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This paper explores the possibleadvantagesof introducingobservablestate variables into risk

managementmodels as astrategy for modelingthe evolutionof secondmoments. A simulation

exercisedemonstratesthat ifasset returns dependupona set of underlyingstate variablesthat are

autoregressivelyconditionallyheteroskedastic(ARCH), then a risk managementmodel that failsto

take accountof this dependencecan badly mismeasureaportfolio’s “Value-at-Risk”(VaR), even ifthe

model allowsfor conditionalheteroskedasticityin asset returns. Variablesmeasuringmacroeconomic

news are constructedas the orthogonalizedresidualsfrom avector autoregression(VAR). These

news variablesare foundto have some explanatorypower for asset returns. We also estimatea model

ofasset returns in which time variationinvariance and covariancesderives only from conditional

heteroskedasticityin the underlyingmacroeconomicshocks. Althoughthe data give some support for

several of the specificationsthat we tried, neither these modelsnor GARCHmodels that used only

asset returns appearto have much abilityto forecast the secondmomentsof returns. Finally, we

allow asset return variancesandcovariances to dependdirectly on unemploymentrates --proxying for

the generalstate of the economy-- and find fairly strong evidencefor this sort of specificationrelative

to a null hypothesisof homoskedasticity.



MacroeconomicStateVariablesas Determinantsof Asset Price CoVarianCeS

John Ammerl

1. Introduction

In recent years, the trading activitiesof major financialinstitutions(herein referred to

collectivelyas “banks”)have grown rapidly, and they have becomeincreasinglyconcernedwith

managingthe risk associatedwith exposuretoumnticipated changesin the market prices oftraded

assets. Seniorbank managersgenerallyprefer to have this risk quantifiedas the sumof moneythat

could conceivablybe lost over some intervaloftime, given the portfoliocurrentlyheld. To address

this goal, banks have developedso-called “riskmanagementmodels”. Becausethe volatilityofan

asset price often dominatesits drift over a relativelyshort period oftime, risk managementmodelsare

typicallyprincipallyfocusedon forecastingsecond (and possibiyhigher)momentsof asset returns,

rather than forecastingrelativemean returns.2 A risk managementmodel has two essential

components: apricing functionand a state variableprobabilitydistribution. The pricing functionis a

mappingfrom the prices or returns of traded assets to achosen set of underlyingstate variables. (In

1 The author is an Economistin the Divisionof InternationalFinance, Board of Governorsof the
Federal Reserve System. This paper was prepared for the joint central bank conference “Risk
Measurementand SystemicRisk’’(Washington,DC, November16-17, 1995). Ithank AmnonLevy for
abieresearchassistanceand Mico Loretanfor helpfulcomments. Thispaper representstheviews of the
authorand shouldnotbe interpretedas reflectingthoseoftheBoard ofGovernors of the FederalReserve
Systemor other membersofits staff. Iamresponsible for any errors.

2Thefocus on secondmomentsmakes risk managementmodelsuseful for measuring,and perhaps
designinga strategy to reduce (i.e., hedge) risk. AssefaZlocation models, which areused to devise
trading strategies that maximize (possibly risk-adjusted)returns, have a relatively greater focus on
forecastingmean returns.
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the simplestcase, the set of reievantasset returns and the set of state variablesare identical,but it

maybe advantageousto choose a smaller set of state variables.) Given the pricing functionand the

joint probabilitydistributionof the underlyingstate variablesover the relevant intervaloftiie, itis

possibleto computethe distributionofpossible outcomesfor any portfolio.

Risk mamgement models typicallyuse asetof financialprices and indices(thatis

smaller than the set of assets that could potentiallybe includedin the portfolio)as the underlyingstate

variables. Most often, historicalsample covariancesof asset prices are used as estimatesof the likely

fbturepattern ofcomovements. However, this modeliig strategy begs the questionof what underlying

economicforces are driving asset returns. Alternatively,one could includemacroeconomicvariables

such as activitymeasures, goods prices, policy variables, or business cycle indicatorsamongthe state

variables inarisk managementmodel.3 Such a strategy has several potentialadvantagesinthe

implementationofrisk managementmodels. First, by putting more economicstructure on the model,

it may help practitionersgain insight into what sort ofdevelopments cause thecovariance strqctureof

financialpricesto change over time,so that their estimatesof second moments incorporateall

availableinformation. If macroeconomicmeasures are relevant state variables, they may permita

more parsimoniousrepresentationof the state space and thus more precise estimatesof the

relationshipsbetweenstate variablesand the prices of traded assets. In addition, changes in the

conditionalvolatilityof a macroeconomicstate variable would tend to affect the covarianceofasset

prices influencedby it-- this sort ofmodeling strategy could allow for such effects explicitly.

