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ABSTRACT

We propose a parametric spectral estimation procedure for
contructing heteroskedasticity and autocorrelation consistent
(HAC) covariance matrices. We establish the consistency of
this procedure under very general conditions similar to those
considered in previous research. We also perform Monte Carlo
simulations to evaluate the performance of this procedure in
drawing reliable inferences from linear regression estimates.
These simulations indicate that the parametric estimator
matches, and in some cases greatly exceeds, the performance
of the prewhitened kernel estimator proposed by Andrews and
Monahan (1992). These simulations also illustrate the inherent
limitations of non-parametric HAC covariance matrix estimation
procedures, and highlight the advantages of explicitly modeling

the temporal properties of the error terms.



Inferences from Parametric and Non-Parametric
Covariance Matrix Estimation Procedures

Wouter J. Den Haan and Andrew T. Levin1

1. INTRODUCTION.

“The end of the story of the search for the perfect spectral estimator
seems altainable if one does not think of spectral estimation as a
non-parametric procedure which can be conducted independently of model
identification.”

Emmanuel Parzen (1983)

Over the past decade, the use of heteroskedasticity and autocorrelation
consistent (HAC) covariance matrices has become relatively common in drawing
inferences from parameter estimates, since in many structural economic or
time-series models, the errors may have heteroskedasticity and temporal
dependence of unknown form. The key step in constructing a HAC covariance
matrix is to estimate the spectral density matrix at frequency zero of a
vector of residual terms uxi. In a least-squares context, for instance, ux:
consists of the vector of explanatory variables multiplied by the regression
error. Thus, analytical results in the spectral density estimation literature
(e.g. Parzen (1957) and Priestley (1982)) have contributed to the rapid
development of new HAC covariance matrix estimation procedures (e.g., White
(1984), Gallant (1987), Gallant and White (1988), Newey and West (1987,
1994), Andrews (1991) and Andrews and Monahan (1992)), but with an almost
exclusive focus on non-parametric kernel-based spectral methods.? The AR(1)
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2 Eichenbaum, Hansen and Singleton (1987) and West (1994) implemented
covariance matrix estimators in which the residual terms follow a
moving-average (MA) process of known finite order. Andrews (1991) and
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spectral estimator, but the estimator did not correct for heteroskedasticity
and did not perform very well in simulation experiments. Stock and Watson

(1993) utilized AR (2) and AR(3) covariance matrix estimators in Monte Carlo
experiments and in an empirical application.



prewhitening technique introduced by Andrews and Monahan (1992) has enhanced
the accuracy of kernel-based procedures in a variety of Monte Carlo
experiments, leading Newey and West (1994) to conclude that ’...a priority
[in econometric research] is theoretical and empirical investigation of
autoregressive or autoregressive-moving average spectral estimators’.

In this paper we propose a parametric spectral estimation
procedure for constructing HAC covariance matrices, and we establish the
consistency of this procedure under very general conditions of
heteroskedasticity and temporal dependence, similar to the conditions
considered in previous research (e.g., Andrews (1991)). The parametric
procedure utilizes standard estimation and model selection techniques in the
time domain to construct a time series model for the vector of residual
terms, ux.. Next a simple transformation is used to obtain the spectral
density matrix at frequency zero, and the resulting HAC covariance matrix is
positive semi-definite by construction. In this paper, we focus on vector
autoregressive models of ux., and we use the AIC criterion to select the best
model. We will refer to the corresponding covariance matrix estimator as the
VARHAC estimator. Our use of the AIC criterion was motivated by Shibata
(1981), who showed that an asymptotically efficient estimate of the spectral
density can be obtained by using AIC to select the lag order. The following
arguments can be given to pursue a parametric approach.

(1) One important limitation of the kernel-based HAC covariance matrix
estimators is that a single bandwidth must be used in calculating all of the
elements of the spectral density matrix to ensure that the matrix is positive
semi-definite. Furthermore, an arbitrary matrix must be specified to assign
weights to the individual spectral matrix elements in implementing the
automatic bandwidth formula. If some components of the vector of residuals,
uxy, have a relatively high degree of persistence while other components have
low persistence, then imposing the same bandwidth for both sets of variables
will tend to generate ill-behaved estimates of the spectral density matrix at
frequency zero. Furthermore, the optimal bandwidth is not scale-independent
in this case: if a particular regressor is rescaled, the persistence of that
variable will receive higher weight in determining the optimal bandwidth.
Thus, large measurement errors in a single explanatory variable or instrument
can cause serious distortions in inference concerning the regression

coefficient for all of the other variables. In contrast, the VARHAC



estimator is scale-free: a different lag order can be chosen for each
component of the residual vector, because the parametric estimator of the
spectral density matrix is positive semi-definite by construction.

(ii) The accuracy of kernel-based spectral estimators has been shown to be
highly sensitive to the choice of bandwidth. This issue has been addressed
in the literature, yielding some evidence on the comparative advantages of
autoregressive and other parametric spectral density estimation methods (cf.
Beamish and Priestley (1981), Kay and Marple (1981), and Parzen (1983)).° 1In
particular, a larger bandwidth reduces the bias and increases the variance of
the estimated spectral density. Using an asymptotic truncated mean squared
error criterion, Andrews (1991) derived an optimal bandwidth analytically as
a function of the true spectral density at frequency zero and of other
parameters of the true data generating process. To obtain a feasible
estimator of the "plug in" or "automatic" bandwidth, the practitioner must
choose and estimate a time series model for the vector of residuals, ux..
However, if the time series model is misspecified, the estimator may have
relatively poor properties in finite samples. Of course, one could use a
formal model selection procedure to calculate the optimal bandwidth. But if
one follows this approach, one can simply use the spectral density at
frequency zero implied by the best parametric model, rather than plugging
this estimate into the automatic bandwidth formula to obtain a kernel-based
spectral estimate.

(iii) Andrews and Monahan (1992) proposed that kernel-based methods be
augmented by using an autoregressive filter of arbitrary order to prewhiten
the regression residuals, and considered a first-order autoregressive
filter in their Monte Carlo experiments. The AR(1) filter has provided
improved inference properties in many Monte Carlo simulation experiments,
some of which have considered data generating processes resembling actual
economic time series (cf. Andrews and Monahan (1992), Newey and West (1994),
Christiano and Den Haan (1994), and Burnside and Eichenbaum (1994)). Such
first-order prewhitening is a special case of the VARHAC estimator, in which
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the autoregressive order is chosen by a data-dependent model selection
criterion. Furthermore, when a sufficiently high autoregressive order is
chosen to remove all serial correlation, no additional benefits can be
obtained by applying a kernel-based technique to the prewhitened data.

(iv) We perform simulation experiments to evaluate the finite sample
performance of the VARHAC estimator in generating accurate confidence
intervals for linear regression coefficients. The Monte Carlo simulations
indicate that the VARHAC estimator matches, and in some cases, greatly
exceeds, the performance of the prewhitened quadratic-spectral (QS-PW)
estimator proposed by Andrews and Monahan (1992). This may seem to
contradict the Monte Carlo simulation results in Andrews (1991) and Andrews
and Monahan (1992), in which their parametric estimator (PARA) performed
poorly compared with non-parametric kernel-based estimation techniques.
However, the PARA estimator imposed an AR(1) specification and failed to
correct for heteroskedasticity. 1In contrast, the VARHAC estimator uses the
AIC criterion to select the autoregressive order, and does correct for

heteroskedasticity.

The remainder of this paper is organized as follows: Section 2 provides
a step-by-step outline of the VARHAC covariance matrix estimation procedure,
and establishes its asymptotic properties. Section 3 reviews the methodology
behind kernel-based HAC estimators. Section 4 analyzes the inherent
difficulties in implementing kernel-based HAC estimators, and outlines the
relative advantages of the VARHAC procedure. Section 5 reports Monte Carlo
simulation evidence comparing the performance of the VARHAC and prevwhitened
kernel-based HAC covariance matrix estimators. Section 6 concludes by

outlining areas for further research.
2. A PARAMETRIC COVARIANCE MATRIX ESTIMATOR.

