However, once (iii) is incorporated into the analysis, we find
that the odds overwhelmingly favor the level specification. Indeed in the case of Canada, the
odds in favor of the level specification are over nine to one.

After establishing the case for the level specification, we analyze how money growth, the
interest rate and inflation in Canada respond to a technology shock. Focusing on point estimates
we find that in response to such a shock, money growth rises while the interest rate and
inflation drops. Sampling uncertainty aside, these findings suggest that Canadian monetary
policy makers have accommodated technology shocks.

This raises a key question: exactly what role has monetary policy played in the expansion
of aggregate economic activity and the fall in inflation that follow in the wake of a positive
technology shock? To answer this question requires that we know how the economy would have
reacted had the monetary authority acted differently. The only place where we can perform such
a counterfactual experiment is in a structural economic model. Such an analysis lies beyond
the scope of this paper, which relies on reduced form time series methods. The methods used
in this paper can deliver estimates of how monetary policy actually reacted to technology
shocks. These methods, however, cannot be used directly to ask how the economy would
have reacted under alternative policy rules. For an analysis of that issue we refer the reader
to Altig, Christiano, Eichenbaum and Linde (ACEL) (2003). Using an estimated dynamic
general equilibrium model embodying wage and price frictions, ACEL assess the response of
the economy to a technology shock under alternative monetary policy rules, e.g. a k per cent
growth rate rule for money. Their key conclusion is that, had policy makers not accommodated
technology shocks, hours worked would have fallen for a prolonged period of time after a
positive technology shock. Somewhat paradoxically, actual hours worked respond positively as
in a real business cycle model, because of the systematic way monetary policy makers respond
to technology shocks. Since ACEL (2003) estimate their model using U.S. data, we cannot
claim that this result holds for Canada. But we suspect that it does.

The remainder of this paper is organized as follows. Section 2 discusses our strategy for
identifying the effects of a permanent shock to technology. In Section 3 we present the results
from a bivariate analysis using data on hours worked and the growth rate of labor productivity.
Section 4 discusses our encompassing strategy, the results of which are reported in Section 5.
In Section 6, we report results for how in Canada inflation, the growth rate of money and the
interest rate respond to a technology shock. Finally, Section 7 contains concluding remarks.

2 Identifying The Response to A Permanent Technology Shock.

In this section, we discuss how we identify the effect of a permanent shock to technology. As
in Gali (1999), Gali, Lopez-Salido, and Valles (2002), Francis and Ramey (2001) and CEV
(2003) we assume that the only type of shock which affects the long-run level of average labor
productivity is a permanent shock to technology.2 As discussed in CEV (2003) this assumption
is satisfied by a large class of standard business cycle models. Still it is important to recognize

2There is now a large literature in which the long-run identifying assumption is adopted. See for example
Vigfusson (2002), Altig, Christiano, Eichenbaum and Linde (2003) and Fisher (2003).
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that there exist models in which this assumption is not satisfied.3

We estimate the dynamic effects of a technology shock using a variant of the Shapiro and
Watson (1988) procedure for long-run identifying assumptions. Our description of this pro-
cedure borrows heavily from the relevant portion of CEV (2003). Our starting point is the
relationship

∆ft = µ+ β(L)∆ft−1 + α̃(L)Xt + εzt . (1)

Here ft denotes the log of average labor productivity and α̃(L), β(L) are polynomials of order
q and q − 1 in the lag operator, L, respectively. Also, ∆ is the first difference operator and we
assume that∆ft is covariance stationary. The white noise random variable, εzt , is the innovation
to technology. Suppose that the response of Xt to an innovation in some non-technology shock,
εt, is characterized by Xt = γ(L)εt, where γ(L) is a polynomial in non-negative powers of L.
We assume that each element of γ(1) is non-zero. The assumption that non-technology shocks
have no impact on ft in the long run implies the following restriction on α̃(L) :

α̃(L) = α(L)(1− L), (2)

where α(L) is a polynomial of order q − 1 in the lag operator. To see this, note first that the
only way non-technology shocks can affect ft is by their effect on Xt, while the long-run impact
of a shock to εt on ft is given by:

α̃(1)γ(1)

1− β(1)
.