Altemativeiy,the second momentsofasset retumscouldbepermitted to depend directlyonthe ZeveZ

3A number ofpapers have exploredthe sensitivityofpanels ofstockretum data to macroeconomic
risk factors-- see, forexample, Chen, Roll, and Ross (1986),King, Sentana,andWadhwani(1990),and
Ammer (1993). However, that branch of the literaturehas been more focusedon testing the arbitrage
pricing theory (APT) and seeking out non-zero risk premiums in the context of the APT, rather than
measuringasset return covariancesas an end in themselves. Campbelland Ammer (1993), in contrast,
decomposethecovariation in U.S. stock and bond returns into “proximatecauses”, but their empirical
exercises only involverelationshipsamong financialdata.
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variable.

investigatesseveral of the above possibilities,with the goal of assessingthe

usefulnessof the inclusionof macroeconomicstate variables in risk managementmodels.

sectionof the paper uses a simulationexercise to assess the importanceof modelingasset

The next

returns in

terms of the fundamentalvariablesdriving them. In the followingsection, we examinestatistical

relationshipsbetweenvariouspotentialmacroeconomicstate variablesand monthlyreturns on

fixed-incomesecurities, equities, and foreign exchangeinstrumentsof the United States, Japan,

Germany, and the UnitedKingdom. The fourth sectionof the paper looks into the empirical

contributionof state-dependenceto time variation in asset return variancesandcovariances. In the

subsequentsection, we estimatemodels in which second momentsof returns depend directly on

unemploymentrates. The sixth sectiondiscussespossiblerefinementsto the methodsused and some

ideas for future research.

2. Does Factor-Dependence

Supposethat a

(contemporaneouslyrealized)

The (KxN) matrix B contains

Matter?

vector of N asset returns (Z) is a linear functionof a set of K

observableeconomicfactors (W):

the factor “loadings”. For the time being, we will assumethat the

(1)

conditionalmeans of (Z) and (W) are constantover time, hence, withoutloss of generality,we can

proceed as if these means are zero and omit interceptterms to simpli~ equationssuch as (l). Further

supposethat the factors (W) and the return residuals(u) are both homoskedastic,so that
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Vfzrt-l(w,) = %l(wfr) ‘ Q, Vt

and

V’rt-l(ut) = u, vt

If the factor loadingmatrix (B) is also constantover time, then the asset returns (Z) will also be

homoskedastic. In particular:

(2)

(3)

(4)

Under these circumstances,particularlywithoutknowledgeof the true values of the factor loadings

(B), it is not helpful to use data on (W) to estimate the (constant)covariancematrix of (Z) -- it would

be more efficient to simply computethe sample momentsof (Z).

However, now supposethat the second momentsof the factors (W) vary over time.

For example, they might each follow independentgeneralizedauto-regressiveconditionally

heteroskedastic(GARCH)processes.4 For a GARCH (1,1) process, the conditionalvariance of a

factor would evolve as follows:

vk~ = Var,-l(w”,) = Ck + ak vu-l + ~k‘&-l

Because(Z) is a functionof (W) through equation(l), the second momentsof the asset returns (Z)

will now vary over time. For example if two asset returns both depend positivelyon a particular

factor, their correlation will tend to rise (or become less negative)when the conditionalvariance of

4See Bollerslev(1986) for details on the properties of GARCH models.
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that factor is relativelyhigh.

Simulatedvalues of (W) and (Z) were created for a version of the modeldescribedby

equations(5), (3), and (1) with thehelp ofa randomnumber generator. The model has two

observablefactors and two asset returns, The parameters, which are given inthecentral columnof

panel Aof Table I,were chosento producea high degree of heteroskedasticity(via the coefficientsa

andd) and time variationin the correlationof the two asset returns (throughB). The residuals(u)

independentand identicallydistributed,and the (W) and the (u) are all mutuallyorthogonaland

distributednormal. The data were simulatedfor 2000 periods. Estimatedparametersof the true

are

model appear in the rightmostcolumnofpanel A, They were computedvia a numericalmaximum

likelihoodprocedureappliedto the first 1000observations.

Two alternativemodelsof the secondmomentsof (Z) were estimatedover the same

sample-- each ignores informationthat mightbe in(W). Estimatesarein PanelB of the table. The

first isabivariate GARCH(l,l) specificationin (Z) with aconstant correlationbetweenthe two asset

returns.s The second is aconstant variance-covariancematrix.

For each model, estimatedconditionalsecond momentswere computedover the second

half of the simulatedsample. The fitof the modelswas assessedbyusing them to computethe

value-at-risk(VaR) for each periodof four sampleportfolios, and comparingthe VaR measuresbased

on estimatedmodelsto the true VaR(from the data generatingprocess). VaR is definedhere as the

five percent left tail of the one-periodreturn.

The results arein the four panels of Table2. Note the significantdegree oftiie

variationinthetrue VaR. Not surprisingly,the VaR measurebased on estimatingthe true model

performs superbly. The correlationwith the true VaRexceeds 99 percent in all four cases. TheVaR

‘Alternatively, we could have estimateda less parsimoniousbut more general bivariateGARCH
model, such as that of Chan, Karolyi. and Stulz (1994).
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based on the GARCH model in asset returns fares fairly well much of the time, but is occasionallyoff

by amountson the order of 100percent of the correct VaR.b The homoskedasticmodel cannot, of

course, capture any time variation in moments, and its VaR tends to exceed the average true VaR

somewhat.

3. To What ExtentDoes MacroeconomicNews Drive Asset Returns?

A necessarystep in implementingthe model of the previous section with real data is to

estimatefactor loadings(B). One must first acquire some observablemacroeconomicfactors (W).

This was accomplishedby estimatinga VAR(6) in monthlydata in twelve candidatemacroeconomic

variables-- in particular, CPI inflation, industrialproductiongrowth, and the end-of-monthovernight

call money

Kingdom.’

policy.

in the four

rate for each of four countries: the United States, Japan, Germany, and the United

Innovationsin overnightinterest rates likely reflect new informationabout monetary

Asset price data were collectedfor the same countries, mostly fixed incomeinstruments

currencies. The appendixdescribes how data on interest rates and yields were converted

into one-monthholdingperiod returns. The return data used are end-of-month,in percent-per-month

units, and measured in dollars.