2.1 The VARHAC procedure.
In many estimation problems, a parameter estimate Yy for an WNxi1
parameter vector yY, is obtained from the sample analog of a set of moment

conditions, such as

(2.1) E UXt(l/lo) = 0.



We will refer to uxy, as the vector of residual terms, although this
terminology may not always be the best in each context. Under regularity
conditions, the parameter yY; has the following limiting distribution
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(2.2) [DsSDIY?1Y2 (yr - yo) - N(O,Iy)

as the sample size T » o, where

(2.3) s = 2";_& o
(2.4) C_j = E UXt(lllo) Uxt_j(lllo)l,
and
- dux (y)
(2.5) D E[——aw, |¢=w°].

Also, Iy is the NxN identity matrix. Usually D can be consistently estimated
by its sample analog BT(QT). The matrix S 1is the spectral density at
frequency zero of the process uxi(y). As discussed in Section 3 below,
non-parametric estimators of S construct a weighted average of the estimated
autocovariances éj, where the weights and the number of autocorrelations
depend on the particular kernel and bandwidth selection procedure.

The parametric procedure constructs the spectral estimator §T(¢T) by
estimating a vector ARMA representation of uxt(iT) and uses an information
criterion to select the optimal lag order for each equation in the ARMA
representation. In this paper, we focus on vector autoregressive
representations, and we use Akaike’s (1973) information criterion to select
the optimal lag order for each equation in the ARMA representation. One main
advantage of AR representations is computational speed, which is important
for Monte Carlo studies using vector processes. The AIC 1is easy to
calculate, and Shibata (1981) demonstrated that the AIC vyields an
asymptotically efficient estimate of the spectral density. We will refer to
the parametric estimator based on the vector autoregressive representation

and the AIC model selection criterion as the VARHAC estimator.



Step 1. Lag order selection for each VAR equation. For the n*" element ux,:
of the vector uxy(yr) (n = 1,...,N) and for each lag order k = 1,...,K, the

following model is estimated by ordinary least squares:

(2.6) uXpt = Z§—1 Z:=1 anjk (K) uxn t-k  + ent(k) for t = K+1,...,T.
For lag order 0, we set e i(k) = ux,.. Below we will discuss the choice of
the maximum lag order, K, that one wants to consider. Equation (2.6)

represents the regression of each component of ux: on its own lags and the

lags of the other components. Then the value of the AIC criterion is
calculated for each lag order k = O,...,K.
(2.7) AIC(;n) = log [ (/T) L[ o  enlk)] + 2cN / T.

For each element of ux.(yy) the optimal lag order k, is chosen as the value

of k that minimizes AIC(k;n).

Step 2. Estimation of innovation covariance matrix. Using the results of

Step 1, the restricted VAR can be expressed as:

(2.8) uxe(n) = Lo A uxesc(dn) + &

where Ay is an NxN matrix that contains zeros and the estimated coefficients

anjk(nn)4, and e, is an nx1 vector with typical element en:(k,). The
innovation covariance matrix §T is estimated as follows:
g _ 11 ~ o~

(2.9) ZT = T Et:E'I'I €y €y
Alternatively, seemingly unrelated regression (SUR) methods could be used to
obtain joint estimates of the restricted VAR parameters and the innovation
covariance matrix, which would yield more efficient parameter estimates if
4

~ The (n,j) element of Ay 1is equal to =zero if k > Kn, and it 1is equal to
njk (Kn) 1f k = K,.
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the innovation covariance matrix contains significant off-diagonal elements”.

Step 3: Estimation of HAC covariance matrix. Using the results of Step 2,

the spectral density matrix at frequency zero is estimated with

(2.10) St(gr) = [ Iy - 2‘: A1V S LIy - ):“:=1 A’ 17t

=1

Finally, the VARHAC covariance matrix estimator is defined by
(2.11) VT(l/lT) = DT(¢T)ST(¢T)DT(¢T)’

In case one wants to include MA-terms in the regressions, then the

spectral density matrix at frequency zero is estimated with

(212) gT(l’/;T) = [IN - ::=1Zk]—1 [IN + Zi=1§k] ET

XK =, I S |
X [Iy + Eklek 1 [Iy Zil AJ1 7,

where A,, and B¢ contain respectively the AR and the MA coefficients for the

model chosen by the AIC criteria.

2.2 Relation to the prewhitening method.

Andrews and Monahan (1992) proposed the use of an AR(1) filter to
prewhiten the vector uxt(iT), before using the non-parametric covariance
matrix estimator. This suggestion has turned out to be very successful in
improving the small sample behavior of covariance matrix estimators.
However, the first-order prewhitening procedure does not use the data to
select the lag-order k, but simply sets the lag-order equal to one for all
elements of uxt(iTL Thus, this procedure may be viewed as a restrictive
version of the VARHAC procedure. The AR components in the Monte Carlo
experiments in Andrews and Monahan are at most first order, but in a

Efficiency gains can also be achieved 1in small samples by reestimating the
equations using observations before K, whenever possible.



practical application the AR component is unknown a priori and frequently

appears to be of a higher order.®

2.3 Relation to a previous parametric estimator.

In a linear regression framework the vector ux, is equal to XU., where
Uy is the regression residual and X; is the vector of explanatory variables.
The key step in calculating the standard errors is to estimate Z,, where Zy

is defined as follows:

(2.13) zo = pI_ L_ E(WXUXIX).

Under the assumption that the errors are homoskedastic, Zy is equal to

I T EWUIX) E(XXe’ |X)

(2.14) Zy = c=1 Lieq

e

Andrews (1991) and Andrews and Monahan (1992) constructed a simple parametric
estimator by imposing homoskedasticity and making use of Equation (2.14). In
contrast, the VARHAC estimator does not impose homoskedasticity, because this
procedure analyses the properties of the product ux: rather than its

individual components.

2.4 Consistency of the VARHAC procedure.

The asymptotic properties of autoregressive spectral estimators have
been analyzed extensively in the 1literature. Akaike (1969) proved the
consistency of the AR spectral estimator under the assumptions that the true
d.g.p. is an autoregressive process of known finite order and the innovations
are i.i.d. with finite fourth moments. Berk (1974) extended this result to
the case where the data are generated by an autoregressive process of unknown
and possibly infinite order, by allowing the lag order to increase at the

1/3

rate o(T""") as the sample grows arbitrarily large. With the additional

assumption of Gaussian innovations, Shibata (1981) demonstrated that the use

6
See Christiano and Den Haan (1994) for detailed discussion of such

examples.



of AIC to choose the actual lag order yields an asymptotically efficient
estimate of the spectral density. Finally, Hannan and Kavalieris (1983,
1984) showed that these consistency and efficiency results could be derived
under much more general assumptions, which we adopt in analyzing the

asymptotic properties of the VARHAC estimator.

Consider a zero-mean, fourth-order stationary, purely non-deterministic,
vector stochastic process ux:(y¥o) of N elements. By the Wold representation

theorem, we can express ux:(yYo) as follows:

(al1) uxe (Yo) = ZT—O 6; €¢-;5 where 8(0) =1, ZT_O 0;0;' < o,

E{er} = E{e¢|Fi-1} = 0, E{erey’} = Z, E{eres’} = 0 for s  t.

The €y are the linear innovations and hence are measurable ¥(t), where %(t)

is the o-algebra determined by {ux.(yp), s = t}.

The consistency of the autoregressive spectral estimator can be shown

under the following additional conditions on the partial autocorrelations and

innovations:

(a2) det { L 8, z} = 0 for all |z| =1

(a3) Lo /% lejl <

(ad) E{ ery } < w for all n = 1,...,N

(a5) E{ egte¢' | F(-») } = a.s.

(a6) Conditions (al) through (a5) hold with ux:(y,) replaced by

(uxt(wo)’.veC(gz—,uxt(wo) - E %uxt(wo) )').

(a7) SUp, ., E "UXt(¢o)"2 < o

t=

(a8) sup

tz1

E sup, g 1108780 Juxe (o) %< @



E sup, . Il (8°/8y8y JuxneWo)ll2 <0V n=1,...N.