The assumption that ∆ft is covariance stationary guarantees |1− β(1)| < ∞. This, together
with our assumption on γ(L), implies that for the long-run impact of εt on ft to be zero it must
be that α̃(1) equals zero. This in turn is equivalent to (2).

Substituting (2) into (1) yields the relationship:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt . (3)

We obtain an estimate of εzt by using (3) in conjunction with estimates of µ, β(L) and α(L). If
one of the shocks driving Xt is εzt , then Xt and ε

z
t will be correlated. So, we cannot estimate the

parameters in β(L) and α(L) by ordinary least squares (OLS). Instead, we apply the standard
instrumental variables strategy used in the literature. In particular, we use as instruments a
constant, ∆ft−s and Xt−s, s = 1, 2, ...,q.

Given an estimate of the shocks in (3), we obtain an estimate of the dynamic response of ft
and Xt to εzt as follows. We begin by estimating the following q

th order vector autoregression
(VAR):

Yt = α+B(L)Yt−1 + ut, Eutu0t = V, (4)

where

Yt =

Ã
∆ft
Xt

!
,

and ut is the one-step-ahead forecast error in Yt. Also, V is a positive definite matrix. The
parameters in this VAR, including V , can be estimated by OLS applied to each equation. In

3For example, the assumption is not true in an endogenous growth model where all shocks affect productivity
in the long run. Nor is it true in an otherwise standard model when there are permanent shocks to the tax rate
on capital income.
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practice, we set q equal to 4. The fundamental economic shocks, et, are related to ut by the
following relation:

ut = Cet, Eete
0
t = I.

Without loss of generality, we suppose that εzt is the first element of et. To compute the
dynamic response of the variables in Yt to εzt , we require the first column of C. We obtain this
by regressing ut on εzt by ordinary least squares. Finally, we simulate the dynamic response of
Yt to εzt . For each lag in this response function, we computed the centered 95 percent Bayesian
confidence interval using the approach for just-identified systems discussed in Doan (1992).4

3 Empirical Results

A key issue when working with Canadian data is the limited span of the relevant quarterly data.
Many studies of the effects of technology on the U.S. economy use quarterly data on Business
Labor Productivity, a time series which is available starting in 1947. The analogous Canadian
series starts only in 1987.5 Similarly, Canadian quarterly data on hours worked in the business
sector are available starting in 1987.6 Since we are interested in identifying shocks that have
a long run effect on productivity, we work with annual data which are available from 1961.7

Our measure of the Canadian population is for all people between the ages of 15 and 64.8 We
measured output as the average level of Canadian real GDP over the year.9 GDP is a broader
measure of output than the measure considered in Francis and Ramey (2002) or CEV (2003),
namely private sector output. Using a broader measure, however, seems reasonable given that
we also use a broader measure of hours worked.

We are interested in comparing the effects of a technology shock in Canada and the United
States. The U.S. data that we use are the annual version of the data used in CEV (2003). The
relevant series are business labor productivity and hours.10 Our data on labor productivity
growth and per capita hours worked in the United States and Canada are displayed in the first
row of Figure 1 and Figure 2, respectively. For the United States, the average growth rate of
these variables are −0.04 and 2.19 percent, respectively. For Canada, the average growth rate
of per capita hours and labor productivity is −0.03 and 1.80 percent, respectively. The other
variables in Figure 2 will be discussed in the multivariate section.

4This approach requires drawing B(L) and V repeatedly from their posterior distributions. Our results are
based on 2, 500 draws.

5The CANSIM mnemonic for Business Sector Labor Productivity is V1409153.
6The CANSIM series V1409155 measures quarterly hours worked in the business sector but starts only in

1987. The CANSIM series V159660 measures total hours worked in all sectors and is monthly but starts only in
1976.

7Annual total hours worked is measured using the CANSIM series V719842.
8Data on this population measure is available from 1971 as CANSIM series V466971. We construct population

data for the 1960s using the growth rate of the population aged 14 and over from the Canadian Historical
Statistics.