Table 3 shows the R2for each return regressed on the 12 factor variables. These R*

bWhen the estimationsamplewas extendedto 10,000periods, the VaR measure based on the true
model trackedthe true VaReven more closely, but the VaR based on the GARCH-in-returnsmodelwas
no more accurate than when it was computedfrom estimatesobtainedfrom the shorter sampleperiod.

7The residualsfrom these regressionswere then orthogomlized in the followingorder: U.S. (CPI)
inflation, Japanese inflation, German inflation, U.K. inflation, U.S. industrial production, Japanese
industrialproduction,Germanindustrialproduction,U.K. industrialproduction,the U.S. call moneyrate
(federalfunds), theJapanesecall moneyrate, the Germancall moneyrate, and the U.K. callmoneyrate.
The point of the orthogomdizationis to facilitate interpretationof estimatedfactor loadings. Note that
this transformationhas no effect on the R2for each asset that is reported in Table 3.
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are generallyon the order of ten to fifteenpercent, implyingthat macroeconomicshocksaccountfor a

small. but non-zeroportion of asset return variation. Chen, Roll, and Ross (1986), King, Sentana,

and Wahdwani(1990), and Rodrigues(1995)have documentedsubstantiallygreater explanatorypower

for monthlyreturns. However these papers use a broader set of “economicvariables”, includingsuch

measuresthat are based on either monthlyasset returns or very similar variables, such as aggregate

stock returns, interest rate spreads, and changes in commodityprices. Becausethe goal here isto

introducevariablesthat are not alreadybeing employedin risk managementmodels, wedonot

considerasset returns and financialprices for the set of candidatestate variables. An exceptionis

made for the call money rate, because it is arguablyan instrumentof monetarypolicy rather than

freely determinedby market forces. (In addition, its overnightmaturity is substantiallyshorter than

our monthlysamplinginterval,)

4. EstimatingFactorHeteroskedasticityand ConditionalMoments

Here, we estimatethe model that was simulatedin section 20fthe paper. Recall thatit

allows returnsto depend unconditionallyheteroskedasticobservablefactors, but has no other source

oftime variationin secondmoments,g The first step is to estimateequation(5), the GARCH(1,1)

modelsof the observableunderlyingfactors, using the same (ortho-normalized)macroeconomicnews

proxies as in the regressionsdescribedin the previous section. The parameter estimatesappearin

Table4. The rightmostcolumnshows the results ofa likelihoodratio test against the null hypothesis

of homoskedasticity. Note that only inthree cases (the Japanese inflationshock and theU.S, and

Japanesemonetarypolicy shocks) is the null rejected with95 percent confidence.

8 Because the focus of this paper is on second moments, we will ignore the possibilityoftime
variationin mean returns, throughout,
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Next. equation(1) is estimated.9 Panel A of Table 5 shows results for a system

includingreturns on two assets -- the UK 20-year

estimatesare not significantlydifferent from zero

modelsalso discussed in section 2: GARCH(l,l)

bond anda Japanese equity index. Most of the

Panel B shows estimatesof the two alternative

in the returns themselvesand homoskedasticity.

Panel C shows the log likelihoodfunctionfor the three estimatedmodels. Note that the factor-based

model has a substantiallyhigher log likelihoodthan the “GARCHin returns” model -- albeit, using 27

parameters instead of 7-- but neither model causes the null of homoskedasticityto be rejected in a

likelihood

models to

ratio (LR) test.’” Panel D compares the projectedconditionalmomentsfrom the estimated

the cross products of subsequentlyrealized returns. The correlation coefficientsimply that

neither estimatedmodel has any abilityto forecast changes in second moments. Apparently, to the

extent there is conditionalheteroskedasticityin these two asset returns, neither specificationhas been

very successfulin capturing it.

Table 6 runs through the analogousempiricalexercises for a l-year German

governmentbond and a 7-year German governmentbond, the (dollar) returns on which are very

highly correlated. As in Table 5, neitherof the two models of time variation in asset return moments

appears to fit the data well. One cannot reject the null hypothesisof homoskedasticityagainsteither

alternative.and neither model (Panel D) exhibitsany abilityto forecast variances and covariancesof

returns.

The failure to reject homoskedasticityin favor of the factor-basedheteroskedastic

model may be in part because the factor-basedmodel has too many parameters -- most of the factor

gNote that estimating(5) and (1) sequentiallyyieldsthe same results as estimatingthe two equations
simultaneously,because u and W are orthogonalby construction. It would have been better to have
estimatedthe orthogonalizationof W, (5), and (1) all simultaneously,althoughit wouldhave been much
more difficultcomputatiomlly.

10It is possiblethat a more parsimoniousfactor-basedmodelwould have led to rejectionof the null
hypothesisof homoskedasticity,but we wanted to avoid data mining.

1
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loadingsreported in panel A of tables 5 and6are not significantlydifferent from zero. In table 5,

only the factors associatedwith U.S. inflation,U.S. and Japaneseoutputgrowth, and the Japanesecall

money rate are significantwith 95 percent confidence(for a one-sidedtest) for one of the two returns.

