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This paper explores the possible advantages of introducing observable state variables into risk

management models as a strategy for modeling the evolution of second moments. A simulation
exercise demonstrates that if asset returns depend upon a set of underlying state variables that are
autoregressively conditionally heteroskedastic (ARCH), then a risk management model that fails to

take account of this dependence can badly mismeasure a portfolio's "Value-at-Risk"” (VaR), even if the

model allows for conditional heteroskedasticity in asset returns. Variables measuring macroeconomic

news are constructed as the orthogonalized residuais from a vector autoregression (VAR). These
news variables are found to have some explanatory power for asset returns. We also estimate a model

1ough the data give some support for
several of the specifications that we tried, neither these models nor GARCH models that used only
asset returns appear to have much ability to forecast the second moments of returns. Finally, we
allow asset return variances and covariances to depend directly on unemployment rates -- proxying for
the general state of the economy -- and find fairly strong evidence for this sort of specification relative

to a null hypothesis of homoskedasticity.



Macroeconomic State Variables as Determinants of Asset Price Covariances

1. Introduction

In recent years, the trading activities of major financial institutions (herein referred to
collectively as "banks") have grown rapidly, and they have become increasingly concerned with
managing the risk associated with exposure to unanticipated changes in the market prices of traded
assets. Senior bank managers generally prefer to have this risk quantified as the sum of money that
could conceivably be lost over some interval of time, given the portfolio currently held. To address
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risk management modeis". Because the volatility

this goal, banks have deveioped so-calied
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components: a pricing function and a state variable probability distribution. The pricing function is a

mapping from the prices or returns of traded assets to a chosen set of underlying state variables. (In
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author and should not be interpreted as reflecting those of the Board of Governors of the Federal Reserve
System or other members of its staff. 1 am responsible for any errors.

? The focus on second moments makes risk management models useful for measuring, and perhaps
designing a strategy to reduce (i.e., hedge) risk. Asset allocation models, which are used to devise
trading strategies that maximize (possibly risk-adjusted) returns, have a relatively greater focus on
forecasting mean returns.
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the simplest case, the set of relevant asset returns and the set of state variables are identical, but it
may be advantageous to choose a smaller set of state variables.) Given the pricing function and the
Jjoint probability distribution of the underlying state variables over the relevant interval of time, it is
possible to compute the distribution of possible outcomes for any portfolio.

Risk management models typically use a set of financial prices and indices (that is
smaller than the set of assets that could potentially be included in the portfolio) as the underlying state
variables. Most often, historical sample covariances of asset prices are used as estimates of the likely
future pattern of comovements. However, this modeling strategy begs the question of what underlying
economic forces are driving asset returns. Alternatively, one could include macroeconomic variables
such as activity measures, goods prices, policy variables, or business cycle indicators among the state
variables in a risk management model.> Such a strategy has several potential advantages in the
implementation of risk management models. First, by putting more economic structure on the model,
it may help practitioners gain insight into what sort of developments cause the covariance structure of
financial prices to change over time, so that their estimates of second moments incorporate all
available information. If macroeconomic measures are relevant state variables, they may permit a
more parsimonious representation of the state space and thus more precise estimates of the
relationships between state variables and the prices of traded assets. In addition, changes in the
conditional volatility of a macroeconomic state variable would tend to affect the covariance of asset
prices influenced by it -- this sort of modeling strategy could allow for such effects explicitly.

Alternatively, the second moments of asset returns could be permitted to depend directly on the leve/

> A number of papers have explored the sensitivity of panels of stock return data to macroeconomic
risk factors -- see, for example, Chen, Roll, and Ross (1986), King, Sentana, and Wadhwani (1990), and
Ammer (1993). However, that branch of the literature has been more focused on testing the arbitrage
pricing theory (APT) and seeking out non-zero risk premiums in the context of the APT, rather than
measuring asset return covariances as an end in themselves. Campbell and Ammer (1993), in contrast,
decompose the covariation in U.S. stock and bond returns into "proximate causes”, but their empirical
exercises only involve reiationships among financial data.



of a macroeconomic state variable.