9Real GDP is measured using CANSIM series v1992067.
10These series have DRI Economics mnemonic LBOUT and LBMN, respectively.
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3.1 Impulse Responses

We first consider results for a bivariate VAR for Yt. The first element in Yt is the growth rate of
the log of labor productivity ft. The second element in Yt is the log of per capita hours worked,
ht. Figure 3 reports the response of labor productivity and average hours to a one standard
deviation long-run technology shock. In the United States, both labor productivity and average
hours rise by roughly one percent in the first year of the shock. Labor productivity continues
to rise for the next eight years. Hours worked rises in a hump shaped pattern, reaching a peak
response of almost two percent two years after a positive technology shock. Hours, then, slowly
return to the pre-shock level. Using Canadian data, we find similar results. In the year of the
shock, labor productivity and hours worked both rise. Labor productivity rises by roughly one
percent while average hours rises by 0.4 percent. The maximal rise in hours worked, 0.8 percent,
occurs a year after the shock. In Canada, it takes roughly six years for hours to return to its
pre-shock level. For both countries, the rise in average productivity is statistically significant
for a prolonged period of time. In contrast, confidence intervals about the estimated impulse
response functions for hours worked are wide. Still, the rise in U.S. hours worked is statistically
different from zero for the first three years after the shock, For Canada, the rise in hours worked
is statistically different from zero only in the first year after the shock.

As with the benchmark results in CEV (2003), our findings stand in sharp contrast to the
literature according to which hours worked in the United States falls after a positive technology
shock (see for example Gali (1999) and Francis and Ramey (2001)). The question is what
accounts for this difference? The difference cannot be attributed to our identifying assumptions
since these are the same as in the literature. Using quarterly U.S. date, CEV (2003) argue that
the key difference has to do with how hours worked are incorporated into the analysis. There
we show that when we include ∆ht in Yt, then hours worked falls after a technology shock. In
contrast when we include ht in Yt, then hours worked rises after a technology shock. For future
reference we refer to the specification when ht is included in Yt as the level specification. We
refer to the specification when ∆ht is included in Yt as the difference specification.

We find similar results for the annual Canadian and U.S. data. Specifically suppose that
Xt in (1) and (3) corresponds to the growth rate of hours worked rather than the level of hours
worked. Figure 4 reports our results for the United States and Canada. In both countries, a
positive technology shock leads to a sharp, prolonged rise in labor productivity. In contrast
to the results above, we now find that hours worked falls after a positive technology shock.
Indeed, in both countries, according to our point estimates, hours worked never returns to the
pre-shock level. Granted, confidence intervals are very large. But at least for the United States,
CEV (2003) show that the initial fall in hours worked is statistically significant when the effect
of a technology shock is estimated using quarterly data.

In sum, when we work with the level specification, a positive technology shock induces a large
temporary increase in hours worked, both in Canada and the United States. But when we work
with difference specification, a positive technology shock leads to a persistent decline in hours
worked. In the next section we address the question: Which of the competing results is more
plausible, those based on the level specification or those based on the difference specification?
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4 Choosing Between the two Specifications

The level and difference specifications are based on different statistical models, corresponding
to whether we assume that hours worked are difference stationary or stationary in levels. As we
saw, these specifications generated different answers to the question of what happens to hours
worked after a positive technology shock. To assess which answer is more plausible, we must se-
lect between the statistical models underlying the two specifications. We first address this issue
using standard classical diagnostic tests. Since these do not convincingly discriminate between
the competing specifications we then turn to the type of encompassing methods employed in
CEV (2003).