Accordingly,table 7 reports results from a more parsimoniousfactor-basedmodel of the UK 20-year

bond and the Japaneseequity index, using only these four factors.’] As can be inferred from panel B

of the table, an LR test now rejects homoskedasticityin favor of the factor-basedmodel. However, as

shown in panel C. the model still does a poor job of explainingtime variationin second moments--

its forecastof the UK bond return variance is still negativelycorrelatedwith squared returns, and the

other reported correlationsare still close to zero. Thus, our LR rejectionappears to derive from the

estimatedconditionalvariance in the factor modelbeing on average lower than the unconditional

variance, rather than the time variationin the model’sconditionalvariance trackingthe true

conditionalvariance. In other words, the introductionof the macroeconomicvariables into the model

contributesby improvingour estimatesof the conditionalmeans of the returns, not the conditioml

second moments.

Table 8 shows the results of an analogousmodelingstrategy for the German l-year and

7-year bonds. Homoskedasticityis rejected in favor ofa more parsimoniousfactor-basedmodel that

uses only the factors associatedwith U.S. inflationand industrialproduction. This factor-basedmodel

producesforecastsof second momentsthat are weaklycorrelatedwith the cross-productsof returns,

but none of these correlationsare significantlydifferent from zero with 95 percent confidence.12

11Notethatthe other eightmacroeconomicvariablesare involvedin the constructionof thesefactors,
both throughthe VAR equationsand throughthe orthogonalization.

12Givena samplesize of 120,a correlationcoefficientof .15 or greater wouldbe significantwith 95
percent confidence.
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5. Direct State-Dependenceof SecondMoments

Accordingly.it may be worth exploringother types of conditionalheteroskedasticity

involvingmacroeconomicvariables. Another way to model statedependent heteroskedasticity

involvescreating a lower triangularmatrix L whose elements(on or below the diagonal)are linear

finctions of particular state variables:]3

and

L(iJ-)J =0 for i<j

(6)

m

AssumingL is full rank, the matrix LL’ is symmetricand positivedefinite, and thus admissibleas the

variance-covariancematrix of returns:

Var,-l(Zt)= L, L:

The parameters entering L can be estimatedby numericalmaximumlikelihoodmethods.t4 One

advantageof a specificationof this sort is that it is more flexible than specificationsbased on

(8)

13This strategy differs somewhatfrom the approach of McQueen and Roley (1993), who used the
level of industrialproduction relative to trend to define three discrete economicstates. They found
statedependence in the sensitivityof U.S. stock returns to news contained in consumer price index
announcements.

14Note that the matrix L is not a uniquelower triangulardecompositionof the variance-covariance
matrix. In particular, any row of L could be multipliedby -1 and (8) would still hold. (In fact, it can
be shown that this type of transformation yields all possible lower triangular decompositionsof a
symmetricpositive-definitematrix.) However,sincetheparametersof interestare thevariance-covariance
matrix itself. rather than L. the indeterminacyof L is not important.
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univariateGARCHmodels in the nature of state-dependenceincovariance that it permits. The

biggestdrawbackis the number of parametersthat must be estimated. Fortunately,this disadvantage

was tempered

for numerical

in the applicationswe tried by a well-behavedlikelihoodfimctionthat was well-suited

estimationvia quadraticapproximation.

Tables 9 and 10 show estimatesof modelsof this sort, using unemploymentrates as the

state variables. The state variablesare laggedtwo months, so that the data is public at the beginning

of the period over which returns are measured.15The upper panel of each table containsthe estimated

secondmomentsof the asset returns, when the state variablesat their samplemean. Subsequently,the

tables show the incrementaleffect, relative to

unemploymentrates by one percentagepoint.

the baselinecase of Panel A, of raising one of the

(Becausethe relationbetweenthe momentsand the

state variablesis quadratic. the effect of a two percentagepoint increasegenerally is not twice as

much.) In both cases, the null hypothesisof homoskedasticityis rejectedagainstthis alternative.

Note that U.S. bond returns -- both short and long -- are estimatedto be both more volatileand more

highlycorrelatedwith other asset returns when the U.S. unemploymentrate is high. The increasein

the variancesis significantwith 95 percent confidence. This suggeststhat, when the economyis

weak, there is more uncertaintyabout the future course of real interest rates, inflation,or both -- bad

times are uncertain times.

Panel C of Table 10 shows a similarbut weaker (and not statisticallysignificant)effect

on the varianceof the U.K. 10-yearbond return (but not on its correlationwith other asset returns)

when Britishunemploymentis high. Interestingly,the effectsof unemploymentin the two countries

on the volatilityof the bilateralexchangerate (reflectedin the dollar return on the l-period sterling

Euro-instrument)are estimatedto be of oppositesign, althoughneither is significantlydifferent from

‘5Like results were obtainedwith a one-monthlag and with no lag. The similarityin the estimates
under these alternativesis not surprising, given that the unemploymentrate moves slowlyover time.
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zero. Note also that none of the off-diagonalelementsinthelower panel are significantlydifferent

from zero (in the statisticalsense). Ifthetrue parametersare zero. this impliesthat an adequate

measure of the effect of a change in the unemploymentrate on the covariancebetween two asset

returns can be computedfrom the effectson the variancesof the two asset returns.

