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Alternative Procedures for Estimating Vector
Autoregressions Identified with Long-Run

Restrictions∗

Lawrence J. Christiano, Martin Eichenbaum, and Robert Vigfusson†

Abstract

We show that the standard procedure for estimating long-run identi-
fied vector autoregressions uses a particular estimator of the zero-frequency
spectral density matrix of the data. We develop alternatives to the stan-
dard procedure and evaluate the properties of these alternative procedures
using Monte Carlo experiments in which data are generated from estimated
real business cycle models. We focus on the properties of estimated impulse
response functions. In our examples, the alternative procedures have bet-
ter small sample properties than the standard procedure, with smaller bias,
smaller mean square error and better coverage rates for estimated confidence
intervals.
Keywords: technology shocks, hours worked, frequency domain, spec-

tral density matrix
JEL Codes: E24, E32, O3

1 Introduction

There is a large literature in which researchers impose long-run identifying re-
strictions on vector autoregressions (VARs) to identify the dynamic effects of
shocks to the economy. These restrictions are motivated by the implications that
many economic models have for the long-run effects of shocks. We show that the
standard procedure for estimating long-run-identified vector autoregressions uses
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the authors and should not be interpreted as reflecting the views of the Board of Governors of
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a particular estimator of the zero-frequency spectral density matrix of the data.
This estimator is derived from the estimated coefficients of a finite order VAR.
When the actual VAR of the data contains more lags of the variables than the
econometrician uses, this estimator of the zero-frequency spectral density ma-
trix can have poor properties. These poor properties stem from the difficulties
involved in estimating the sum of the coefficients in a VAR. We develop alter-
native procedures that combine different zero-frequency spectral density matrix
estimators with VARs. The specific estimators that we consider are the Bartlett
estimator and the estimator proposed by Andrews and Monahan (1992). We
evaluate the properties of our alternative procedures using Monte Carlo experi-
ments in which data are generated from estimated Real Business Cycle (RBC)
models. We focus on the properties of estimated impulse response functions.
In our examples, the alternative procedures have better small sample properties
than the standard procedure: they are associated with smaller bias, smaller mean
square error and better coverage rates for confidence intervals.

The small sample properties of spectral density estimators can depend on the
properties of the underlying data generating mechanism. Therefore some caution
must be taken in extrapolating from our results. At a minimum our results
suggest that applied econometricians should consider alternative procedures for
estimating long-run identified vector autoregressions.

2 Long-Run Identifying Restrictions and VARs

There is an important literature in which researchers impose long-run identifying
restrictions on VAR. For example, Gali (1999) imposes the identifying assumption
that the only shock that affects the log of labor productivity, at, in the long run is
a technology shock εzt . Gali’s identifying assumption corresponds to the exclusion
restriction:

lim
j→∞

[Etat+j −Et−1at+j ] = f (εzt only) . (1)

In addition Gali imposes the sign restriction that f is an increasing function of
εzt .

Gali imposes the exclusion and sign restrictions on a VAR to compute εzt and
identify its dynamic effects on macroeconomic variables. Denote the N variables
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in a VAR by Yt :

Yt+1 = B (L)Yt + ut+1, Eut+1u
0
t+1 = V, (2)

B(L) ≡ B1 +B2L+ ...+BqL
q−1,

Yt =

 ∆ log at
log lt
xt

 .

Here lt denotes per capita hours worked and xt is an additional vector of variables
that may be included in the VAR. In all of our applications we assume that
q = 4. Suppose that the fundamental economic shocks are related to ut via the
relationship:

ut = Cεt, Eεtε0t = I, CC 0 = V, (3)

where the first element in εt is εzt . It is easy to verify that:

lim
j→∞

E[at+j |Ωt]−Et−1[at+j |Ωt−1] = τ [I −B(1)]−1Cεt. (4)

Here τ is a row vector with all zeros, except unity in the first location and
B(1) is the sum, B1 + ... + Bq. Also, E is the expectation operator and is Ω
= {Yt, ..., Yt−q+1} is the information set.

To compute the dynamic effects of εzt on the elements of Yt we need to know
B1, ..., Bq and C1, the first column of C. The matrix, V, and the Bi’s can be
estimated by an ordinary least squares regression. The requirement that CC 0 = V
is insufficient to determine a unique value of C1. Adding the exclusion and sign
restrictions does uniquely determines C1. The exclusion restriction implies that:

[I −B(1)]−1C =

"
number 0

1×(N−1)
numbers numbers

#
.

The 0 matrix reflects the assumption that only a technology shock can have
a long run effect on at. The sign restriction implies that the (1, 1) element of
[I −B(1)]−1C is positive.