(a9) Sup .. ey

(a10) TV2 (g - @) = 0,(1)

In conditions (a8) and (a9), ¥ denotes some convex neighborhood of .
Condition (a2) implies that ux:(yo) has a positive definite spectral density
at frequency zero, and ensures that the Wold representation of ux;(y,) can be
inverted into an infinite-order autoregressive representation. Condition
(a3) ensures that the correlation between ux:(¥,) and ux:(y,) vanishes at a
sufficiently rapid rate as the two observations become arbitrarily far apart.
Condition (a4) requires the innovations to have finite kurtosis, which rules
out probability distributions with excessively heavy tails. Condition (a5)
indicates that the innovation variance is purely non-deterministic; this
condition rules out a linear trend in the variance, but allows for
conditional heteroskedasticity (e.g., ARCH processes of the type considered
by Engle (1982) and subsequent authors). Condition (a6) is needed to obtain
sharp convergence results. Suppose uxi(y) is of the form ux(Z.,y) for some
random variable Z; and some measurable function ux(-,-). Then Andrews (1991)
points out that condition (a6) can be verified under reasonable assumptions.
Conditions (a7) and (a8) are common conditions to obtain asymptotic normality
of T? (@T = ¥o). Conditions (a8) and (a9) will generally be required to
ensure the consistency of DT(JT) (cf. equations (2.5) and (2.11)). Condition
Y2 (yr - Wo). Andrews (1991)

assumed conditions similar to (al), (a3) through (al0) in analyzing the

(al0) follows from asymptotic normality of T
consistency of kernel-based spectral estimators.7 The following theorem

establishes consistency of the VARHAC estimator Si. The proof is given in

the appendix.

7

The assumption of fourth-order stationarity can also be relaxed, along the
lines of Newey and West (1987), Gallant (1987), Gallant and White (1988), and
Andrews (1991). With non-stationary data, the estimated spectral density at
frequency zero would converge to the corresponding sequence of population
moments rather than to a constant value. However, such convergence results
have limited usefulness in the context of regression analysis or GMM, for
which stationarity is generally required for consistency and asymptotic

normality of parameter estimates.
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Theorem 1: Suppose that {ux:(yp)} is generated under conditions (al) to
(a9), and the estimator &T satisfies condition (al0). If the maximum lag
order Ky » o such that K; = o((T/log(T))*?), then §T » S almost surely.
Although ér is defined as the VARHAC estimator where the order is chosen
by AIC, other model selection criteria 1like the Schwartz information
criterion also deliver consistency. If the AR representation is of finite
order, then consistent estimation of the spectral density requires that the
chosen lag order must be at least as large as the true order in the limit.
The Schwartz information criterion (BIC) satisfies this condition because it
chooses the true order with probability one in the 1limit. AIC chooses an
order larger than the true order with positive probability, but selects
orders less than the true order with probability zero.8 However, for
infinite order processes, BIC, is inefficient due to its relatively large
penalty term. Shibata (1981) showed that for infinite order processes AIC is
asymptotically efficient”. Despite these asymptotic differences, AIC and BIC
yield nearly indistinguishable results in the Monte Carlo experiments

reported in Section 5.

3. REVIEW OF KERNEL-BASED HAC ESTIMATORS.

In this section we give a short description of the non-parametric
estimators of the spectral density at frequency zero used in Andrews (1991),
Andrews and Monahan (1992) and Newey & West (1994). A more detailed

description can be found in Christiano and Den Haan (1994).

Recall that we are interested in estimating the spectral density at

frequency zero of the Nx1 vector ux.(y), defined by

(3.1) L w O
and,
8
See Shibata (1976). Also important is that Shibata (1976) showed that the

’

probability of obtaining an order K
fast with K’ if the AIC criterion is used.

higher than the true order decreases

Other model selection criteria that have the same penalty terms as AIC in
the limit will be efficient as well.

11



(3.2) C; = E ux¢(Yo) uxe_ (o).

The non-parametric estimators described in this section have the following

form:

_ ¢I-1 N
(3.3) Sy = Zj=-T+1 K(J) CJ,

where k(-) is a weighting function (kernel) and,

(3.4) C; = e Ty, U@ uxe @), j=0,...,T-1,

and

-1,-2,...,-T+1.

Q>
[

|

2
o
(&

]

Andrews (1991) proposes to use the QS kernel:

k(J) = kos(j/g),
where
(3.5) Kos(x) = 22 _ [ sin(6mx/5) cos(6mx/5 ]’
12n"x énx/S
with Kkes(0) = 1, and this kernel guarantees a positive semi-definite

estimator of S. Andrews (1991) refers to the parameter £ as the bandwidth
parameter. There are many other kernels being used in the literature. For
HAC estimators, the QS kernel is not as asymptotically efficient as the

simple truncated kernel proposed in White (1984).10 This kernel is defined as

(3.6) Krrune (x) 11if |x| =&

0 o.w.

However, the truncated kernel does not guarantee that the estimated

10
See Andrews (1991) proposition 1b and Theorem 1c.

12



variance-covariance matrix is positive semi-definite. In the class of
kernels that guarantee positive semi-definite estimators, the QS-kernel is
optimal in the sense that it minimizes an asymptotic truncated MSE
criterion.11 However, a common conclusion from many Monte Carlo experiments
is that the choice of kernel in the class of kernels that guarantee a
positive semi-definite covariance matrix is usually not very important for
the small sample results.’®  For this reason we will only consider the QS
kernel in this paper. Calculation of the spectral density is straightforward
for a given choice of the bandwidth. Unfortunately, there is overwhelming
evidence that the choice of the bandwidth is very important in small samples13
and sometimes even in large samples.14 For the kernels discussed in the
previous subsection, consistency of §T, is guaranteed if &€; » @ as T - o,

with ET/T1/2 » 0 (see Andrews (1991)). Andrews (1991) and Newey and West

(1994) select {&:} from this class to minimize the asymptotic expectation of
(3.7) vec(St - S)’ W vec(St - S),

where vec(:) denotes the vectorization operator and W is an Nsz2 weighting
matrix. Andrews (1991) shows that the optimal choice of &; for the QS kernel

is equal to

(3.8) €7 = 1.322[a(2)T1Y5, with

2 Vec(S(q))’erc(S(q))

(3.9) alq) = ,
tr[W(I+K)(S ® S)]
and
(q) .
(3.10) s’ = 1%y
Jj=-o
11
See Friestly (1982) and Andrews (1991).
12
See Andrews (1991), Newey & West (1994), Christiano and Den Haan (1994),
Burnside and Eichenbaum (1994).
13
See Newey & West (1994), Andrews (1991), Andrews and Monahan (1992), and
Christiano and Den Haan (1994).
14

See for instance Christiano and Den Haan (1994).

13



where tr(-) denotes the trace operator, I is the n2xn2 identity matrix, and K
is the n°xn° commutation matrix defined by the property, vec(4’) = K vec(4).
Recall that we are interested in £€; only because we want to get an estimate
of S. To understand the automatic bandwidth procedures proposed by Andrews
(1991) and Newey and West (1994), it is important to realize that the optimal
bandwidth E: depends on knowing the true value of S. Implementation of the
automatic bandwidth selection procedure thus requires an initial estimate of
S, as well as an estimate of S(q), and a choice for W.

Andrews (1991) proposed that E: be estimated by fitting a parametric
model for uxt(iT), and then using this model to obtain estimates of S and
S(q) using equations like (2.12). In the Monte Carlo experiments reported by
Andrews (1991) and Andrews and Monahan (1992), an AR(1) model was fitted to
the n'" element of uxt(&T). Let (pn,oﬁ) denote the first-order
autoregressive and innovations variance parameters. This choice for the dgp
of uxt(aT) requires that the matrix W assigns non-zero weights only to the
diagonal elements of St - S in (3.7). In particular, with the exception of N

terms, W is composed entirely of zeros. The exceptions are the (n-1)xN + 1th

diagonal elements of W, which we denote w,, for n = 1,...,N. With this W
matrix,
"2 ~4
4p, on
N
~ En=1 wn (1_Pn)8
(3.11) alq) =
~q
On

o @n (1_5n)4

In practice, Andrews (1991) and Andrews and Monahan (1992) used w, = 1 for
all elements except the one corresponding to the regression intercept.