Another way that one can compare the performanceof the models with direct

state-dependencein second momentsto the GARCH models is through the correlation between the

conditionalsecond momentsthe modelsproduce and the actual cross-productsof returns. In general,

we measure correlationssomewhatlarger than those reported in Tables 5, 6, 7, and 8. For the

3-return and l-state model of Table 9, all 6 correlationsare positive, ranging from 5 percent (for the

variance of the l-year bond return) to 11 percent (for the variance of the 10-yearbond return). For

the 6-return and 2-state model of Table 10, 20 of 21 correlationsare positive, ruining

percent for the covariancebetween the U.S. l-year bond and 10-yearbond returns.

6. Conclusionsand FuturePossibilities

The results described in the previous section imply that, in some cases,

as high as 28

modelsthat

allow the conditionalvariance of one set of variablesto depend directly on lagged values of a second

set of variablescan provide better forecasts of second momentsthan GARCH models. These models

are non-linearand involvea large number of parameters. Thus, future work might explore alternative

estimationmethodsto the straightforwardnumericalmaximumlikelihood

addition, it would be interestingto explore whether our findingthat bond

in the unemploymentrate is robust across a broader sampleof countries.

method used here. In

return volatilityis increasing

It also would be worthwhile

to consider what sort of economicmodels would be consistentwith this stylized fact.

We found less support for models that involvelinear relationsbetween macroeconomic

news variablesand asset returns. Althoughthe more parsimoniousmodels we tried fit the data
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better than a simplehomoskedasticmodelof returns, we found littleor no forecasting

secondmoments. The weak results do not necessarilymean that observablestate variables

importantdeterminantof asset price covariances-- it may be simplythat a VAR at a

monthlyfrequencyis an inferior way to measurenews. An alternativewould be to measure shocks in

the macro variablesrelativeto survey expectationsof their values some time before the announcement.

This would have the further advantageof making it feasibleto apply the techniqueto higher frequency

data.
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Appendix: Constructionof MonthlyBond Returnsfrom YieldData

on boti

We assume that the reported annualizedn-monthyield to maturity (Y~,~applies to a hypothetical
n-monthbond with monthlycouponsthat is trading at par. For a bond with a face value of one,
monthlycoupon would be:

c=nJ )Y1n,t Z - ~l+———
100

Also define the monthlydiscountfactor pertainingto the stated annualizedyield to maturity:

[1Y+
&inJ= 1 + —

1;,

Becausethe bond is trading at par and it is assumedto have unit face value, its price is one.
present value of the cash flow from the bond, discountedat its yield, must equal the price:

The

the

n

1 = h!fntn+ cnJ ~M k
9 nJ

k=]

In order to computethe capitalgain componentof the one-monthreturn on the bond?we will
approximatethe current yield to maturity of the previous month’shypotheticaln-monthpar bond with
monthlycoupons(now a bond with a maturity of n-1 months) with the reported n-monthyield (Y.,t).
Thus its price may be written as:

The return on the bond between (t-1) and t takes into accountboth the couponpaymentand the change
in the price. Expressed in percent, the return is:

R = 100(CnJ-~+ ‘n-1,1 - 1,n,t

Note that if the n-monthyield is unchanged,the return will consist only of its income(coupon)
component.

●
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.. .
we dls-t bonds

Given its amuaiized yield to maturity,
value) at (t-1) is

Assumingthat it has the same yield to
monthsat time t has the price:

P11-l,t =

the price of an n-monthpure discountbond (with unit face

[) Y
P =1+ n,r-1 +

n,t-1 100

maturityas the n-monthbond, a discountbond maturingin n-1

[1‘%)%=[’‘%);
The return on the bond between (t-1) and t reflects only the changein the price. Expressed in
percent, the return is:

P - Pnt-l
Rn,t = 100 ‘-*” ‘

Pn?-1

Given annual interestpaymentsof X, the price of a consolof unit face value is an inversefunctionof
its quoted annualyield:

P =+-,t
t

The return (in percent units) from month t-1 to month t comprisesa price changecomponentand a
monthlyinterestpayment:

[ )-Pt - Pt-l Yt-l

( )-

Y - Yt Yt-l
Rt = 100 = 100 ‘-1

Pt-1 + 12 Yt + 12
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Table 1: SimulatedGARCHin ObservableFactorsand ModelEstimates

A. true model: GARCH(1,1) in 2 observablefactors

I parameter true value estimated

c, 0.20 0.18

al 0.40 0.36

I d, 0.40 0.47

I C* I 0.20 I 0.27

I az I 0.40 0.29

Ia dz 0.40 I 0.47

II B11 I 1,00 I 1.05

I B1,2 1.00 I 1.02

I B2,1 1.00 1.01

I B2,2 -1.00 I -1.02

I~ 02”, I 0.25 I 0.23

CJ2U2 I 0.25 I 0.26

B. alternativemodels: GARCH(1,1) in returnsand homoskedasticreturns

parameter estimate GARCH in returns model homoskedasticmodel

c, 0.45 2.47

al 0.61

d, 0.21

C2 0.47 2.34

az 0.57

dz 0.22

P1,2 -0.02 0.01

Note: See text for modeldefinitions.
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EstimatedPortfolio“Value-at-Risk”forTable2: Actual SimulatedData