This paper investigates several of the above possibilities, with the goal of assessing the
usefulness of the inclusion of macroeconomic state variables in risk management models. The next
section of the paper uses a simulation exercise to assess the importance of modeling asset returns in

terms of the fundamental variabies driving them. In the following section, we examine statistical

subsequent section, we estimate models in which second moments of returns depend directly on
unemployment rates. The sixth section discusses possible refinements to the methods used and some

ideas for future research.

2. Does Factor-Dependence Matter?

s + 1 3 1
{(contemporaneously realized) observable economic factors (W)
/ / /
Z/ = WB +~u, uiw M
[ 4 1 4 [ 84 [4 i

The (KxN) matrix B contains the factor "loadings". For the time being, we will assume that the
conditional means of (Z) and (W) are constant over time, hence, without loss of generality, we can
proceed as if these means are zero and omit intercept terms to simplify equations such as (1). Further

suppose that the factors (W) and the return residuals (u) are both homoskedastic, so that



Var (W) = E (WW)\ = Q. W @)
-1\t -1\t 1) ’
and
Var,_u) = U, ¥t 3
If the factor loading matrix (B) is also constant over time, then the asset returns (Z) will also be
homoskedastic. In particuiar:
Var 7\ = R'OR + I] Yt ()]
rul‘_“n" =9 »a LS \J’ Ve N7

Under these circumstances, ticu without knowledge of th
(B), it is not helpful to use data on (W) to estimate the (constant) covariance matrix of (Z) -- it would
be more efficient to simply compute the sample moments of (Z).

However, now suppose that the second moments of the factors (W) vary over time.
For example, they might each follow independent generalized auto-regressive conditionally

heteroskedastic (GARCH) processes.® For a GARCH (1,1) process, the conditional variance of a

factor wouid evoive as foiiows:
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will now vary over time. For example if two asset returns both depend positively on a particular

factor, their correlation will tend to rise (or become less negative) when the conditional variance of

* See Bollerslev (1986) for details on the properties of GARCH models.



that factor is relatively high.
Simulated values of (W) and (Z) were created for a version of the model described by
equations (5), (3), and (1) with the help of a random number generator. The model has two

observable factors and two asset returns. The parameters, which are given in the central column of

- A\ pamd dirmnn rnmintinm i tha anmealatiae AF tha trn acon wndrrmenn ¢l 1. DY Th e | le f11)
and d) and time variation in ine correiation of tne two asset returns (Inrougn o). 10e résiGuars (uj are
independent and identically distributed, and the (W) and the (u) are all mutually orthogonal and

model appear in the rightmost column of panel A. They were computed via a numerical maximum
likelihood procedure applied to the first 1000 observations.

Two alternative models of the second moments of (Z) were estimated over the same
sample -- each ignores information that might be in (W). Estimates are in Panel B of the table. The

first is a bivariate GARCH(1,1) specification in (Z) with a constant correlation between the two asset

returns.” The second is a constant variance-covariance matrix.

half of the simulated sample. The fit of the models was assessed by using them to compute the
value-at-risk (VaR) for each period of four sample portfolios, and comparing the VaR measures based

on estimated models to the true VaR (from the data generating process). VaR is defined here as the
five percent left tail of the one-period return.

The results are in the four panels of Table 2. Note the significant degree of time
variation in the true VaR. Not surprisingly, the VaR measure based on estimating the true model

performs superbly. The correlation with the true VaR exceeds 99 percent in ail four cases. The Va

=

5 Alternatively. we could have estimated a less parsimonious but more general bivariate GARCH

model, such as that of Chan, Karolyi, and Stulz (1994).
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based on the GARCH model in asset returns fares fairly well much of the time, but is occasionaily off

by amounts on the order of 100 percent of the correct VaR.® The homoskedastic model cannot, of
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course, capiure any time variation in moments, and its VaR

A necessary step in implementing the model of the previous section with real data is to
estimate factor loadings (B). One must first acquire some observable macroeconomic factors (W).
This was accomplished by estimating a VAR(6) in monthly data in twelve candidate macroeconomic
variables -- in particular, CPI inflation, industrial production growth, and the end-of-month overnight
call money rate for each of four countries: the United States, Japan, Germany, and the United

Kingdom.” Innovations in overnight interest rates likely reflect new information abou

Sy i
policy

Asset price data were collected for the same countries, mostly fixed income instruments
in the four currencies. The appendix describes how data on interest rates and yields were converted

units, and measured in dollars.