4.1 Tests for Unit Roots and Stationarity

In this subsection we report the results for two well-known statistical tests of whether a univari-
ate time series has a unit root. The first test is the Augmented Dicky Fuller (ADF) test, which
tests the null hypothesis that hours worked has a unit root. The second test is the KPSS test
(from Kwiatkowski et al. 1992), which tests the null hypothesis that hours worked is stationary.
For the United States hour series, the ADF test fails to reject, at the 10 percent significance
level, the null hypothesis that per capita hours worked has a unit root.11 At the same time
the KPSS test fails to reject the null hypothesis, at the 10 percent significance level, that per
capita hours worked are stationary.12 For Canada, the results are somewhat more supportive
of the level specification. The ADF test rejects the unit root hypothesis at the 2.5 percent
significance level but fails to reject it at the 1 percent level.13 The KPSS test fails to reject the
null hypothesis of stationarity at the 5 percent significance level.14 Based on these results we
conclude that conventional standard classical diagnostic tests cannot be used to convincingly
discriminate between our two competing statistical models of per capita hours worked, either
in Canada or the United States.

4.2 Encompassing Tests

In the preceding section we showed that conventional classical methods are not useful for se-
lecting between the level and difference specifications of our VAR. An alternative way to select
between the competing specifications is to use an encompassing criterion. Under this criterion,
a model must not just be defensible on standard classical diagnostic grounds. It must also
be able to predict the results based on the opposing model. If one of the two views fails this
encompassing test, the one that passes is to be preferred.
11The ADF test statistic (with two lags) equals −1.6014. The critical value corresponding to a 10 percent

significance level is −2.57.
12The value of the KPSS test statistic is 0.3221. The asymptotic critical value at the ten percent significance

level is 0.347. In implementing this test we set the number of lags in our Newey-West estimator of the relevant
covariance matrix to two.
13The ADF test statistic has a value of -2.5768 with three lags while the small sample critical values are -2.26

and -2.66 at the 10 percent and 5 percent significance level, respectively. Asymptotic critical values for the ADF
test statistic are -2.23 and -2.58 at the 10 percent and 5 percent significance level, respectively.
14With two lags the KPSS test statistic has a value of 0.3577. Therefore one would not reject the null at the

5 percent significance level using the asymptotic critical value of 0.463.
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In what follows we review the impact of specification error and sampling uncertainty on the
ability of each specification to encompass the other. Our discussion here closely parallels the
analysis in CEV (2003) who argue that, other things equal, the specification that will do best
on the encompassing test is the one that predicts that the other specification is misspecified.

We show in the next section that the level specification predicts that the difference specifi-
cation is misspecified. We,therefore, expect that the level specification will do better than the
difference specification. But as noted in CEV (2003), this consideration is not definitive be-
cause sampling considerations also enter. After discussing these issues we present our bivariate
encompassing results.

4.2.1 A Priori Considerations when the Level Specification is True

If the level specification is true and the econometrician adopts the difference specification, he
is committing a specification error. To see why, recall the two steps involved in estimating
the dynamic response of a variable to a technology shock. The first involves the instrumental
variables equation used to estimate the technology shock itself. The second involves the vector
autoregression used to obtain the actual impulse responses.

Suppose the econometrician estimates the instrumental variables equation under the mis-
taken assumption that hours worked is a difference stationary variable. In addition, assume
that the only variable in Xt is log hours worked. The econometrician would difference Xt twice
and estimate µ along with the coefficients in the finite-ordered polynomials, β(L) and α(L), in
the system:

∆ft = µ+ β(L)∆ft−1 + α(L)(1− L)∆Xt + εzt .

Suppose thatXt has not been overdifferenced, so that its spectral density is different from zero at
frequency zero. Then, in the true relationship, the term involvingXt is actually ᾱ(L)∆Xt, where
ᾱ(L) is a finite ordered polynomial. In this case, the econometrician commits a specification
error because the parameter space does not include the true parameter values. The only way
α(L)(1 − L) could ever be equal to ᾱ(L) is if α(L) has a unit pole, i.e., if α(L) = ᾱ(L)/(1 −
L). This, however, is impossible, since no finite lag polynomial, α(L), has this property. So,
incorrectly assuming that Xt has a unit root entails specification error.

We now turn to the VAR used to estimate the response to a shock. A stationary series that
is first differenced has a unit moving average root. It is well known that there does not exist
a finite-lag vector autoregressive representation of such a process. So here too, proceeding as
though the data are difference stationary entails a specification error.