A. portfolioweights = (O100)’

statistic true VaR I GARCH in factors GARCH in returns homoskedastic

mean VaR 230.1 I 236.1 239.0 251.5

std.dev. of VaR I 63.7 67.8 53.7 0

p with true VaR I 100.0% I 99.5% 83.5% o
mean error , 7.3 27.3 50.8

maximumerror 52.7 193.2 513.3

B. portfolioweights = (100O)’

statistic true VaR I GARCH in factors GARCH in returns homoskedastic

mean VaR 230.1 237.0 242.7 258.8

std.dev. of VaR I 63.7 68.5 51.0 0

p with true VaR I 100.0% 99.4% 82.1% o

mean Ierror I 8.2 30.2 54.8

maximumerror I 53.8 216.2 506.1

c. portfolioweights = (100 100)’

statistic I true VaR I GARCH in factors I GARCH in returns I homoskedastic

mean VaR 312.9 319.8 339.3 362.9

std.dev. of VaR 86.0 98.8 66.0 0

p with true VaR 100.0% 99.9% 41.5% o

mean error I 9.9 60.3 85.4

maximumerror I 80.0 616.8 465.7

.
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Table2 (continued)

D. portfolioweights = (100 -100)’

statistic I true VaR I GARCH infectors I GARCH inreturns I hornoskedastic

mean VaR I 325.4 I 335.1 I 345.0 I 358.7

std.dev. of VaR I 130.1 I 134.6 I 67.0 I o

p with true VaR I 100.0% I 99.4% I 81.9% I o

mean Ierror I I I 13.4 I 60.6 I 93.4

maximumerror I I 120.1 I 619.8 I 1149.3

Note: Modelsare as defined in the text. Each specificationwas estimatedover the first 1000
observationsof simulateddata and then propagatedover the subsequent1000observations. “Valueat
risk” is definedas the 5 percent left tail of the one-periodreturn.
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Table 3: LinearRegressionsof Asset Returnson MacroeconomicFactors

proportionof varianceexplained, 1/85 - 12/94

asset return R-squared

U.S. equity index Ill 0.05

U.S. 30-year bond 0.11

U.S. 10-yearbond o.I1

U.S. 7-year bond Ill 0.12

U.S. 5-year bond Ill 0.12

U.S. 3-year bond

U.S. 2-year bond I*
U.S. l-year bond Ill 0.09

U.S. 12-monthEurorate Ill 0.13

U.S. 6-month Eurorate Ill 0.08

U.S. 3-monthEurorate 0.02

U.S. l-month Eurorate 0.01

Japan equity index 0.13

Japan 10-yearbond 0.07

Japan 12-yearcorporate 0.09

Japan 5-year corporate

Japan 12-monthEurorate H+
Japan 6-monthEurorate Ill 0.09

Japan 3-monthEurorate 0.09

Japan l-month Eurorate 0.10

Note: The factors are theresiduais (orthogonalizedinthe order listed) froma VAR(6)in U.S.
inflation,Japanese inflation,German inflation,U.K. inflation,U.S. industrialproduction,Japanese
industrialproduction, German industrialproduction, U.K. industrialproduction, the U.S. call money
rate (federal funds), the Japanese call money rate, the German call money rate, and the U.K. call
money rate. Returns are end-of-month,in percent-per-monthunits, and measured in dollars.
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Table3 (continued)

asset return Ill R-squared

German equity index 0.07

German 7-year bond 0.10

German 5-year bond Ill 0.10

German 3-year bond 0.10

German 2-year bond 0.10

German l-year bond o.11

German 12-monthEurorate Ill o.11

German 6-monthEurorate 0.11

German 3-monthEurorate Ill 0.10

German l-month Eurorate 0.10

U.K. equity index Ill 0.09

U.K. 3.5% COIISO] Ill 0.15

U.K. 20-year bond Ill 0.14

U.K. 10-yearbond 0.13

U.K. 5-year bond 0.12

U.K. 12-monthEurorate 0.14

U.K. 6-monthEurorate 0.13

U.K. 3-monthEurorate 0.13

U.K. l-month Eurorate 0.13

Note: The factors are the residuals(orthogonalizedin the order listed)from a VAR(6) in U.S.
inflation,Japanese inflation,German inflation,U.K. inflation,U.S. industrialproduction,Japanese
industrialproduction,German industrialproduction,U.K. industrialproduction,the U.S. call money
rate (federal finds), the Japanesecall money rate, the German call money rate, and the U.K. call
money rate. Returnsare end-of-month,in percent-per-monthunits, and measured in dollars.
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Table4: Estimatesof UnivariateGARCHModelsof MacroeconomicFactors

c a d LR test: X2(2)

U.S. CPI 0.86 0.25 -0.11 2.68
inflation (0.38) (0.37) (0.02)

Japan CPI 0.67 -0.09 0.46 10.94
inflation (0.19) (0.12) (o.19)

German CPI 0.67 0.24 0.09 0.79
inflation ~ (0.41) (0.40) (0.11)

U.K. CPI 1.14 -0.07 -0.07 0.98
inflation (0.93) (0.93) (0.06)

U.S. industrial 1.91 -0.79 -0.09 1.10
outputgrowth (0.35) (o.14) (0.09)

Japan industrial 1.34 -0.25 -0.10 2.80
output growth (0.46) (0.45) (0.05)

German industrial 0.35 0.78 -0.13 5.31
output growth (o.11) (o.12) (0.03)

U.K. industrial 1.58 -0.51 -0.06 0.60
output growth (0.52) (0.47) (0.06)