Newey & West (1994) considered a weighting matrix which allows all terms
in St - S to enter (3.7), except the ones corresponding to the regression
intercept. To determine the data dependent bandwidth, they obtained initial
estimates S and S(q) using the truncated kernel, krgune, and a truncation

parameter 1 = {3(T/100)2/9 (cf. Equation (3.6)). 1In this case an appropriate

14



value for B is determined by trying alternative values and '..then exercising
some judgment about sensitivity of results’, in the hope that the final

estimate of the covariance matrix is less sensitive to B than to £.

4. COMPARATIVE ANALYSIS OF PARAMETRIC AND KERNEL-BASED HAC ESTIMATORS.

The accuracy of kernel-based spectral estimators has been shown to be
highly sensitive to the choice of bandwidth. For a particular finite sample,
the optimal value of the bandwidth is influenced by two factors. On the one
hand, raising the bandwidth tends to reduce the bias of the spectral
estimator by incorporating higher-order sample autocorrelations. On the
other hand, fewer observations are used to estimate each higher-order sample
autocorrelation, so that a higher bandwidth tends to increase the variance of
the spectral estimator ". The fragility of spectral estimation accuracy
provided an important motivation for Andrews’ (1991) derivation of the
optimal rate at which to raise the bandwidth as the sample grows arbitrarily
large.

Of course, parametric estimators also face difficulties in extracting
information about the true model using a finite sample. However, the VARHAC
estimator avoids several important limitations of the kernel-based estimator.
These comparative advantages of the VARHAC estimator are confirmed by the

Monte Carlo experiments reported in Section S.

4.1 Required use of a single bandwidth.

To ensure that the variance-covariance matrix is positive semi-definite,
kernel-based spectral estimators require that the same bandwidth be chosen
for the entire vector uxy, regardless of the procedure used to select the
bandwidth. However, imposing a single bandwidth causes problems for the
accuracy of the kernel-based estimator. Moreover, the automatic bandwidth
parameter is sensitive to the measurement units of the individual variables.
In contrast, the VARHAC estimator allows a different lag order to be

chosen for each component of uxy, and is not affected by rescaling of the

15
For a given sample the mean-squared error of the spectral estimator

exhibits an inverted-U shaped dependence on the bandwidth, with sharp
increases in MSE as the bandwidth is moved away from its optimal value (cf
Andrews (1991)).

15



variables. These 1issues are documented in the Monte Carlo experiments

reported in Section 5.3.

(i) Loss of accuracy. In any particular application, the pattern of serial

correlation may vary across the elements of ux:. Thus, imposing the same
bandwidth for all components of uxy can lead to poor finite-sample
performance of kernel-based estimators. For example, the procedures proposed
by Andrews (1991) and Andrews and Monahan (1992) select the bandwidth based
on the first-order autocorrelation and innovation variance of each component
(cf. equation (3.11) above). Thus, if a single component of ux: is highly
persistent and the other components are serially uncorrelated, a relatively
small bandwidth will be generated, leading to imprecise estimates of the
standard errors that depend on the persistent component. For linear
regression models, the coefficients and standard errors have a direct
correspondence to the individual components of ux:;; in this case, one could
consider calculating each standard error using a different estimate of the
spectral density matrix, based on a different specification of the weighting
matrix W. For more general applications of GMM, however, such a procedure is
not possible, even in principle, because no direct correspondence exists
between the regression parameters and error components. In contrast, the
parametric estimator can easily deal with all components of uxt(@T)
separately, allowing for the possibility of choosing a low-order process for

one component of ux:(y¥s) and a high-order process for another component.

(ii) Sensitivity to measurement units. Kernel-based estimators have the
unfortunate property that the estimated HAC covariance matrix is sensitive to
a change in the scale used to measure any particular variable.16 For example,
suppose that the nt" instrument in an IV estimation procedure is multiplied
by 10, thereby raising the innovation variance of the nth component by a
factor of 100. Then this component exerts more influence in the automatic
bandwidth selection procedure, causing the bandwidth to shift toward a value

which is optimal for the " component, but possibly less appropriate for the

16 Of course, as Andrews (1991) indicated, the bandwidth selection procedure
is not affected by an identical rescaling of all of the variables for the
particular choice of weights in which the slope coefficients are assigned
equal weight, and the regression intercept is assigned zero weight.
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other components of ux.. In general, it 1is unclear how the practitioner
should choose a weighting matrix to offset such rescaling problems. Should
the weights vary with the unconditional or the innovation variances of the
components? By how much and in which direction? Such difficulties arose in
a recent paper by Burnside and Eichenbaum (1994), in which very large
bandwidths were implied by the data in a high-dimensional empirical
application. The authors determined that zeroing out three of the w, weights
caused a large reduction in the bandwidth and resulted in dramatically
different inferences concerning the estimated coefficients.

In contrast, rescaling of any variable has no effect on the results of

the parametric HAC covariance matrix estimation procedure.

4.2 Lack of finite sample justification.

For a given kernel, the optimal bandwidth formula only expresses the
rate at which the bandwidth should grow as a function of the sample size.
Thus, this formula cannot indicate the optimal bandwidth to use in any
particular finite sample. More precisely, the bandwidth &£** = £€* + M (for any
fixed integer M) meets the same asymptotic optimality criterion as the
bandwidth &£* defined in equation (3.8) above. Unfortunately, while £* and
€** may yield dramatically different results in a particular finite sample,
one has no basis a priori upon which to choose one bandwidth over the other.
This nor-uniqueness property may appear similar to other uses of asymptotic
optimality criteria in the literature. For example, if the OLS estimator é
is consistent, then so is é + M/T, for any fixed value of M. The key
difference is that the OLS estimator also satisfies a sensible finite-sample
estimation criterion (namely, minimizing the sum of squared residuals of the
regression model), whereas current bandwidth selection procedures do not
satisfy any particular finite-sample criterion.

In contrast, parametric covariance matrix estimators can make use of
explicit finite-sample model selection criteria. The VARHAC procedure selects
the autoregressive lag order using AIC, which is an asymptotically efficient
selection criterion under the conditions previously described in Section 2.
Equally important, the AIC was designed to optimize parsimony and
goodness-of-fit in finite samples, so that the VARHAC estimator may be
expected to work relatively well for a wide variety of data generating

processes and sample sizes.

17



4.3 Sensitivity to arbitrary parameterization.

For a given kernel, the implementation of the optimal bandwidth formula
requires an initial estimate of the spectral density at frequency zero, as
well as other properties of the true data generating process (cf. equations
(3.8) to 3.10 above). One might hope that the kernel-based HAC covariance
matrix estimate would be relatively insensitive to the method of calculating
these initial estimates, including fairly arbitrary choices about the order
of parametric approximations and/or the lag truncation point. In fact,
however, Christiano and den Haan (1994) documented various cases in which the
results remain highly sensitive to these choices, even in samples as large as
5000 observations.

Andrews (1991) proposed a parametric approach to calculate the initial
spectral density estimate. In practice, Andrews (1991) and Andrews and
Monahan (1992) obtained &(2) by estimating a univariate AR(1) model for each
component of ux:;, and subsequent research has also adopted this approach.17
However, the next section provides several examples in which the final
results are very sensitive to this particular specification.

Newey and West (1994) used a non-parametric estimator to obtain an
initial estimate of the spectral density at frequency zero. However, the
Monte Carlo experiments presented by Newey and West indicated that the
results can be sensitive to the arbitrary choice of a truncation parameter
used in calculating the initial spectral estimate.®

Thus, although these data-dependent bandwidth selection procedures are
frequently referred to as "automatic," in practice one needs to make
non-trivial decisions about various arbitrary parameters. Christiano and Den
Haan (1994) investigated the consequences of some of these choices in a range
of experiments, but in general there is little guidance in the literature on
the consequences of alternative choices. An applied economist who needs to
perform hypothesis tests would obviously prefer to avoid having to worry
about the sensitivity of an estimated standard error with respect to
prewhitening order, weighting matrix, or any of the other arbitrary
parameters of the bandwidth selection procedure. In contrast, the conceptual

background and implementation of the parametric estimator will be familiar to

17 )

See Newey & West (1994), Christiano and Den Haan (1994), and Burnside and
Eichenbaum (1994).
18

See for instance Table IV, lines 7 and 8.
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most practitioners who already have experience in estimating parametric
time-series models and in choosing the best model. These issues are

documented in the Monte Carlo experiments reported in Section 5.4.