Table 3 shows the R? for each return regressed on the 12 factor variables. These R

® When the estimation sample was extended to 10,000 periods, the VaR measure based on the true
model tracked the true VaR even more closely, but the VaR based on the GARCH-in-returns model was
no more accurate than when it was computed from estimates obtained from the shorter sample period.

7 The residuals from these regressions were then orthogonalized in the following order: U.S. (CPI)
inflation, Japanese inflation, German inflation, U.K. inflation, U.S. industrial production, Japanese
industrial production, German industrial production, U.K. industrial production, the U.S. call money rate
(federal funds), the Japanese call money rate, the German call money rate, and the U.K. call money rate.
The point of the orthogonalization is to facilitate interpretation of estimated factor loadings. Note that

P | ALY _

this transformation has no effect on the R? for each asset that is reporied in Table 3.



are generally on the order of ten to fifteen percent, implying that macroeconomic shocks account for a
small. but non-zero portion of asset return variation. Chen, Roll, and Ross (1986), King, Sentana,

and Wahdwani (1990), and Rodrigues (1995) have documented substantially greater explanatory power
for monthly returns. However these papers use a broader set of “economic variables”, inciuding such

measures that are based on either monthly asset returns or very similar variables, such as aggregate

made for the call money rate, because it is arguably an instrument of monetary policy rather than
freely determined by market forces. (In addition, its overnight maturity is substantially shorter than

our monthly sampling interval.)

4. Estimating Factor Heteroskedasticity and Conditional Moments

< ~

at was simulated in section 2 o

proxies as in the regressions described in the previous section. The parameter estimates appear in
Table 4. The rightmost column shows the results of a likelihood ratio test against the null hypothesis
of homoskedasticity. Note that only in three cases (the Japanese inflation shock and the U.S. and

Japanese monetary policy shocks) is the null rejected with 95 percent confidence.

® Because the focus of this paper is on second moments, we will ignore the possibility of time

variation in mean returns, throughout.
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Next, equation (1) is estimated.” Panei A of Tabie ws results for a system
inciuding returns on two asseis -- the UK 20-year bond and a Japanese equity index. Most of the

nction for the three estimated models. Note that the factor-based
model has a substantially higher log likelihood than the "GARCH in returns” model -- albeit, using 27
parameters instead of 7 -- but neither model causes the null of homoskedasticity to be rejected in a
likelihood ratio (LR) test.'” Panel D compares the projected conditional moments from the estimated
models to the cross products of subsequently realized returns. The correlation coefficients imply that

neither estimated model has any ability to forecast changes in second moments. Apparently, to the

. neither of the two models of time variation in asset return moments
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appears to fit the data well. One cannot reject ‘thc null hypothesis of homoskedasticity against either
alternative, and neither model (Panel D) exhibits any ability to forecast variances and covariances of
returns.

The failure to reject homoskedasticity in favor of the factor-based heteroskedastic

model may be in part because the factor-based model has too many parameters -- most of the factor

% Note that estimating (5) and (1) sequentially yields the same results as estimating the two equations
simultaneously, because u and W are orthogonal by construction. It would have been better to have

estimated the orthogonalization of W, (5), and (1) all simultaneously, although it would have been much
more difficuit computationally.

10 Yo 2o camoct L
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It is possible that a more parsimonious factor-based model would have led to rejection of the null
lacrem ~élannie ol adacesn A 1rnnmta ~ avni i
hypothesis of homoskedasticity, but we wanted to avoid data mining
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loadings reported in panel A of tables 5 and 6 are not significantly different from zero. In table 35,
only the factors associated with U.S. inflation, U.S. and Japanese output growth, and the Japanese call
money rate are significant with 95 percent confidence (for a one-sided test) for one of the two returns.

Accordingly, table 7 reports results from a more parsimonious factor-based model of the UK 20-year

bond and the Japanese equity index, using only these four factors. As can be inferred from panel B

-
-
(¢}

other reported correlations are still close to zero. Thus, our LR rejection appears to derive from the
estimated conditional variance in the factor model being on average lower than the unconditional
variance, rather than the time variation in the model's conditional variance tracking the true
conditional variance. In other words, the introduction of the macroeconomic variables into the model
contributes by improving our estimates of the conditional means of the returns, not the conditional

second moments.

uses only the factors associated with U.S. inflation and industrial production. This factor-based model

produces forecasts of second moments that are weakly correlated with the cross-products of returns,

but none of these correlations are significantly different from zero with 95 percent confidence."