U.S. overnight 1.68 -0.82 0.08 7.59
interest rate (0.25) (0012) (0.02)

Japan overnight 1.81 -0.98 0.12 10.17
interest rate (0.25) (0.03) (0.04)

German overnight 0.52 0.56 -0.07 3.93
interest rate (0.44) (0.44) (0.01)

U.K. overnight 1.83 -0.90 0.08 1.91
interest rate (0.28) (0.12) (0.07)

(standard errors in parentheses)

.
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Table5: ThreeModelsof BivariateAsset ReturnVariance-Covariance:

UK 20-yearbondand Japaneseequity index, 1/85 - 12/94

A. linearfunctionof 12 univariateGARCH(1,1) observablefactom (homoskedasticresidual)

coefficient UK 20-year Japaneseequity
bond index

Us.CPI -0.37 -1.47
inflation (0.26) (0.67)

Japan CPI -0.23 -0.64
inflation (0.26) (0.67)

German CPI -0.38 0.41
inflation (0.26) (0.67)

U.K. CPI 0.02 0.58
inflation (0.26) (0.67)

U.S. industrial -0.09 -1.54
outputgrowth (0.26) (0.67)

Japan industrial -0.50 -0.15
outputgrowth (0.26) (0.67)

German industrial 0.11 -0.76
outputgrowth (0.26) (0.67)

U.K. industrial -0.14 -0.55
outputgrowth (0.26) (0.67)

U.S. overnight 0.26 0.91
interestrate (0.26) (0.67)

Japan overnight -0.77 -0.06
interest rate (0.26) (0.67)

German overnight -0.19 -0.47
interestrate (0.26) (0.67)

U.K. overnight 0,14 -0.77
interest rate (0.26) (0.67)

residualvariance 7.98 53.13

residualcovariance 4.08

(standarderrors in parentheses)
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(continued)

B. alternatives: bivariateGARCH (1,1) with constantcorrelationand homoskedasticmodel

7

parameter estimate GARCH (1,1) in returns homoskedasticmodel

c, 1.67 9.32

al 0.69

d, 0.13

c~ 23.49 61.14

a2 0.39

dl 0.23

P1,2 0.21 0.21

C. log likelihoodfunctions

\
model factor-basedheteroskedastic GARCH in returns homoskedastic

in Sf -701.2 -714.9 -718.5

D. correlationsof predictedsecondmomentswith actualcross-productsof asset returns

moment factor-basedheteroskedastic GARCH in returns homoskedastic

UK bond -0.18 0.05 0variance

equity 0.01 -0.06 0variance

co-
variance I -0.03 0.06 0
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Table6: ThreeModelsof BivariateAsset ReturnVariance-Covariance:

Germanl-year bondand German7-yearbond, 1/85 - 12/94

A. linearfunctionof 12 univariateGARCH(1,1) observablefactors(homoskedasticresidual)

coefficient German l-year German 7-year
bond bond

Us.CPI -0.47 -0.61
inflation (0.31) (0.34)

Japan CPI 0.23 0.20
inflation (0.31) (0.34)

German CPI -0.26 -0.43
inflation (0.31) (0.34)

U.K. CPI -0.05 -0.09
inflation (0.31) (0.34)

U.S. industrial -0.82 -0.82
outputgrowth (0.31) (0.34)

Japan industrial 0.13 0.07
outputgrowth (0.31) (0.34)

German industrial 0.40 0.36
outputgrowth (0.31) (0.34)

U.K. industrial -0.12 -0.19
outputgrowth (0.31) (0.34)

U.S. overnight 0.21 0.25
interestrate (0.31) (0,34)

Japan overnight 0.31 0.13
interest rate (0.31) (0.34)

Germanovernight -0.06 -0.08
interest rate (0.31) (0.34)

U.K. overnight -0.22 -0.17
interestrate (0.31) (0.34)

residualvariance 11.87 14.26

residualcovariance 12.57

(standarderrors in parentheses)
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Table6 (continued)

B. alternatives: bivariateGARCH(1,1) with constantcorrelationand homoskedasticmodel

parameter estimate GARCH (1,1) in returns homoskedasticmodel

c, 16.59 13.27

al -0.34

d, 0.10

c; 28.77 15.82

a2 -0.86

d2 0.06

%,2 0.97 0.97

C. log likelihoodfunctions

model factor-basedheteroskedastic GARCH in returns homoskedastic

In Sf -486.0 -494.9 498.5

D. correlationsof predictedsecondmomentswith actual cross-productsof asset returns

I I i
moment factor-basedheteroskedastic GARCH in returns homoskedastic

l-year 0.01 0.02 0variance

7-year
0.05 0.02 0variance

co-
0.07 -0.02 0variance
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Table7: Factor-BasedModelof BivariateAsset ReturnVariance-Covariance:

UK 20-yearbondand Japaneseequityindex, 1/85 - 12/94

A. linearfunctionof 4 univariateGARCH(1,1) observablefactors (homoskedastic

coefficient UK 20-year Japaneseequity
bond index

Us.CPI -0.37 -1.47
inflation (0.26) (0.69)

U.S. industrial -0.09 -1.54
outputgrowth (0.26) (0.69)

Japan industrial -0,50 -0.15
outputgrowth (0.26) (0.69)

Japan overnight -0.77 -0.06
interest rate (0.26) (0.69)

residualvariance 8.34 56.57

residualcovariance 4.29

(standarderrors in parentheses)

residual)