The standard algorithm for computing C1 requires the matrix

D ≡ [I −B(1)]−1C.

Although we cannot directly estimate D, we can estimate DD0 :

DD0 = [I −B(1)]−1 V
£
I −B(1)0

¤−1
. (5)
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The right hand side of (5) can be computed directly from the VAR coefficients and
the variance-covariance matrix of the ut. There are many D matrices consistent
with (5) as well as the sign and exclusion restrictions. However, these matrices
all have the same first column, D1 (see Christiano, Eichenbaum, and Vigfusson
CEV (2005)). This unique D1 implies a unique value for C1:

C1 = [I −B(1)]D1. (6)

The right hand side of (5) is the estimate of the zero-frequency spectral density
matrix of Yt, SY (0), that is implicit to the VAR of order q. When the true value
of q is larger than the one used by the econometrician, there is reason to be
concerned about the statistical properties of this estimator. A mismatch between
the true value of q and the value that the econometrician assumes can arise when
the data generating process is a dynamic stochastic general equilibrium model.
For these types of models, Yt may have an infinite-ordered VAR, i.e. q =∞.

To understand the nature of the problem when q is misspecified, it is useful
to consider a simple analytic expression closely related to results in Sims (1972).
Equation (7) approximates what an econometrician who fits a misspecified VAR
will find. The expression is an approximation because it assumes a large sample
of data. Let B̂1, ..., B̂q and V̂ denote the estimated parameters of a VAR with q
lags. Then,

V̂ = V + min
B̂1,...,B̂q

1

2π

Z π

−π

h
B
¡
e−iω

¢− B̂
¡
e−iω

¢i
SY (ω)

h
B
¡
eiω
¢− B̂

¡
eiω
¢i0

dω,

(7)
where B

¡
e−iω

¢
is B(L) with L replaced by e−iω.1 Here, B and V are the para-

meters of the actual VAR representation of the data, and SY (ω) is the associated
spectral density at frequency ω.

According to (7), estimating an unconstrained VAR approximately involves
choosing parameters to minimize a quadratic form in the difference between the
estimated and true lag matrices. The quadratic form assigns greatest weight to
the frequencies where the spectral density is the greatest. If the econometrician’s
VAR is correctly specified, then B̂ = B and V̂ = V . If the econometrician
estimates a VAR with too few lags relative to the true VAR, then this specification
error implies that B̂ 6= B and V̂ > V .2 Equation (7) indicates that B̂ (1) will be
a good approximation for B (1) only if SY (ω) happens to be relatively large in
a neighborhood of ω = 0. This is not something we can rely on.

Our alternative procedure for estimating long-run identified VARs involves

1The minimization is over the trace of the indicated integral.
2By V̂ > V we mean that V̂ − V is a positive definite matrix.
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replacing the zero-frequency spectral density estimator in (5) by other estimators
specifically designed for the task. There is a very large literature that analyzes the
properties of alternative estimators of zero-frequency spectral density matrices.
One alternative is to use the Bartlett estimator:

SY (0) =
T−1X

k=−(T−1)
g(k)Ĉ (k) , g(k) =

½
1− |k|

r |k| ≤ r
0 |k| > r

, (8)

where, after removing the sample mean from Yt,

Ĉ(k) =
1

T

TX
t=k+1

YtY
0
t−k.

Another alternative is to use the Andrews-Monahan (1992) estimator:

SY (0) = [I − (B1 + ...+Bp)]
−1 Fu (0)

£
I − (B1 + ...+Bp)

0¤−1 (9)

Fu (0) =
rX

k=−r
|1− k

r
|G (k) , G(k) =

1

T

TX
t=k

utu
0
t−k

In our alternative procedure for estimating the dynamic effect of a technology
shock, we replace the estimate of SY (0) , used to construct DD0 and D1 in the
standard procedure, with the estimator of SY (0) given by either (8) or (9).
We refer to these procedures as the Bartlett and Andrews-Monahan procedures,
respectively. We then construct C1 using (6).3 In the alternative procedures C1
still depends on the sum of the VAR coefficients even though D1 does not. To
implement (8) or (9) we use essentially all possible covariances in the data by
choosing a large value of r, r = 150.4 In addition, we examine the properties of
our alternative procedures when we use smaller values of r.