'' Note that the other eight macroeconomic variables are involved in the construction of these factors,
both through the VAR equations and through the orthogonalization.

2 Given a sample size of 120, a correlation coefficient of .15 or greater would be significant with 95
percent confidence.
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5. Direct State-Dependence of Second Moments

............................. Wi, Acmmsline cerncr ¢ smndal ctata 1
involving macroeconomic variables. Another way to model state-dependent heteroskedasticity
involves creating a lower triangular matrix L whose elements (on or below the diagonal) are linear

i (6)
= - ~ 3 3
s = %o = D S or i 2
L(IJ)J alJ,o au,m m,t-1 J 9
m=1
and
1 4 - N e 127 (7\
Lops = v [/ 7
(OY; J J hid
Assuming L is full rank, the matrix LL' is symmetric and positive definite, and thus admissible as the
variance-covariance matrix of returns
/
Var (Z\ = L L' ®

The parameters entering L can be estimated by numerical maximum likelihood methods.'"* One

advantage of a specification of this sort is that it is more flexible than specifications based on

3 This strategy differs somewhat from the approach of McQueen and Roley (1993), who used the
level of industrial production relative to trend to define three discrete economic states. They found
state-dependence in the sensitivity of U.S. stock returns to news contained in consumer price index
announcements.

14 Note that the matrix L is not a unique lower trianguiar decomposition of the variance-covariance
matrix. In particular, any row of L could be mulitiplied by -1 and (8) would stiil hoid. (In fact, it can
be shown that this type of transformation yieids all possmle fower triangular decompositions of a

symmemc pOSlllVC-GCl'lnllC matrix. ) However, since the param ers of interest are the variance-covariance
nt.

mairix i ll rather than L. the indetermin acy of L is not importar



univariatt GARCH models in the nature of state-dependence in covariance that it permits. The
biggest drawback is the number of parameters that must be estimated. Fortunately, this disadvantage
was tempered in the applications we tried by a well-behaved likelihood function that was well-suited

for numericai estimation via quadratic approximation.
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of the period over which returns are measured.” The upper panel of each table contains the estimated

second moments of the asset returns, when the state variables at their sample mean. Subseguently, the
tables show the incremental effect, relative to the baseline case of Panel A, of raising one of the
unemployment rates by one percentage point. (Because the relation between the moments and the
state variables is quadratic, the effect of a two percentage point increase generally is not twice as

much.) In both cases, the nuil hypothesis of homoskedasticity is rejected against this alternative.
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times are uncertain times.

Panel C of Table 10 shows a similar but weaker (and not statistically significant) effect
on the variance of the U.K. 10-year bond return (but not on its correlation with other asset returns)
when British unemployment is high. Interestingly, the effects of unemployment in the two countries
on the volatility of the bilateral exchange rate (reflected in the dollar return on the 1-period sterling
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Euro-instrument) are estimated to be of opposite sign, aithough neither is significantly different from

obiained Witn a one-mon n iag and with no lag. The similarity in the estimates
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from zero (in the statistical sense). If the true parameters are zero, this implies that an adequate
measure of the effect of a change in the unemployment rate on the covariance between two asset
eturns can be computed from the effects on the variances of the two asset returns.

Another way that one can compare the performance of the models with direct
state-dependence in second moments to the GARCH models is through the correlation between the
conditional second moments the models produce and the actual cross-products of returns. In general,
we measure correlations somewhat larger than those reported in Tables 5, 6, 7, and 8. For the

3-return and 1-state model of Table 9, all 6 correlations are positive, ranging from 5 percent (for the

. L . . 1 1 . L .1 ~mesd 7L S TR S % SRS [ o WS, Lo man ol o adesoeca) ) P
variance of the I-year bond return) to i1 percent (for the variance of the 10-year bond return). For
the 6-return and 2-state model of Table 10, 20 of 21 correlations are positive, running as high as 28
percent for the covariance between the U.S. 1-year bond and 10-year bond returns