4.4 Sensitivity to prewhitening order.

Andrews and Monahan (1992) proposed that kernel-based methods be
augmented by using an autoregressive filter of arbitrary order to prewhiten
the regression residuals, and 1in their Monte Carlo experiments they
considered a first-order autoregressive filter. The AR(1) filter has
provided improved inference properties in many Monte Carlo simulation
experiments, some of which have considered data generating processes
resembling actual economic time series (cf. Andrews and Monahan (1992), Newey
and West (1994), Christiano and Den Haan (1994), and Burnside and Eichenbaum
(1994)). Such first-order prewhitening is a special case of the VARHAC
estimator, in thch the autoregressive order is chosen by a data-dependent
model selection criterion. Furthermore, when a sufficiently high
autoregressive order 1is chosen to remove all serial correlation, no
additional benefits can be obtained by applying a kernel-based technique to
the prewhitened data. These 1issues are documented in the Monte Carlo

experiments reported in Section 5.5.

5. MONTE CARLO EXPERIMENTS.
In this section we describe the Monte Carlo results. In Section 5.1 we
give an overview of the four Monte Carlo experiments. The Monte Carlo

experiments are described in Sections 5.2 through 5.5.

5.1 Overview.

In the following four subsections, we report the results of Monte Carlo
experiments to compare the small-sample properties of two HAC covariance
matrix estimators, and to evaluate the extent to which each estimator
provides accurate inferences in two-tailed tests of the significance of the
regression coefficients. The first estimator is the parametric VARHAC
estimator described in Section 2 above, and the second is the non-parametric
QS-PW estimator studied by Andrews and Monahan (1992), which uses the
quadratic spectral kernel, first-order prewhitening, and univariate AR(1)

models in the automatic bandwidth selection procedure. We do not use the
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eigenvalue adjustment for the estimated AR(1) coefficient in the prewhitening
regression; this adjustment appears rather arbitrary, and does not affect
the results reported here. '? For each Monte Carlo experiment, we simulate
10,000 replications of 128 observations each, and report the frequency for

which the test statistics exceeds the 10%, 5% or 1% critical value.

In Section 5.2, we consider the data generating processes used in the
Monte Carlo experiments of Andrews and Monahan (1992), and we find that the
parametric VARHAC estimator matches the small-sample performances for the
QS-PW estimator quite well. Next, section 5.3 documents the advantage of the
VARHAC estimator in allowing different autoregressive orders for different
components of the residual vector, in contrast to the rescaling problem faced
by kernel-based estimators that impose a single bandwidth on the entire
residual vector. Section 5.4 highlights the pitfalls associated with using
an arbitrary parametric model in automatic bandwidth selection procedures.
Finally, Section 5.5 verifies the benefits derived by the VARHAC estimator in
using a model gelection criterion to determine the autoregressive order, or

equivalently, the degree of prewhitening.

5.2 The Andrews and Monahan (1992) experiments.

Andrews and Monahan (1992) use the following experiments to investigate
the small sample properties of the covariance matrix estimator. They
consider several linear regression models, each with an intercept and four

regressors, and the least squares (LS) estimator 67 for each of these models:

-

(5.1) Yo = X680 + Uy, t=1,...,T or = [ Zg XXy’ 17 E: XiYe.
and,

(5.2) VAR(T'"2(0; - 85)1X) = [ ( %EI XeXe )

19

Newey & West (1994) also find that the results show little sensitivity to
this adjustment, and they do not recommend this adjustment.
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1 T T 1 T -1
« (FIL, T, EWGUXS 10 (15 X)) ]
The estimand of interest is the variance (conditional on X = (X;,...,X7)’) of
the LS estimator of the first nonconstant regressor (i.e., the second
diagonal element of VAR((T'”?(8; - ©,)[X). All elements of 8, are equal to
zero.
Andrews and Monahan (1992) describe the experiment as follows. Seven

basic regression models are considered: AR(1)-HOMO, in which the errors and
regressors are homoskedastic AR(1) processes; AR(1)-HET1 and AR(1)-HET2, in
which the errors and regressors are AR(1) processes with multiplicative
heteroskedasticity overlaid on the errors; MA(1)-HOMO, in which the errors
and regressors are homoskedastic MA(1) processes; MA(1)-HET1 and MA(1)-HETZ2,
in which the errors and regressors are MA(1) processes with multiplicative
heteroskedasticity overlaid on the errors; and MA(m)-HOMO, in which the
errors and regressors are homoskedastic MA(m) processes with linearly
declining MA parameters. A range of different parameter values is considered
for each model. FEach parameter value corresponds to a different degree of
autocorrelation.

The AR(1)-HOMO model consists of mutually independent errors and
regressors. The errors are mean zero, homoskedastic, AR(1), stationary,
normal random variables with variance 1 and AR parameter p. The four
regressors are generated by four independent draws from the same distribution
as that of the errors. A new set of regressors is randomly drawn for each
repetition of the experiment (to ensure that the results are not sensitive to
the selection of a single, perhaps atypical, matrix of regressors). The
values considered for the AR(1) parameter p are 0., .3, .5, .7, .9, .95, -.3,
and -.S.

The AR(1)-HET1 and AR(1)-HET2 models are constructed by introducing
multiplicative heteroskedasticity to the errors of the AR(1)-HOMO model.
Suppose {x{, Ui:t=1,...,T} are the nonconstant regressors and errors
generated by the AR(1)-HOMO model (where X’ = (1,x:’)). Let Uy = |x¢'w|xU;.
Then {x.,U:: t=1,...,T} are the nonconstant regressors and errors for the

AR(1)-HET1 and AR(1)-HET2 models when =(1,0,0,0)’ and w=(3},3,3,%)’
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respectively. In the AR(1)-HET1 model, the heteroskedasticity is related
only to the regressor whose coefficient is being tested, whereas in the
AR(1)-HET2 model, the heteroskedasticity is related to all of the regressors.
The same values of p are considered as in the AR(1)-HOMO model.

The MA(1)-HOMO, MA(1)-HET1, and MA(1)-HET2 models are exactly the same
as the AR(1)-HOMO, AR(1)-HET1, and AR(1)-HET2 models respectively, except
that stationary MA(1) processes replace stationary AR(1) processes everywhere
that the latter arise in the definitions above. The MA(1) processes have
variance 1 and MA parameter ¢ (and are parameterized as U}=et+¢et4). The
values of ¢ that are considered are .3,.5,.7,.9,.99.

The MA(m)-HOMO model is exactly the same as the AR(1)-HOMO model except
that the errors and the regressors are homoskedastic, stationary MA(m) random
variables with variance 1 and MA parameters ¢1,...,¢n (where the MA(m) model
is parameterized as Uy = g, + Z:=1¢ret_r). The MA parameters are taken to be
positive and to decline linearly to zero (i.e. ¢. = 1 - r/(m+1) for

r=1,...,m). The values of m that are considered are 3, 5, 7, 9, 12, 15.

In the Monte Carlo experiments we compare the VARHAC estimator with the
QS-PW estimator. The maximum lag-order K is equal to 4. A higher or sightly
lower value for K did not change the results very much since higher-order
lags were selected infrequently. The QS-PW estimator uses an AR(1) to
prewhiten the vector of residuals. 1In this regression framework, ux, = X.U.,
and an AR(1) is used for each of the components of uxy to estimate the
optimal bandwidth. The weights required to calculate the optimal bandwidth
are set equal to 1 for the nonconstant regressors and O for the constant

20
regressors.