4.2.2 A Priori Considerations when the Difference Specification is True

Suppose the difference specification is true but the econometrician works with the level spec-
ification. Here the econometrician is not committing a specification error. To see this, first
consider the instrumental variables regression:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt , (5)

where the polynomials, β(L) and α(L), are of order q and q − 1, respectively. The econome-
trician does not impose the restriction α(1) equals zero when it is, in fact, true. This is not
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a specification error, because the parameter space does not rule out α(1) equal to zero. In
estimating the VAR, the econometrician also does not impose the restriction that hours worked
is difference stationary. This also does not constitute a specification error because the level
VAR allows for a unit root (see Sims, Stock and Watson (1990)).

The fact that the econometrician is not committing a specification error does not necessar-
ily imply that the level specification can encompasses the difference results. This is because
sampling considerations must be taken into account. CEV (2003) stress that the difference
specification implies that the level specification suffers from a weak instrument problem. Weak
instruments can lead to large sampling uncertainty, as well as bias. These considerations may
help the difference specification explain the results of the level specification.

To see why a weak instrument arises, recall that the econometrician who adopts the level
specification uses lagged values of Xt as instruments for ∆Xt. If Xt, however, actually has a
unit root, this results in a weak instrument problem. Lagged Xt’s are poor instruments for
∆Xt because ∆Xt is driven by relatively recent shocks while Xt is heavily influenced by shocks
that occurred long ago. At least in large samples, there is little information in lagged Xt’s for
∆Xt.

A different way to see why a weak instrument problem arises when the econometrician
mistakenly adopts the level specification is as follows. Consider the regression

∆ht = a+Πht−1 + p(L)∆ht−1 + q(L)∆ft−1 + εzt . (6)

A test of the hypothesis that Π is equal to zero has two interpretations. First, it is the covariates
ADF test of Hansen (1995) for whether ht has a unit root (Π = 0). Second, it is the standard
F-test for weak instruments discussed in Staiger and Stock (1997) for whether the lagged level
of hours is a weak instrument for ∆ht (Π = 0). So here testing for the presence of a unit
root in ht is the same as testing for whether lagged hours is a weak instrument for the ∆ht.
If the difference specification is true, then at least asymptotically one could not reject either
hypothesis.

To summarize, when the level specification is true, the difference specification is misspecified.
When the difference specification is true, the level specification is not misspecified but the
econometrician will encounter a weak instrument problem and there will likely be large sampling
uncertainty, as well as bias, associated with parameter estimates.

5 Encompassing Results

We base our encompassing tests on the ability of the level and difference specifications to
match three observations. The first two observations come from the empirical hours response
that arises from the two different specifications. For the level specification, the average hours
response following a technology shock is positive. For the difference specification, the average
hours response is negative. The encompassing test compares the ability of each specification
to account for both of these findings. The third observation is the empirical value of the weak
instrument F -test. Specifically, we assess the ability of the level and difference specification to
account for the observed F -test (6). If the level specification is true then the lagged level of
hours will be a good instrument. If the difference specification is true, then the lagged level of
hours will be a poor instrument. So the two specifications ought to have different implications
for the weak instrument F test.
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5.1 Does the Level Specification Encompass the Difference Specification Re-
sults?

To study whether the level specification can encompass the difference specification, we proceed
as in CEV (2003). For each country, we use the estimated level specification VAR as the
data generating process [DGP]. With this DGP, we simulated by bootstrap 1000 artificial data
sets, each of length equal to our actual sample size. For each simulated data set, we then
(incorrectly) assume that the difference specification is true, and estimate a bivariate VAR in
which hours worked appears in growth rates, and compute the impulse responses to a technology
shock. Panel A of Figure 5 reports the distribution of impulse responses that arise from the
simulation. The mean impulse responses appear as the thin line with circles in the Figure. These
correspond to the prediction of the level specification for the impulse responses that one would
obtain with the (misspecified) difference specification. The lines with triangles are reproduced
from Figure 4 and correspond to our point estimate of the relevant impulse response function
generated from the difference specification. The thick lines are reproduced from Figure 3 and
correspond to the point estimate of the relevant impulse response function generated from the
level specification. The gray area represents the 95 percent confidence interval of the simulated
impulse response functions.15

From Figure 5 we see that, for both countries, the average of the impulse response functions
emerging from the ‘misspecified’ growth rate VAR are very close to the actual estimated impulse
response generated using the difference specification. In particular, hours worked are predicted
to fall after a positive technology shock even though they rise in the actual data-generating
process. Evidently the specification error associated with incorrectly adopting the difference
specification can explain the estimated fall in hours found using the difference specification. In
other words, the level specification attributes the decline in hours in the estimated VAR with
differenced hours to over-differencing. We conclude that the level specification convincingly
encompasses the difference specification.