6. Conclusions and Future Possibilities

The results described in the previous section imply that, in some cases, models that
allow the conditional variance of one set of va;iables to depend directly on lagged values of a second
set of variables can provide better forecasts of second moments than GARCH models. These models
are non-linear and involve a large number of parameters. Thus, future work might explore alternative

estimation methods to the straightforward numerical maximum likelihood method used here. In

addition, it would be interesting to explore whether our finding that bond return volatility is increasing
in the unemployment rate is robust across a broader sample of countries. It also would be worthwhile

news variables and asset returns. Although the more parsimonious models we tried fit the data
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somewhat better than a simple homoskedastic model of returns, we found little or no forecasting

The weak results do not necessarily mean that observable state variables

power for second moments.

are not an important determinant of asset price covariances -- it may be simply that a VAR at a

An aliernaiive wouid be o mi

a

monthiy frequency is an inferior way t0 measure news.
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Appendix: Construction of hiy Bond Returms fr

~ronnnn hande
MV ALL AN

We assume that the reported annualized n-month yield to maturity (Y, ,) applies to a hypothetical
n-month bond with monthly coupons that is trading at par. For a bond with a face value of one, the

....... Lo hacd to tendics ot svnem asmd 28 20 acoiitnniad ta haowtra i;mie Fana raliva 40 msina 1o A Tha
Because tne bond is traging at par and ii iS assumea {0 nave unit face vaiue, ifs price is one. ine
present value of the cash flow from the bond, discounted at its yield, must equal the price:

In order to compute the capital gain component of the one-month return on the bond, we will
approximate the current yield to maturity of the previous month's hypothetical n-month par bond with
monthly coupons (now a bond with a maturity of n-1 months) with the reported n-month yield (Y, ).
Thus its price may be written as:

n-1 n-i
= n-l . 0 S M kg n-1 C A k
fn-1g n-1¢ “ne-1 Lo Ta-ig T ey T Ca 2 Mgy
k=1 k=1

between ([ 1) and t takes into account both the coupon payment and the change
d in percent, the return is:

=
i
':“

Note that i

component.
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Given its annualized yield to maturity, the price of an n-month pure discount bond (with unit face

value) at (t-1) is

The return on the bond between (t-1) and t reflects only the change in the price. Expressed in

percent, the return is:

‘Pn-l,l - Pn,t—l

Pn,t-l

)

v

nt

The return (in percent units) from month t-1 to month t comprises a price change component and a
monthly interest payment:
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Table 1: Simulated GARCH in Observable Factors and Model Estimates

A. true model: GARCH (1,1) in 2 observable factors

I] e n s .. PUTE, T PR SR } _“
IL parameter rue vaiue esumatca !!
!I c, 0.20 0.18 Ii
I T
I 3, 040 | 0.36 |
- .1 .. 1 .. 1
I d, 4 4 |
A A Y <]

{I a, 0.40 0.29 Ii
... I e
I d, 0.40 I IR .
%
h B, 1.00 1.05 li
#.—l
}! B,, d
il B,, 1.00 1.01 I!
.. - >
i| 7 ]%z,z | -1.00 o B -1.02 I
I "N o~ n A" I
L < 1 e o2

{L o’y | 0.25 | 0.26

B. alternative models: GARCH (1,1) in returns and homoskedastic returns

ii parameter estimate GARCH in returns model homoskedastic model ii
“ c, 0.45 2.47 Ili
. 1 e ] 1
f—
{I d, 0.21 Ii
T N
| c, 0.47 2.34 |
@{ﬁ
| |
I ¢, | o= ' |
I ‘ |
. 1 - | ]
[ e ]
| P2 | -0.02 | 0.01 |

Note: See text for model definitions.
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statistic

GARCH in factors

GARCH in returns

homoskedastic fl

mean VaR 236.1 235.0 251.5
std.dev. of VaR 67.8 53.7 0
p with true VaR 99.5% 83.5% 0
mean | error | . 7.3 27.3 50.8

— ]

w

" maximum error - 52.7 193.2 513.3

B. portfolio weights = (100 0)’

ﬁistatistic GARCH in factors | GARCH in returns | homoskedastic
!! mean VaR 319.8 3383 362.9

ii std.dev. of VaR 98.8 66.0 0

H p with true VaR 55.9% 41.5% 0

II mean | error| 9.9 60.3 85.4

I maximum error
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Table 2 (continued)