Tables 1 through 5 report the coverage probabilities for the Monte Carlo
experiments. The important conclusion that arises from the tables is that

the inference accuracy of the VARHAC estimator matches that of the QS-PW

20 Note that 1in many of the Monte Carlo experiments reported by Andrews and
Monahan (1992), this particular choice of weights yields more accurate
inferences about the slope coefficients. In particular, in the HOMO and
HET (2) experiments, the components of Uxy corresponding to the four slope
coefficients have the same serial correlation properties, but the first
component of uxXxs, corresponding to the regression intercept, has different

serial correlation properties.
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estimator quite well, despite the fact that these data generating processes
might be expected to favor the QS-PW. In the AR models, for example, QS-PW
imposes first-order prewhitening, while the VARHAC estimator chooses the
lag-order with the AIC selection criterion. We observe the biggest
difference, in table 4, for the MA(1)-HET1 model in which the QS-PW
outperforms the VARHAC estimator to some extent. For instance, when ¢ = 0.5,
the 99%, 95% and 90% coverage probabilities are equal to 97.8%, 92.9% and
87.5% for QS-PW, and equal to 96.5%, 90.1% and 84.0% for VARHAC. That the
QS-PW has some advantages for this model is no surprise, since the VARHAC
estimator uses AR models to approximate the true MA(1) processes. Obviously,
the parametric estimatdr could be improved by allowing MA terms. Since the
results are so similar for the two estimators, we refer the reader to Andrews
and Monahan (1992) for a more detailed discussion of the variation of the
results across models and parameter values. The VARHAC estimator greatly

outperforms the PARA estimator, as expected from the analysis in Section 2.3.

5.3 The limitations of a single bandwidth.

As discussed in Section 4.1, non-parametric kernel-based estimators
require the bandwidth to be the same for all elements of the vector of
residuals (uxt(&r)) to guarantee a positive semi-definite covariance matrix.
In this section, we document the impact of this restriction using the
following Monte Carlo experiment. Consider the least squares estimator for

the following scalar model:

(5.3) Ye = a + B Zy + g,
with
(1-pL) g¢ = ely,
Xt = eZt,
Zt = AXt,
where « = B = 0, ely and e2; are 1i.i.d. normally distributed random
variables. The parameter A scales the explanatory variable. The

unconditional variance of €; and Xy is equal to 1. The two elements of ux:

are €¢ and Ag€¢Xy. Thus the first element is a first-order AR process, and
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the second element is serially uncorrelated. Varying the scale coefficient A
is equivalent to expressing the explanatory variable in different measurement
units.

To highlight the fundamental point, we do not use the prewhitening
option for the QS-PW estimator, since first-order prewhitening wculd make
both components close to white noise. For higher order processes for g, the
QS-PW estimator would encounter the same limitations as those discussed here.
However, the discussion would be complicated by the misspecification bias of
the AR(1) coefficient in the prewhitening regression. Therefore, for
clarity, we focus on the QS estimator. The VARHAC estimator is exactly as
defined in Section 5.3.

The choice of a smaller bandwidth in this experiment improves the small
sample behavior of the standard error for the slope coefficient, while a
larger bandwidth improves the small sample accuracy of inference concerning
the regression intercept. Although one could vary the weights w, in equation
(3.11), to trade off the accuracy between the two standard errors, it may not
be clear how to do this in a practical application, especially because there
is not always a direct link between the components of ux: and the individual
elements of the parameter vector.

The results of the Monte Carlo are given in table 6. The results for
the VARHAC estimator do not depend on the value of A, whereas the results for
the QS are highly sensitive to the value of A. For the QS procedure,
choosing a larger value of A raises the weight on the second element of uxy,
reduces the average bandwidth chosen, and reduces the accuracy of the
estimated standard error of the regression intercept. The average bandwidth
across Monte Carlo replications was equal to 23.4, 2.3, and 1.7 for values of
A equal to 1, 100 and 1000, respectively. Of course, by reducing the
bandwidth, a larger value of A improves the behavior of the estimated

standard error for the slope coefficient.

5.4 The limitations of arbitrary parameterizations.

As discussed in Section 4.2, the QS-PW procedures require the
specification of a time series process for uxt(aT). Andrews and Monahan
(1992) used an AR(1) model for each of the components of uxt(&T) in all of
their Monte Carlo experiments, and subsequent papers in the literature have

generally followed the same procedure in implementing the QS-PW estimator.
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This subsection highlights the consequences of adopting this AR(1)
assumption, when the ux; follows a different law of motion. The data are

generated by the following time-series model:
(5.4) Yo = v ey - M €tq, qg=2,3

where € is an i.i.d. normally distributed random variable with zero mean and
unit variance. Again we are interested in estimating the mean of Y,

N

(5.5) Uy = %ZI Ye,

The important aspect of this time-series model is that the MA(1) coefficient
Vv is equal to zero or small, but higher-order MA coefficients are not. If v
is equal to zero, then assumption E in Andrews (1991) is violated, and for
this case the estimated optimal bandwidth under the AR(1) assumption
converges to zero, and the QS-PW estimator is not consistent. Several
empirical cases suggest that such a time series process for ux: is not
unrealistic. First, Fama and French (1988) documented that for stock
returns, autocorrelations are small for short horizons, but relatively large
for large horizons. For instance, the average first-order autocorrelation
across industries is equal to -0.03 for one-year returns, but equal to -0.34
for four-year returns. Second, Christiano and Den Haan (1994) used a dgp
resembling that of US quarterly GNP, and found that some prewhitened
residuals had a very low first-order MA coefficient, but substantial
higher-order serial correlation. Finally, this type of behavior might be

important in data that are not seasonally adjusted.

As shown in table 7, the VARHAC estimator clearly outperforms the QS-PW
estimator in this experiment. The small sample behavior of VARHAC is
excellent even for 128 observations, despite the use of a vector
autoregressive process to approximate a moving average process. Furthermore,
the sign of the MA coefficient does not affect the inference accuracy of the
VARHAC estimator, but has a large impact on the inference accuracy of the
QS-PW estimator. If the third-order MA coefficient is positive then the
QS-PW estimator underestimates the amount of volatility, and consequently

rejects the null hypothesis too often. In contrast, for the negative
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third-order MA coefficient, the QS-PW rejects the null hypothesis too

infrequently.

5.5 The limitations of arbitrary prewhitening order.

An important motivation in developing the VARHAC estimator was the
success of the prewhitening procedure proposed by Andrews and Monahan (1992).
However, Andrews and Monahan (1992) only considered first-order prewhitening,
whereas the VARHAC estimator uses a model selection criterion to choose the
order of prewhitening. The advantages of the flexibility of the VARHAC
estimator in choosing higher-order prewhitening were not apparent in the
Monte Carlo experiments discussed in Section 5.2, since the AR component in
the vector of residuals, ux:;, was at most of order one, and the QS-PW
estimator imposes first-order prewhitening. In this section, we consider the

following scalar AR(2) process, and estimate the mean.
1 1 _ 1 1
(5.6) Yo = 3¢Yiq + 3¢Yi o + g, Yr = T L Y,

where the €, is an i.i.d. N(0,1) process. The estimand of interest is the
standard error of the mean. The values we consider for ¢ are .5, .7, .9, and
.95. As seen in table 8, the VARHAC estimator clearly outperforms the QS-PW
estimator, even for values of ¢ as low as .S5. Given the success of
first-order prewhitening, it is not surprising that higher-order prewhitening
is also advantageous. It is important to note, however, that the VARHAC
estimator does not impose the assumption that the residuals are generated by
an AR(2) process. For this experiment, a lag order of two was chosen by AIC
in 67%, 77%4, 78% and 78% of all replications for parameter values equal to

.5, .7, .9, and .95, respectively.

6. CONCLUDING COMMENTS.

Given the importance of accurate estimation of HAC covariance matrices
in applied econometrics, it is essential to compare the properties of
parametric and non-parametric estimators. This paper highlights several
advantages of parametric estimators like the VARHAC estimator. First, the
VARHAC estimator selects a different lag order for each element of ux, to
accommodate different serial correlation properties, whereas the QS-PW

estimator imposes a single bandwidth. Second, the VARHAC estimator is not
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sensitive to rescaling of any of the variables. Finally, the Monte Carlo
experiments indicate that the VARHAC estimator matches, and in some cases
greatly exceeds, the performance of the QS-PW estimator.
Some topics for future research remain.