3 The Data Generating Process

CEV (2005) show that a standard RBC model with a permanent technology
shock and a labor supply shock implies the following reduced form model for

3The C matrix constructed with this C1 will not have the property that CC0 = V.
4The rule of always setting the bandwidth, r, equal to sample size does not yield a consistent

estimator of the spectral density at frequency zero. We assume that as the sample size increases
the bandwidth is increased sufficiently slowly to obtain a consistent estimator.
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Yt = [∆ log at, log lt]
0 :

Yt = φ1Yt−1 + φ2Yt−2 + εt + θ1εt−1 + θ2εt−2, (10)

where φ1 and φ2 are scalars, θi is two by two matrix and εt is a normally dis-
tributed vector with variance-covariance matrix Ψ. The sign and exclusion re-
strictions are satisfied by the RBC model that CEV(2005) consider. Equation
(10) implies that Yt has an infinite-order VAR. Therefore, any finite-order VAR
is misspecified.

In the benchmark version of the model, we use values for the exogenous shock
processes obtained by CEV (2005) who maximize the Gaussian log likelihood
function for Yt using postwar U.S. data over the sample 1959QIII to 2001QIV.
We summarize their results as follows:

φ1 = 1.9439, φ2 = −0.9445, Ψ =
1

1000

µ
0.039137 −0.0095548
−0.0095548 0.073729

¶
θ1 =

µ −1.926 0.027834
−0.0066342 −0.97012

¶
, θ2 =

µ
0.92682 −0.027548
0 0

¶
.

In the CKM version of the model, we assume values for the parameters equal
to those used by Chari, Kehoe, and McGrattan’s (CKM) (2005) in their bench-
mark model. CKM obtain these values using a Kalman filter framework to es-
timate the model. CKM impose the highly questionable identifying assumption
that, up to a small measurement error, the change in government spending and
net exports is a good measure of the change in technology. CEV (2005) show
that there is overwhelming empirical evidence against the restrictions imposed
by CKM. Despite the empirical implausibility of the CKM model, we use it as
a data generating process because it provides us with an additional example to
assess our alternative procedures. CKM’s estimated parameter values are given
by:

φ1 = 1.9093, φ2 = −0.9114,Ψ =
1

1000

µ
0.11604 −0.14605
−0.14605 0.52697

¶
θ1 =

µ −1.8967 0.041277
0.0064704 −0.96777

¶
, θ2 =

µ
0.89971 −0.040268
0 0

¶
.

4 Results

To analyze the properties of our different procedures we generate multiple data
sets, each of length 180 observations. We generate 1000 data sets using the
benchmark model and 1000 data sets using the CKM model as the data generat-
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ing mechanism. For each data set, we estimate a four-lag VAR and we estimate
SY (0) using the standard VAR-based estimator, the Bartlett estimator, and the
Andrews-Monahan estimator. We then calculate three different estimates of the
dynamic response of hours worked to a technology shock, as described in Section
2.

Figure 1 reports the average estimated response across all simulations (the
solid line) and the true model response (the starred line). In addition, Figure 1
reports the true degree of sampling uncertainty, measured by the standard devi-
ation of the estimated impulse response functions across the 1000 synthetic data
sets (the dashed interval). To assess whether an econometrician would correctly
estimate the true degree of sampling uncertainty, we proceed as follows. For
each synthetic data set, and corresponding estimated impulse response function,
we calculate the bootstrap standard deviation of each point in the impulse re-
sponse function. Specifically, we estimate a VAR on each of the 1000 data sets
that we simulate from the economic model. We use the VAR coefficients and
fitted disturbances in a bootstrap procedure to generate 200 synthetic data sets,
each of length 180 observations. For each of these 200 synthetic data sets, we
estimate a new VAR and impulse response function. We then calculate the stan-
dard deviation of the coefficients in the impulse response functions across the 200
data sets. We use this standard deviation to construct a two standard deviation
confidence interval around the estimated responses. We also calculate coverage
rates for the first coefficient in the impulse response function. Specifically, we
report how often, across the 1000 data sets simulated from the economic model,
the econometrician’s confidence intervals contain the first coefficient of the true
impulse response function. In addition, Figure 1 reports the average confidence
interval (the circles) that an econometrician would construct.

To help quantify the statistical properties of the different procedures Table 1
reports summary statistics forX, the estimated contemporaneous response of lt to
a technology shock.: median, mean and standard deviation of X across the 1000
synthetic data sets for each model. A different metric for assessing the different
procedures is to focus on the mean square error (MSE) of X. The MSE combines
information about bias and sampling uncertainty. We calculate the square root

of the MSE,
h
(1000)−1

P1000
i=1 (Xi − ξ)2

i1/2
, for our different procedures. Here Xi

denotes the value of X obtained in the ith synthetic data set and ξ is the true
response. Table 1 reports the value of this statistic for the different procedures
relative to the MSE associated with the standard procedure. Finally we report
coverage rates for X.