D. portfolio weights = (100 -100)’

statistic true VaR GARCH in factors | GARCH in returns | homoskedastic
mean VaR 3254 335.1 345.0 358.7
std.dev. of VaR 130.1 134.6 67.0 0

p with true VaR 100.0% 99.4% 81.9% 0

mean |error | - 3.4 60.6 93.4
maximum error - 120.1 619.8 1149.3

Note: Models are as defined in the text. Each specification was estimated over the first 1000
observations of simulated data and then propagated over the subsequent 1000 observations. "Value at

risk" is defined as the 5 percent left tail of the one-period return.



I 1l
asset return fi R-squared (
U.S. equity index m 0.05
U.S. 30-year bond fil 0.11
U.S. 10-year bond ‘m 0.11 '
U.S. 7-year bond _m 0.12
U.S. 5-year bond i 0.12
U.S. 3-year bond m 0.11
U.S. 2-year bond JII 0.12
U.S. 1-year bond 1 0.09 |

—Ir !

U.S. 12-month Eurorate il 0.13 f
U.S. 6-month Eurorate j‘H 0.08
U.S.  3-month Eurorate ||| 0.02
U.S. I-month Eurorate m 0.01 |
Japan equity index "{ 0.13 "
Japan 10-year bond HL 0.07
Japan 12-year corporate Jilr 0.09
Japan 5-year corporate _m 0.09
Japan 12-month Eurorate III 0.09

' —I—
Japan 6-month Eurorate ||| 0.09
Japan 3-month Eurorate m 0.09

- —I-
Japan I-month Eurorate ||| 0.10

Note: The factors are the residuals (orthogonalized in the order listed) from a VAR(6) in U.S.
inflation, Japanese inflation, German inflation, U.K. inflation, U.S. industrial production, Japanese
industrial production, German industrial production, U.K. industrial production, the U.S. call money
rate (federal funds), the Japanese call money rate, the German call money rate, and the U K. call
money rate. Returns are end-of-month, in percent-per-month units, and measured in dollars.
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Table 3 (continued)
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Table 4: Estimates of Univariate GARCH Models of Macroeconomic Factors
" c a d LR test: %*(2) !!
DT ~ o P o n o Il

H U.S. CPi 0.86 0.25 -0.11 2.68 "
" inflation (0.38) {6.37) (0.02) I
| 5apan cp1 0.67 -0.09 0.46 1094 |
| inflation (0.19) 0.12) (0.19) |
II German CPI 0.67 0.24 0.09 0.79
II inflation 0.41) (0.40) (0.11)
| k. cpr 1.14 0.07 -0.07 0.98
| inflation (0.93) (0.93) (0.06)
" U.S. industrial 1.91 -0.79 -0.09 1.i0
" output growth {0.35) (0.14) 0.09)
| Japan industrial 1.34 -0.25 -0.10 2.80

output growth (0.46) (0.45) (0.05)

German industrial 0.35 0.78 -0.13 5.31

output growth ©.11) {0.12) {0.03)

U.K. industrial 1.58 -0.51 -0.06 0.60

output growth (0.52) 0.47) (0.06)

U.S. overnight 1.68 -0.82 0.08 7.59
i' interest rate {0.25) {0.12) {0.02)
| Japan overnight 1.81 -0.98 0.12 10.17
|| interest rate 0.25) (0.03) (0.04) "
Ig German overnight 0.52 0.56 -0.07 3.93
|| interest rate {0.44) {0.44) {0.01)
i
| UK. overnight 1.83 -0.90 0.08 1.91
[| interest rate (0.28) 0.12) (0.07)

(standard errors in parentheses)
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Table 5: Three Models of Bivariate Asset Return Variance-Covariance:

UK 20-year bond and Japanese equity index, 1/85 - 12/94

A. linear function of 12 univariate GARCH (1,1) observable factors (homoskedastic residual)

“ cnefficient T N.vear ananace AeMIItY

II WAL LlANAWwEAL VAN &V JV“I J“Pull.\iﬂ\t U\,ull-]

a bond index
U.S. CPI -0.37 -1.47
inflation (0.26) 0.67)
Japan CPI -0.23 -0.64
inflation (0.26) 0.67)
German CPI -0.38 0.41
inflation (0.26) 0.67)
UK. CPI 0.02 0.58
inflation (0.26) (0.67)
U.S. industrial -0.09 -1.54
output growth (0.26) (0.67)
Japan industrial -0.50 -0.15
output growth (0.26) 0.67)
German industrial 0.11 -0.76
output growth (0.26) 0.67)
U.K. industrial -0.14 -0.55
output growth (0.26) (0.67)
U.S. overnight 0.26 0.91
interest rate (0.26) (0.67)
Japan overnight -0.77 -0.06
interest rate (0.26) (0.67)

I " - A

" German overnight -0.19 -0.47

I interesi rate (0.26) (0.67)

| UK. overnight 0.14 0.77 I
interest rate 0.26) (0.67)

| residual variance 7.98 53.13

!! residual covariance 4.08

(standard errors in parentheses)

T r
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B. alternatives: bivariate GARCH (1,1) with constant correlation and homoskedastic model

parameter estimate GARCH (1,1) in returns homoskedastic model f
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C. log likelihood functions
“ modei factor-based heteroskedastic GARCH in returns homoskedastic ﬂ
I me -701.2 -714.9 718.5 I

D. correlations of predicted second moments with actual cross-products of asset returns

tam—

moment factor-based heteroskedastic GARCH in returns homoskedastic
UK bond
. -0.18 0.05 0
variance
equity 0.01 -0.06 0
Lu variance e T -
I co
" . -0.03 0.06 0
variance
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Table 6: Three Models of Bivariate Asset Return Variance-Covariance;

German 1-year bond and German 7-year bond, 1/85 - 12/94

A. linear function of 12 univariate GARCH (1,1) observable factors (homoskedastic residual)

—_—

coefficient German l-year | German 7-year
bond bond

U.S. CPI -0.47 -0.61
inflation (0.31) (0.34)
Japan CPI 0.23 0.20
inflation 0.3D) (0.34) 1|
German CPI -0.26 -0.43 it
infiation (0.31) (0.34)
U.K. CPI1 -0.05 -0.09

h inflation (0.31) (0.34)

II U.S. industrial -0.82 -0.82

" oufput growth 0.31) (0.34)

F Japan industrial 0.13 0.07
output growth (0.31) (0.34)
German industrial 0.40 0.36 I
output growth (0.31) (0.34)
U.K. industrial -0.12 -0.19
output growth 0.31) (0.34)
U.S. overnight 0.21 0.25
interest rate (0.31) (0.34)
Japan overnight 0.31 0.13
interest rate 0.31) (0.34)
German overnight -0.06 -0.08

( interest rate 0.31) (0.34)

i

|l UK. overnight -0.22 0.17

" interest rate (0.31) (0.34)

!'rresiduai variance 11.87 14.26

!! residual covariance 12.57

(standard errors in parentheses)
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B. alternatives: bivariate GARCH (1,1) with constant correlation and homoskedastic model
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15.82

| P12 | 0.97 l 0.97 |
&j . 1 1 ]
C. log likelihood functions
I 1 .. - — ]
|| model Tactor-based heteroskedastic GARCH 1n returns homoskedastic ||
u Ing -486.0 494.9 498.5 !!
D. correlations of predicted second moments with actual cross-products of asset returns
I . ) 1l
“ moment factor-based heteroskedastic GARCH In returns homoskedastic ||
!! l-year

variance 0.01 0.02 0

7-year 0.05 0.02 0

variance ’ :
I co-
!! variance 0.07 -0.02 0
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Table 7: Factor-Based Model of Bivariate Asset Return Variance-Covariance:

UK 20-year bond and Japanese equity index, 1/85 - 12/94

A. linear function of 4 univariate GARCH (1,1) observable factors (homoskedastic residual)

—
4]
@
(=%
=
B,
[e]
Q
<
]
-t
]
=]
[¢]
S
(3%
=}

I[ coefficient UK 20-year Japanese equity “
7 i of hr § J

ﬂ bond index !!

“ U.S. CPI -0.37 -1.47 ii

" inflation (0.26) (0.69) ||

" U.S. industrial -0.09 -1.54 “

H output growth (0.26) (0.69)

" Japan industrial -0.50 -0.15

|| output growth (0.26) (0.69)

I Japan overnight -0.77 -0.06

!! interest rate (0.26) (0.69)

H residual variance

I

IL

[o%]
W
IS
W
.O\
(9]
~ .