(i) It would be interesting to investigate the performance of a parametric
ARMA estimator. Although the VARHAC covariance matrix estimator performed
well for the experiments in this paper, there may be cases where the
inclusion of MA terms would be advantageous.

(ii) It may also be interesting to analyze different model selection
criteria. Shibata (1981) provided asymptotic justification for using AIC,
but other selection criteria could have superior performance in small
samples. We have found that AIC and the Schwartz information criterion yield
very similar results for the experiments reported here, but larger
differences may become evident in other cases. We have also explored some
model selection criteria that tested whether a reduction of the lag order
caused a statistically significant change in the estimated spectral density
at frequency zero. However, the chosen orders turned out to be very
sensitive to the maximum lag order considered, and the small sample
performance was worse than that of the VARHAC estimator.

(iii) In this paper, we have used the VARHAC covariance matrix estimator to
draw inferences in a linear regression model. In an over-identified GMM
framework, the estimated covariance matrix also influences the parameter
estimates. It would be interesting to compare the VARHAC and the QS-PW

procedures in this type of estimation problem.
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Appendix: Proof of theorem 1.

Important for the proof of theorem 1 is the following lemma from Hannan
and Kavalieris (1983). Define §T as the VARHAC estimator using lag order kg

of the spectral density matrix at frequency zero of the series {ux(yo)}.

Lemma 1: (Hannan and Kavalieris 1983, p. 293) Suppose that <{ux.(yo)} is
generated under assumptions (al) to (a5). If the lag order k; » ® such that
k1 = of (T/log(T))l/z), then S; » S almost surely.

We distinquish two cases. In the first case, the AR representation is
of finite order. In that case, Shibata (1976) showed that the probability
that the order chosen by AIC is less than the true order is zero in the
limit. The spectral density is in this case a function of a finite number of
parameters each of which are estimated consistently. The continuous mapping
theorem then 1implies that the spectral density is also estimated
consistently. In the second case, the AR representation is of infinite
order. In this case, the order selected by AIC goes to infinify (cf.
Potscher (1987)). Therefore, lemma 1 also holds if the actual order is
2y The

difference between S; and St is that S; uses {ux¢(Yo)} instead of {uxy(y7)}.

chosen by AIC, and the maximum lag order K = o (T/log(T)

Below we will show that S; - §T in probability. This together with lemma 1

proves theorem 1.

Without loss of generality, we assume that uxy is a scalar random
variable, which simplifies the notation considerably. For a vector x,
x|l denotes the standard Euclidian norm. For a matrix A, we define the
following matrix norm:

Alf = su Ax|l.
lall = sup _,, laxl

Let

uxy = ux¢(Y), uxer = uxe(Po)
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dux —(n) dux
uxét) = t uxy = t

W gy Wty
7j(l//) -;: ZLK” Uxt(lll) Uxt_j('ll) Jj=0,...,k
r =), v = v(yo)
(n) ay —(n) 3y
Y0 = 7 = ETN _
Wnlyoys Yol yip
T = 287 uxes (9) uxes; (9) =1,k
iJ T t=K+1 t-i t-J »J ) ’
*
l"iJ- = E LlXt_i(l,llo) UXt_j(wO) i,j=1, K
T =T(), To = T(yo)
l..én) - % -I:(n) _ % _
Y=o "=y
aly) =T 1wy
a; (p) = F?l(w)z(w) where TI;! is the i*® row of I' I,

« =a@), @ =a@), o =l

-&(n) _ da
= |
wn '/,:w
Lemma 2: If k1 = of (T/log(T))I/z), and under assumptions (al) through
(a10), then
Supn Z‘:x ;fn) = 0p(1), and supy,; Z':l fi(r}) = 0,(1).
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proof: By mean value expansion about y,,

2
Y A1 21 B R,

(A.1) = m=1 OYn0Ym Y=y

for some Y € ¥. Under assumptions (a9) and (al10),

azzi(w)

-1/2)
SUPLm B0 '

5 0p(1), and supm (Ym—Yom) = Op(T
Y=y

Since kt = o(T*?) we have

(A.2) supp, Z?:l 7ML supp, ZT:1 gy op(1),
where
(A. 3) 7:?) = ( 1/T) E::K UXqt UXC(,lzzi + UXot-i UXC(,?) .

Using assumptions (al) through (a6), the results of Hannan and Kavalieris
(1983, p. 291, 293) ensure that E'::l'yé?) = 0,(1). (Note that condition (a6)
ensures that (al) through (a5) hold for the vector including ux.; and uxég)).
This result combined with (A.2) implies the first conclusion of the lemma.
The proof of the second conclusion follows exactly the same arguments.

Lemma 3: (Hannan and Kavalieris 1983, p.293-296) If k. = o( (T/log(T))?)

and under assumptions (al) through (a5), then

LT @ = 0,(1).

Lemma 4: If ky = of (T/log(T))l/z)

then

» and under conditions (al) through (a10),

=-1
supi,; | Ti5l = 0p(1).
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proof: We have

(A.4) T=T*+ (I'o-T*) + (T -Ty).

The smallest eigenvalue of I'* is bounded away from zero uniformly in k; by
assumption (a2). Under assumptions (al) through (a5) Hannan and Kavalieris
(1983, p.291,293) showed that [[Fo-T¥;ll = op( 1). Finally, by a mean-value

expansion, we have

(A.5) F = + ™ &

n=1 3_% (wn_VIon) ’

V=g

for some E € ¥. Following arguments similar to (A.2) and (A.3) in Lemma 2,

we have

(A.6) Supn ):‘flo gz; _ =0,(1), and sup, (Pn=Yon) = 0p(T %), so that
Y=y

Il T - TI'o I = op(1). Thus, from (A.4), the smallest eigenvalue of T is

uniformly bounded away from zero, and thus the largest eigenvalue of T @ is

bounded uniformly in kr.

Proof of Theorem 1: A mean value expansion of «;(y) yields

(A7) ai(JI) = (wo) + E:=1 a‘;‘}}—w’) _ [J’n - 'llo,n]

Y=y

for some value of Y on the line segment joining ¢ and yYo. Also

8a; (Y) _ =1 —(n) =(n) —
—W _ = ri [ Y -T o ]

Y=y

(A.8)

Rearranging terms gives:
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=1

(A.9) (X.i(l:l;) - o (Yo) Lim [ ;(n) - f;(n)‘xo] ( J’n - VYon)

) (& - o) ( ;/.’n = Yon).

-

ﬁl T;(n

n=1

—_— 2 ~ 2 — 2 - PN 2
By Taylor’s theorem lla-aoll™= Jla~ooll®, so that [la-aoll“=s k7 sup; lloy=ecioll®.
Yy Yy

Therefore,
(A.10)  sup; lloaol® = [ 1 + N ky supy, alFT T 12 Ign—yonl® 17!
{ N supi o DIFVT™1 + ITT™021 lgn-vonll® 3.
Now
(A.11) SUpi, s, n I):'jt1 F:i Fg?)l
= sup;; If:§ | supl'n|2§ll f}?)l = 0p(1) by
lemmas 2 and 3.
Therefore,
(A.12) supi,n IFT'T™ I = sup;. n [);‘):1 |)‘_‘f:1 0121 = 0 (kr).
Similarly,
(A.13) Sup;, n Hf:i 7™ 2 < Sup; j If?i IzsupnIZ';:1 §§n)12 = 0p(1).

Furthermore, by lemmas 2,3 and 4, we have:
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=1=(n) 2 =1=(n) 2
(A.14) supi,n IIT T Mg 1€ = Sup;, n |Z‘$T1 Z':T1 ri_jr_jg Oop |
J: =

= (sup;,; IT7§|2)(supg,nIZfT1 Fﬁ?’lz)(2:71 ooy )2
Jj= =
= 0p(1).
Therefore, since N is fixed, ky = ol (T/log(T))'?) and supnllYn—vonll® =

0 (T_l), we have from (A.10) that:
b

Squ"ai’“iouz = Op(T_l)

so that
ZKT &'i = EKT xKio + Op[ (log T)_l/z] .
i=1 i=1
. - 2, 2 -1/2
Using similar arguments, we have cc(y) = oc(ify) + Op[ (log T) 1.