5.2 Does the Difference Specification Encompass the Level Results?

To assess the ability of the difference specification to encompass the level specification, we
proceed as above except we now take as the data-generating process the estimated VARs in
which hours worked appears in growth rates. Panel B in Figure 5 reports results analogous to
those displayed in Panel A. The thick, solid lines, reproduced from Figure 3, are the impulse
responses associated with the estimated level specification. The thin lines with the triangles
are reproduced from Figure 4 and are the impulse responses associated with the difference
specification.

The thin lines with circles in Panel B are the mean impulse response functions that result
from estimating the level specification of the VAR using the artificial data. They represent the
difference specification’s prediction for the impulse responses that one would obtain with the
level specification. The gray area represents the 95 percent confidence interval of the simulated
impulse response functions.

Two results are worth noting. First, for the United States the hours response is nearly zero.
15Confidence intervals were computed point-wise as the average simulated response plus or minus 1.96 times

the standard deviation of the simulated responses.
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This result is closer to the difference specification than the level specification and therefore
suggests that the distortion associated with not imposing a unit root in hours worked is not
very large. The Canadian data have results that are somewhat different. Here the mean
impulse response for hours is actually close to the level specification’s result.16 In part this
reflects the small sample bias issues discussed in CEV (2003). Apparently the small sample
used in the current paper implies that the level specification has some difficultly recovering
the true impulse responses. Consistent with this, there is a great deal of sampling uncertainty
associated with the estimated impulse response function. Indeed the confidence intervals in
Panel B of Figure 5 are substantially much wider than those reported in the other Figures.

Recall from our discussion above that if the difference specification is true, then an econo-
metrician who works with the level specification ought to encounter large sampling uncertainty.
This prediction faces a basic problem: it rests fundamentally on the difference specification’s
implication that there is a weak instrument problem. But as we show below, when we ap-
ply a standard test for weak instruments to the data, we find little evidence of this problem.
Moreover, the actual estimated confidence intervals associated with impulse responses obtained
using the level specification are relatively narrow (see Figure 3).

5.3 Testing for Weak Instruments

To assess whether there is evidence of weak instruments in the data, we use a standard F test for
weak instruments. Specifically, we regressed ∆Ht on a constant, Ht−1, and the predetermined
variables in the instrumental variables regression, (5). These are ∆Ht−s and ∆ft−s, s = 1, 2, 3.
Our weak instruments F statistic is the square of the t statistic associated with the coefficient
on Ht−1. In effect, this F statistic measures the incremental information in Ht−1 about ∆Ht.17

If the difference specification is correct, the additional information is zero.
For the United States, the weak instrument F-test is 5.95. This is below Stock and Staiger’s

recommended threshold value of 10 which suggests that, for the U.S. data, there may be a
weak instrument problem. In contrast CEV (2003) report that there is little evidence of a weak
instrument problem with the U.S. quarterly data. For Canada, the weak-instrument F-test is
11.60, which suggests that there is no weak instrument problem with the Canadian data.18 As
discussed above, this calls into question a basic implication of the view that hours worked have
a unit root.