(ctandard arrore in narenthacec)
(standard errors in parentheses)
B. log likelihood functions
[ ) . |
" model factor-based heteroskedastic GARCH in returns homoskedastic ||
!! In¥ -707.5 -714.9 -718.5 !!
C. correlations of predicted second moments with actual cross-preducts of asset returns
moment factor-based heteroskedastic GARCH in returns homoskedastic
UK bond
varianre -021 005 0
vaiiliaiive
equity 0.08 006 n
- . V. UuU v
variance
co-
variance -0.05 0.06 0




A. linear function of 2 univariate GARCH (1,1) observable factors (homoskedastic residual)

ii coefficient German 1-year | German 7-year "
“ bond bond |
lus 0.47 0.61 I
“ mﬂatlon (0.32) (0.35) H
U.S. industrial -0.82 -0.82 “
output growth (0.32) (0.35) |
resxdual variance 12.37 14.78 “
—l

hmoﬁ: fa;tor-ba;ed heteroskedastic GARCH in returns homoskedastic H
| Lyesr o1t 0.02 o |
= :

|

H varionce 0.14 -0.02 0 =
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Table 9: Return Covariance Matrix as Direct Function of Observable State Variable

(1/71-12/94)

A. second moments of returns with state variable (US unemployment) at sample mean

“ variances on diagonal, US 10-year 1-year
correlations (lower L a) equity US bond | US bond
US equity 19.29
(1.61)

10-year US bond 0.32 5.70
(0.05) (0.48)

1-year US bond 0.19 0.76 0.38
(0.06) (0.02) (0.03)

- vew

B. efiect on second moments of US unempioyment being i percentage point higher (versus A.)

variances on diagonal; Us 10-year 1-year
correlations (lower L a) equity US bond | US bond
US equity -1.63
(1.01)
10-year US bond 0.03 1.19 I
©.04) | (0.50) I
] e o N
1-year US bond 0.05 0.00 0.07 "
(0.04) (0.02) (0.03) ||

ikelihood ratio test versus nuii hypothesis of homoskedasticity

Note: Variance-covariance matrix is constructed as LL’ where each element of the lower triangular
matrix L is a linear function of the state variables. Returns are measured in dollars.



1-year
US bond

0.38
(0.05)

UK
equity

©0.11)

0.14

UsS
equity

-1.64

(5.94)

18.37

(2.96)
0.16

(0.14)

-0.15
(0.10)
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Table 10 (continued)

C. effect on second moments of UK unemployment being 1 percentage point higher (versus A.)

wvarinncac nan dingnnal. In_,unor 1N _vanr l;mnnﬂn L BAN 1IW 1_vear
vallalivedy Vil unasuual, AWV Jbal LV _ybcu LTIV \VAS \"JSs N 1T ywai
carrelatiane (lnwer T ) 11€ hond 11K hond 11 nro annity eanitv 1IS hond
WAL AWIKRLIVALAD \l\l"vl A ﬂ, NN UVING NJ AR UViIEG NJAR AL v\iult] v\.’ulw'] s e RINSAANS
10-year US bond -0.77
(0.45)
10-year UK bond -0.01 0.33
(0 05) (0 61)
\V Sy \V Ly
1-month UK Euro -0.02 -0.02 1.51
(0.06) (0.06) (1.24)
US equity 0.01 -0.05 -0.06 0.76
0.07) (0.06) (0.07) (1.87) |
\ 7 \ Ve \ 7 N\ 7
UK equity 0.03 -0.02 -0.05 0.01 -0.19
0.07) (0.06) (0.06) (0.04) (3.16)
1-year US bond -0.03 -0.00 -0.05 -0.01 -0.01 -0.12
(0.02) 0.07) (0.07) (0.09) (0.07) (0.03)

D. likelihood ratio test versus null hypothesis of homoskedasticity

LR (distributed x* with 42 degrees of freedom under null) = 131.0

Note: Variance-covariance matrix is constructed as LL’ where each element of the lower triangular
matrix L is a linear function of the state variables. Returns are measured in dollars.