Then the conclusion from the theorem follows from lemma 1.
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TABLE 1

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA
estimators for the AR(1)-HOMO model, T = 128, and 10,000 replications.

P Estimator 99% 95% 907%
0 QS-PW 98.3 94.0 88.9
VARHAC 98.4 94.1 89.2
.3 QS-PW 98.3 93.5 88.4
VARHAC 97.9 92.6 86.6
.5 QS-PW 97.9 92.6 87.1
VARHAC 96.6 90.5 84.4
.7 QS-PW 96.8 90.6 84.4
VARHAC 96.2 89.6 83.4
.9 QS-PW 91.4 82.9 76.2
VARHAC 90.6 81.8 74.8
.95 QS-PW 86.5 77.2 70.2
VARHAC 85.5 76.1 69.1
-.3 QS-PW 98.3 93.5 88.4
VARHAC 97.9 92.6 86.9
-.5 QS-PW 98.0 92.6 87.5
VARHAC 96.8 90.7 84.8
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TABLE 2

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA
estimaters for the AR(1)-HET(1) model, T = 128, and 10,000 replications.

P Estimator 99% 95% 90%

0 QS-PW 97.7 92.7 86.8

VARHAC 97.8 92.6 86.7

.3 QS-PW 97.3 91.6 85.7

VARHAC 96.4 89.5 83.1

.5 QS-PW 96.0 89.6 83.3

VARHAC 94.5 87.0 80.2

.7 QS-PW 92.9 84.5 77.1

VARHAC 92.1 83.6 76.3

.9 QS-PW 81.0 69.7 62.3

VARHAC 79.6 68.9 61.3

.95 QS-PW 70.2 59.5 52.3

VARHAC 69.0 58.3 51.0

-.3 QS-PW 97.6 92.1 86.2
VARHAC 98.1 93.2 87.9

-.5 QS-PW 97.6 92.1 86.0
VARHAC 97.7 92.6 87.3
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TABLE 3

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA
estimators for the AR(1)-HET(2) model, T = 128, and 10,000 replications.

P Estimator 99% 95% 90%
0 QS-PW 98.1 92.8 87.3
VARHAC 98.0 93.1 87.4
.3 QS-PW 97.5 92.1 86.3
VARHAC 97.3 91.2 84.9
.5 QS-PW 96.8 90.5 84.5
VARHAC 95.7 88.5 81.7
.7 QS-PW 94.6 87.1 80.5
VARHAC 93.1 85.4 78.3
.9 QS-PW 86.7 77.2 69.4
VARHAC 85.6 75.2 67.7
.95 QS-PW 80.0 69.4 61.5
VARHAC 78.8 67.3 60.0
-.3 QS-PW 97.9 . 93.1 87.2
VARHAC 98.2 93.9 88.4
-.5 QS-PW 98.1 93.5 87.8
VARHAC 98.3 93.8 88.5
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TABLE 4

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA
estimators for the MA(1)-HOMO, MA(1)-HET(1) and MA(1)-HET(2) models, T = 128,
and 10,000 replications.

model P Estimator 99% 95% 907%
.3 QS-PW 98.3 93.7 88.7
VARHAC 98.1 93.0 87.2
.5 QS-PW 98.4 93.9 88.7
VARHAC 97.4 91.7 86.0
MA(1)-HOMO
7 QS-PW 98.4 94.0 89.1
VARHAC 97.1 91.5 85.9
.99 QS-PW 98.4 94.1 89.2
VARHAC 97.2 91.6 85.9
.3 QS-PW 97.8 92.8 87.1
VARHAC 97.0 90.7 84.7
.5 QS-PW 97.8 92.9 87.5
VARHAC 96.5 90.1 84.0
MA(1)-HET1
.7 QS-PW 97.9 93.0 87.7
VARHAC 96.4 89.9 83.6
.99 QS-PW 97.9 93.0 87.7
VARHAC 96.4 89.7 83.5
.3 QS-PW 97.8 93.0 87.4
VARHAC 97.5 91.9 85.9
.S QS-PW 97.8 92.8 87.7
VARHAC 97.1 91.0 85.0
MA(2)-HET2
.7 QS-PW 97.7 92.8 87.7
VARHAC 96.8 90.5 84.6
.99 QS-PW 97.7 92.9 87.5
VARHAC 96.6 90.2 84.2
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TABLE S

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA
estimators for the MA(m)-HOMO models, T = 128, and 10,000 replications.

m Estimator 99% 95% 90%
3 QS-PW 97.8 93.5 88.7
VARHAC 9.8 91.8 86.3
5 QS-PW 97.3 92.6 87.5
VARHAC 9.6 90.8 85.1
7 QS-PW 9.7 91.5 85.8
VARHAC 95.8 89.6 83.8
9 QS-PW 95.9 90.0 84.4
VARHAC 94.9 88.2 82.1
12 QS-PW 94.2 88.0 82.1
VARHAC 93.3 86.3 79.8
15 QS-PW 92.9 86.1 79.7
VARHAC 91.9 84.2 77.6
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TABLE 6: The limitations of a single bandwidth

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA

estimators for the following dgp:

Yy = €r, €y = .9€¢q + ey,
€; and X; are N(0,1)

Zy = AX:, where A; is a scalar

regression: Y = a + B Zy + u,

T = 128, and 10,000 replications

A Estimator 99% 95% 90%

1 VARHAC 93.2 85.9 79.9

Qs 87.8 78.7 72.0

o 100 VARHAC 93.2 85.9 79.9
Qs 62.3 51.0 43.7

1000 VARHAC 93.2 85.9 79.9

Qs 56.5 45.1 38.3

1 'VARHAC 98.7 94.2 89.3

QS 92.7 84.3 76.7

B 100 VARHAC 98.7 94.2 89.3
Qs 98.6 94.0 88.2

1000 VARHAC 98.7 94.2 89.3

Qs 98.6 94.2 88.7
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TABLE 7: The limitations of arbitrary parameterizations

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA

estimators for the following dgp:

Yi = v gy + p £yq, q=2,3
€y is i.i.d. N(0,1)

T = 128, and 10,000 replications

Estimator v u 99% 95% 90%
QS-PW 0 -.3 100.0 99.6 98.3
VARHAC 0 -.3 98.7 94.9 90.3
QS-PW -.1 -.3 100.0 99.8 99.1
VARHAC -.1 -.3 99.0 95.7 91.4
q=2
QS-PW 0 .3 95.1 87.4 80.3
VARHAC 0 .3 97.9 92.9 87.8&
QS-PW .1 .3 95.9 88.6 81.7
VARHAC .1 .3 97.7 92.8 87.¢8
QS-PW 0 -.3 100.0 99.3 98.0C
VARHAC 0 -.3 99.1 96.0 91.¢
QS-PW -.1 -.3 100.0 99.6 98.7
VARHAC -.1 -.3 99.2 96.7 93.3
q=3
QS-PW 0 .3 95.5 87.5 80.9
VARHAC 0 .3 97.8 92.8 88.4
QS-PW .1 .3 95.7 88.1 81.5
VARHAC .1 .3 97.8 92.8 88.1
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TABLE 8: The limitations of an arbitrary prewhitening order

99%, 95%, and 90% confidence intervals constructed using QS-PW and PARA

estimators for the following dgp:

Y, = %WYt-1 + %wYt-z + €

€¢ is i.i.d. N(0,1)

T = 128, and 10,000 replications

v Estimator 997% 95% 90%
.5 QS-PW 92.8 84.0 76.3
VARHAC 96.8 91.1 85.7
.7 QS-PW 87.0 75.9 67.8
VARHAC 96.0 89.9 84.5
.9 QS-PW 70.0 57.7 50.6
VARHAC 90.4 82.5 76.4
.95 QS-PW 57.2 46.5 40.2
VARHAC 83.1 74.2 67.8
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