5.4 The Relative Odds of the Two Specifications

The results of the previous subsections indicate that the level specification can easily account
for the estimated impulse response functions obtained with the difference specification. The
difference specification has a somewhat harder time accounting for the level specification results.
As in CEV (2003), we quantify the relative plausibility of the two specifications, by using the
type of posterior odds ratio considered in Christiano and Ljungqvist (1988). Christiano and
16These results are somewhat different than those reported for the quarterly U.S. data in CEV (2003).
17As noted above, our F test is equivalent to a standard ADF test with additional regressors. In the unit root

literature, this test is referred to as the covariate ADF test (Hansen 1995).
18The evidence against the difference specification reported here is stronger than we obtained using the ADF

test in Section 4.1. This is consistent with the analysis of Hansen (1995) and Elliott and Jansson (2003), who
show that incorporating additional variables into unit root tests can dramatically raise their power.
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Ljungqvist developed their statistic for a similar situation where differences and levels of data
lead to very different inferences.19 In our context, we claim that the more plausible of the two
VARs is the one that has the easiest time explaining the facts: (i) the level specification implies
that hours worked rises after a technology shock, (ii) the difference specification implies that
hours worked falls, and (iii) the value of the weak instruments F statistic.

The odds ratio that we use is calculated as follows. We simulated 1, 000 artificial data sets
using each of our two estimated VARs as the data generating mechanism. For an event Q
we asked what was the probability of observing that event for the level specification, P (Q|A),
where A denotes the level specification being true, and what was the probability of observing
that event for the difference specification, P (Q|B), where B denotes the difference specification
being true. The relative plausibility of the two different specifications can then be assessed as
the odds ratio of the level specification being true versus the difference specification being true
given the observed event

P (A|Q)
P (B|Q) =

P (Q|A)P (A)
P (Q|B)P (B) .

If one had a prior distribution that put equal weight on A and B then the odds ratio is just
the ratio of the conditional probabilities

P (Q|A)
P (Q|B)

We consider five definitions of the event Q :

(i) the difference specification is true and the impact effect of a technology shock on hours
worked is negative,

(ii) the level specification is true and the impact effect of a technology shock on hours worked
is positive,

(iii) both (i) and (ii) are true,

(iv) the weak instrument F statistic test is greater than or equal to the F statistic obtained
with the actual data,

(v) events (i), (ii) and (iv) occur.

Table 1 reports the frequency with which the different events were observed in the two
simulated data sets. For the U.S. case, the difference specification does slightly better at
predicting event (i). But the level specification does much better at predicting events (ii) and
(iv). The overall plausibility of the two specifications can be most easily assessed in terms
of event (v), in which case, the odds ratio favors the level specification by over five to one.
Similar results hold for the Canadian case. Surprisingly, the fall in hours associated with the
difference specification is actually observed more frequently when the DGP corresponds to the
19Eichenbaum and Singleton (1986) found, in a VAR analysis, that when they worked with first differences of

variables, there was little evidence that monetary policy plays an important role in business cycles. However,
when they worked with a trend stationary specification, monetary policy seems to play an important role in
business cycles. Christiano and Ljungqvist argued that the preponderance of the evidence supported the trend
stationary specification.
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level specification. Focusing on event (v), the odds ratio favors the level specification by over
nine to one. So the odds in favor of the level specification are even higher for the Canadian
case than for the U.S. case. This is consistent with our F-test results indicating less of a weak
instrument problem for Canada than for the United States.

Table 1: Simulations Results and Odds Ratios
United States Canada

Percent True Odds Percent True Odds
Specification Level Difference Level Difference
Event
(i) Impact Negative, Difference Specification 67.7 71.4 0.949 91.6 81.1 1.130
(ii) Impact Positive, Level Specification 97.1 54.3 1.788 96.9 66.8 1.451
(iii) Both Impact Responses 65.6 37.3 1.757 88.5 53.3 1.660
(iv) F-test 70.1 22.9 3.066 65.0 10.7 6.070
(v) Events (i),(ii) and (iv) True 47.6 8.9 5.343 57.6 6.2 9.290

6 Multivariate Results for Canada

In this section, we discuss how other Canadian variables (money growth, inflation, and the
interest rate) respond to a technology shock.20 To estimate these response functions one could
proceed as in CEV (2003) and estimate the large simultaneous system. However, given our
small sample size and the large number of parameters that would have to be estimated, we
are reluctant to do so. For example a five variable VAR with four lags requires estimating
110 coefficients with only forty years worth of annual data. Instead we adopt the following
sequential approach. Suppose we are interested in estimating the dynamic response functions
of a set of variables, X1,X2,X3.... For a given variable Xi, we estimate the technology shocks
εz,it using the the following version of our basic IV equation:

∆ft = µ+ β(L)∆ft−1 + αH(L)∆Ht + αXi(L)∆Xit + εz,it . (7)

We then estimate the VAR, ∆ftHt
Xit

 = B(L)
 ∆ft−1Ht−1
Xit−1

+ γεz,it + vt

Finally we derive the impulse response of Xit to a technology shock from the estimated VAR.
Given the results of the previous section we confine our attention to the level specification.

Figure 2 displays the time series on Canadian money growth, inflation, and the interest
rate.21 Figure 6 reports the estimated response of these variables to a technology shock. For
convenience the hours responses are repeated from Figure 3 as well as the output response
implied by the bivariate VAR reported in Figure 3. Two key results emerge here. First,
our point estimates indicate that inflation and the interest rate fall after an expansionary
20See CEV (2003) and ACEL (2003) for multivariate results based on quarterly U.S. data.
21The Bank Rate is measured using CANSIM series B14006. The money supply is M2, with CANSIM

mnemonic B1630. Inflation is measured as the growth rate of the GDP deflator D15612.
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technology shock while money growth rises. This suggests that the Bank of Canada, on average,
accommodated technology shocks over our sample period. Second, the confidence intervals
around the estimated impulse response functions are quite wide. Still, the initial fall in inflation
is statistically significant.22

7 Conclusions

Using annual Canadian and U.S. data, this paper argues that a positive technology shock
leads to a rise in Canadian output and hours worked, as well as a fall in inflation. In CEV
(2003), using similar methods and quarterly U.S. data, we argued that a technology shock also
leads to a rise in aggregate consumption and investment. On the face of it, these findings
are consistent with the predictions of the standard parameterization of a real business cycle
model. But, in our view, the rise in hours worked and overall expansion in aggregate activity
that follows in the wake of a technology shock reflects how monetary policy makers reacted to
the technology shock. While our empirical results are suggestive on this point, they are not
definitive. To make the case convincingly requires that we know how the economy would have
reacted had the monetary authority acted differently. The only place where we can perform
such a counterfactual experiment is in a structural economic model.

ACEL (2003) conduct this type of experiment in a dynamic general equilibrium model em-
bodying wage and price frictions. They argue that an estimated version of the model can
account for how the U.S. economy reacted to monetary policy and technology shocks in the
postwar era. They use this model as a laboratory to investigate how the U.S. economy would
have reacted to a technology shock with a different monetary policy. For example, they consider
what would have happened under the assumption that the Federal Reserve had not accommo-
dated technology shocks but rather had followed a k percent money growth rule. The key
conclusion in ACEL is that, with this counter-factual policy, hours worked would have fallen
for a prolonged period of time after a positive technology shock. In addition, compared to the
actual outcomes, output would have risen by far less and inflation would have fallen by far more.
We suspect that the same result would be true for Canada. Based on these results and similar
findings in Gali Lopez-Salido and Valles (2003), it is clear that policy makers ought to be vitally
interested in the supply side developments of the economy. Simple formulations of policy, like
Taylor rules, often push discussions of the output gap into the background. Knowing why the
gap moves is a critical input into policy decisions. Taken together, the results of this paper,
CEV (2003) and ACEL (2003), suggest that policy makers have, on average, been successful at
identifying technology shocks and have reacted in a way that has improved aggregate economic
performance.

22Note that the confidence intervals become extremely wide in the long run. This may reflect a near unit root
in our measure of the Canadian interest rate.
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A Figures

Figure 1: Data Used in VAR, United States
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Figure 2: Data Used in VAR, Canada
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Figure 3: Impulse Responses Using the Level Specification
Panel A) United States
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Figure 4: Impulse Responses Using the Difference Specification
Panel A) United States
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Figure 5: Encompassing Results
Panel A: Level Specification As the DGP
United States Canada
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Figure 6: Sequential Analysis
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