,

B. log likelihoodfunctions

model factor-basedheteroskedastic GARCH in returns homoskedastic

in g -707.5 -714.9 -718.5

C. correlationsof predictedsecondmomentswith actualcross-productsof asset returns

moment factor-basedheteroskedastic GARCH in returns homoskedastic

UK bond
-0.21 0.05 0variance

equity
0.08 -0.06 0variance

co-
-0.05 0.06 0variance
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Table 8: Factor-Based Model of Bivariate Asset Return Variance-Covariance:

German l-year bond and German7-yearbond, 1/85 - 12/94

A. linearfunctionof 2 univanate GARCH(1,1) observablefactors (homoskedastic

coefficient German l-year German 7-year
bond bond

Us. CPI -0.47 -0.61
inflation (0.32) (0.35)

U.S. industrial -0.82 -0.82
outputgrowth (0.32) (0.35)

residual variance 12.37 14.78

residual covariance 13.04

residual)

(standarderrors in parentheses)

B. log likelihoodfunctions

,

model factor-basedheteroskedastic GARCH in returns homoskedastid

in $f -493.4 -494.9 -498.5

C. correlationsof predictedsecondmomentswith actualcross-productsof asset returns

moment factor-basedheteroskedastic GARCH in returns homoskedastic

l-year 0.11 0.02 0variance

7-year
0.13 0.02 0variance

co-
variance I 0.14 -0.02 0
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Table9: ReturnCovarianceMatrixas Direct Functionof ObservableStateVariable

(1/71-12/94)

A. secondmomentsof returnswith state variable(US unemployment)at samplemean

varianceson diagonal; us 10-year l-year
correlations(iower L A) equity US bond US bond

US equity 19.29
(1,61’)

10-yearUS bond I (%I (w)I
l-year US bond

I
0.19

I
0.76 I 0.38

(0.06) (0,02) (0.03)

B. effect on secondmomentsof US unemploymentbeing 1 percentagepointhigher (versusA.)

varianceson diagonal; us 10-year l-year
COITdatlOIIS (lower L A) equity US bond US bond

US equity -1,63
(1.01)

10-yearUS bond
I ::;, I & I II

C. likelihoodratio test versusnull hypothesisof homoskedasticity

LR (distributedXZwith 6 degrees of freedomunder null) = 15.0

Note: Variance-covariancematrix is constructedas LL’ where each elementof the lower triangular
matrix L is a linear fi.mctionof the state variables. Returns are measured in dollars.
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Table 10: ReturnCovarianceMatrixas Direct Functionof ObservableStates, 1/80-12/94

A. secondmomentsof returnswith state variables(US and UK unemployment)at samplemeans

varianceson diagonal; 10-year 10-year l-month us UK l-year
COrdMiOIUi (1OWX L A) US bond UK bond UK Euro equity equity US bond

10-yearUS bond 7.25
(1.06)

10-yearUK bond 0.41 7.42
(0.09) (1.03)

l-month UK Euro 0.15 0.16 13.66
(o.12) (o.12) (1.83)

US equity 0.34 0.27 -0.03 18.37
(0.11) (o.10) (o.13) (2.96)

UK equity 0.26 0.50 0.55 0.54 35.62
(o.11) (0.10) (0.09) (0.08) (5.23)

l-year US bond 0.80 0.33 0.15 0.16 0.14 0.38
(0.05) (o.11) (o.15) (o.14) (0.11) (0.05)

B. effect on secondmomentsof US unemploymentbeing 1 percentagepointhigher (versusA.)

varianceson diagonal; 10-year 10-year l-month us UK
correlations(lower L A) US bond UK bond UK Euro equity equity

10-yearUS bond 1.77
(1.75)

10-yearUK bond I (wI (%I I I
l-month UK Euro I ::::)I i::)I H)I I
US equity 0.02 -0.02 0.05 -1.31

(0.10) (0,08) (0.11) (2,09)

UK equity 0.13 -0.05 0.10 -0.15 -1.64
(o.11) (o. 10) (0.08) (o.10) (5.94)

l-year
US bond

0.23
(0.09)

●
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Table 10 (continued)

C. effect on secondmomentsof UK unemploymentbeing 1 percentagepointhigher(versusA.)

varianceson diagonal; 10-year 10-year l-month us UK l-year
correlations(lower L A) US bond UK bond UK Euro equity equity US bond

10-yearUS bond -0.77
(0.45)

10-yearUK bond -0.01 0.33
(0.05) (0.61)

l-month UK Euro -0.02 -0.02 1.51
(0.06) (0.06) (1.24)

US equity 0.01 -0.05 -0.06 0.76
(0.07) (0.06) (0.07) (1.87)

UK equity 0.03 -0.02 -0.05 0.01 -0.19
(0.07) (0.06) (0.06) (0.04) (3.16)

l-year US bond -0.03 -0.00 -0.05 -0.01 -0.01 -0.12
(0.02) (0.07) (0.07) (0.09) (0.07) (0.03)

D. likelihoodratiotest versusnull hypothesisof homoskedasticity

LR (distributed~zwith 42 degrees of freedomunder nuIl) = 131.0

Note: Variance-covariancematrix is constructedas LL’ where each elementof the lower triangular
matrix L is a linear functionof the state variables, Returns are measured in dollars.