Consider first the results obtained using the CKM model as the data gener-
ating process. Figure 1 indicates that there is substantial upward bias associated
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with the standard procedure, although the bias is small relative to sampling un-
certainty. Figure 1 indicates that the size of the bias associated with the Andrews
- Monahan procedure is substantially smaller than the bias associated with the
standard procedure. The bias associated with the Bartlett procedure is smaller
still. Table 1 indicates that the bias for X falls from 0.63 using the standard pro-
cedure to 0.31 for the Andrews - Monahan procedure and to 0.08 for the Bartlett
procedure. The square root of the MSE for X also falls with the modified proce-
dures: the ratio of the MSE for the Andrews - Monahan and Bartlett procedures
relative to the standard procedure is 0.91 and 0.77, respectively.

Table 1 indicates that the coverage rate for X of our alternative procedures
improves relative to the standard procedure. For the standard procedure, the
coverage rate for X is only 74 percent which is substantially below the nominal
size of 95 percent. For the Andrews - Monahan procedure, the coverage rate is 91
percent and the coverage rate is 94 percent for the Bartlett procedure. Finally,
Table 1 indicates that for both alternative procedures, setting r to 150 leads to
better properties than setting r to 25 or 50.

Taken together, our results indicate that for data generated by the CKM
model, our alternative procedures perform better than the standard procedure
with smaller bias, smaller mean square error, and coverage rates that are closer
to the nominal size. In this particular application, the Bartlett procedure out-
performs the Andrews-Monahan procedure.

We now briefly discuss results when the data generating mechanism is our
benchmark model. Figure 1 shows that the bias associated with the standard
procedure is much smaller than when the data are generated using the CKM
model. Even so, both modified procedures outperform the standard procedure.
Again the bias is smaller, the MSE is reduced and coverage rates are closer to
nominal sizes. Judging between the Andrews-Monahan and Bartlett procedures
is more difficult. Bias is larger for the Bartlett procedure but the MSE is smaller
and the coverage rate is closer to the nominal size.

5 Conclusion

We develop alternative procedures for estimating long-run identified vector au-
toregressions. We assess their properties relative to the standard procedure used
in the literature. We evaluate the properties of the different procedures using
Monte Carlo experiments where we generate data from estimated RBC models.
Focusing on estimated response functions, we find that our alternative proce-
dures have better small sample properties than the standard procedure: they are
associated with smaller bias, smaller mean square error and better coverage rates
for confidence intervals.

8



References

[1] Andrews, D.W.K., and J.C. Monahan, 1992, An improved heteroskedasticity
and autocorrelation consistent covariance matrix estimator, Econometrica 60,
pp.953-966.

[2] Chari, V.V., Patrick Kehoe, and Ellen McGrattan, 2005, ‘A Critique of Struc-
tural VARs Using Real Business Cycle Theory,’ Federal Reserve Bank of Min-
neapolis Staff Report 364 July.

[3] Christiano, Lawerence J., Martin Eichenbaum and Robert Vigfusson, 2005,
‘Assessing Structural VARs’, manuscript, Northwestern University.

[4] Gali, Jordi, 1999, ‘Technology, Employment, and the Business Cycle: Do
Technology Shocks Explain Aggregate Fluctuations?’ American Economic
Review, 89(1), 249-271.

[5] Sims, Christopher, 1972, ‘The Role of Approximate Prior Restrictions in
Distributed Lag Estimation,’ Journal of the American Statistical Association,
67(337), 169-175.

9



Table 1: The Contemporaneous Response of Hours Worked to a Positive Technology Shock

Procedure r Median Mean
Standard
Deviation

MSE* Coverage

CKM Model (Hours Response 0.32)
Standard 1.03 0.95 0.68 0.74
Andrews-Monahan 25 1.16 1.04 0.81 1.17 0.76

50 0.98 0.85 0.92 1.14 0.87
150 0.74 0.63 0.79 0.91 0.91

Bartlett 25 0.53 0.48 0.52 0.58 0.90
50 0.60 0.51 0.78 0.86 0.92
150 0.44 0.40 0.71 0.77 0.94

Our Benchmark Model (Hours Response 0.28)
Standard 0.43 0.33 0.42 0.84
Andrews-Monahan 25 0.44 0.34 0.48 1.13 0.86

50 0.39 0.29 0.53 1.25 0.88
150 0.28 0.21 0.44 1.06 0.87

Bartlett 25 0.16 0.14 0.22 0.63 0.89
50 0.19 0.15 0.35 0.89 0.92
150 0.15 0.12 0.33 0.87 0.91

Notes: Results from Monte Carlo experiments with data simulated from two
parameterizations of a RBC model.
*MSE represents the ratio of the square root of the mean squared error relative
to the standard procedure
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Figure 1:  The Response of Hours Worked to a Positive Technology Shock
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