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Human-Robot Site Survey Project

Systematic survey

• Civil engineering survey, geophysical study,
resource prospecting, etc.

• Systematic, detailed coverage
(necessary to ground-truth remote sensing)

• Unproductive for crew to perform manually
(repetitive, tedious, time-consuming)

Source: T. Fong, M. Deans, et al., 2007. “Simulated Lunar Robotic

Survey at Terrestrial Analog Sites” (Proc. LPSC)
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Haughton Crater Field Test

10 July – 3 August 2007

• Two ARC K10 planetary rovers with survey instruments

! 3D scanning lidar for topographic mapping

! Ground-penetrating radar (GPR) for resource prospecting

• Test robotic survey systems and operational procedures

• Multiple lunar analog sites at Haughton Crater (Canada)

Haughton Crater

(Devon Island, Canada)

K10 rover
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NASA
ARC

NASA
JSC

Field Test Location

Haughton-Mars Project (marsonearth.org)
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Haughton Crater: A Lunar Analog

 

.

Shackleton Crater at the South Pole of the Moon is 19 km in diameter and might present
H2O ice in surrounding shadowed zones. It is a prime candidate site for human exploration.
Haughton Crater, also ~ 20 km in size, is by far the best preserved impact structure of its
class on Earth and is located in a H2O ground ice–rich rocky desert. Haughton may be the
best overall scientific and operational analog for lunar craters such as Shackleton.

Shackleton Crater, 19km dia.

(lunar South Pole)

2005 Arecibo radar image

Haughton Crater, 20km dia.

(Devon Island, Canada)

radar image
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Field Test Conditions

Weather (July)

• Winter in the high desert

• 0 to 15 deg C

• Mostly dry (some precipitation)

• Windy: 0 to 35 kt

• Mostly clear (clouds at 500 ft)

Environment

• Daylight 24/7

• Very, very dusty

• No vegetation

• Broad mixture of terrain
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Survey Locations
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“Drill Hill” Survey

700 m

Survey plan

• K10 robot on-site for 3 days

• HMMWV simulates pressurized rover (temporary habitat)

• Resource prospecting: subsurface ground-penetrating radar scans
(parallel transects with 50 m spacing)
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“Drill Hill” Survey

Survey plan

(parallel transects

with 50 m spacing)

K10 robot path

(real-time display

on Google Earth)
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Survey Equipment

K10 rover (3rd generation)
• 4-wheel drive, 4-wheel steer

• Split rocker chassis

• Size: 1.3 x 0.9 x 1.0 m (HxWxL) with sensor mast

• Speed: 0.9 m/s (on 10 deg slope)

• Power: 1900 W (Li-ion batteries)

• Weight: 100 kg (including 25 kg payload)

• dGPS, stereo cameras, compass, 2D laser scanner

Optech ILRIS-3D (topographic mapping)
• Scanning 3D lidar with 40 deg FOV

• Range: 3 to 1,500 m

• Range accuracy: 7 mm @ 100 m

JPL CRUX GPR (subsurface mapping)
• Ground-penetrating radar

• 800 MHz center frequency

• 15 cm resolution to 5 m depth
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K10’s at Haughton

0.9 m

1
 m

1.3 m
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Access Routes

Equipment

(CA ANG)

Field team

(commercial air)
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Haughton Field Team
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Logistics

Field test equipment

• Two K10 robots, “FieldOps” gear, “HabOps” computers, spares, etc.

• 3,500 lbs. shipped from ARC (via C-130 and Twin Otter)

• Haughton-Mars Project: base camp, generators, satellite voice/data link
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Approaching Haughton Crater

HMP Base Camp

“Fortress”

“Tent City”

600 m
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HMP Base Camp
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Deployment
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HMP Lodging

“Tent City”
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K10’s at Haughton

GPR survey

3D lidar survey
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K10 Lidar Survey
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K10 Lidar Survey
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K10 Lidar Survey
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K10 GPR Survey
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K10 GPR Survey
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K10 GPR Survey
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Site Survey Dataflow
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Coverage Planning

3D lidar

• Choose locations for taking
panoramic scans

• Uniform sample spacing

• Google Earth + off-line planner

Ground-penetrating radar
• Choose path for GPR

scanning

• Line transect survey

• Grid-based “path transform”
(Zelinsky et al. 1993)

areas to

avoid

survey

point
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3D Terrain Modeling

3D model of Ames Marscape

from multiple lidar scans
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Terrain Pipeline Dataflow

Terrain Generation

Terrain Database
tiled multi-res DEM

DEM / texture tilesHTTP (OGC WMS)

JDBC

Terrain Server

DEM request plug-in

Application

WMS-compliant client

DEM / texture tiles

DEM / texture tiles

• Stereo imagers, 2D/3D lidar, etc.

• Stereo correlation

• Point cloud surface fitting

• Iterative Closest Point alignment

• Image/feature based correspondence

• Incremental update & source data

• Terrain patch creation

• DEM output conversion (e.g., image)

• JPEG 2000 + meta-data

• Viz 3D UI, Google Earth, etc.
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3D Terrain Modeling

K10 Red

lidar survey

“Fortress” formation

near HMP base camp
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3D Terrain Modeling

“Fortress” formation

(DEM from lidar scans)
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3D Terrain Modeling

1m polar grid

elevation map
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3D Terrain Modeling

HMP base camp

(1 m polar grid)
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3D Terrain Modeling

Valley mapping

(1 m polar grid)

130 m
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Remote Operations

NASA
ARC

NASA
JSC

“Lunar Outpost” “Mobile Habitat”ARC
IVA OpsGround Ops

JSC
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IVA Ops (“Lunar Outpost”)
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IVA Ops (“Mobile Habitat”)
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Ground Ops (JSC Code ER “Cockpit”)
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Ground Ops (JSC Code ER “Cockpit”)

Google

Earth

Viz Explorer

(K10 Red)

Viz Explorer

(K10 Black)
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Ground Ops (ARC)

Viz Explorer

Google

Earth

3D terrain

model
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Viz Explorer

camera

view

interactive

3D views

status

messages
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Lidar Survey Displays

3D terrain

local

traversabiliy

map

survey

points

HMP base

camp

heading

estimates

K10 rover

shadow
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GPR Survey Displays

transect

lines

1x1 meter

grid

GPR data

(vertical)
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HMP Base Camp Survey (20 July 2007)

HMP base camp

near greenhouse
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Google Earth

Satellite

image

overlay
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HMP Base Camp Survey (20 July 2007)

Lidar survey

(K10 Red)

GPR survey

(K10 Black)

K10

location“Tent City”

HMP

Base Camp
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Drill Hill Survey (23-27 July 2007)

Survey plan

(green)

K10 path

(black)

Survey boundary

(blue)
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Auto-Summarization & Notification

2007 Phase 1 SBIR (X7.02)

• Support system health &
performance monitoring

• Monitor data for problems
(robots or instrumentation)

• Perform computations
summarizing daily progress

• Notify users of alarms, alerts
and reports based on roles

• Distribute reports
(web or email)

PI: Debbie Schreckenghost
     (Traclabs, Inc.)
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Auto-Summarization & Notification

Summary
Generation

Condition
Monitoring

Computation

Summary

Report

Telemetry logs

DataAnalyst
Agent

Email

FieldCoord
Agent

Display

Email

ResearchCoord
Agent

Email

RoverOperator
Agent

Display

Email

Scientist
Agent

Display

Email

Notification
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Statistics

Robotic survey

• 200+ hours of rover operations (incl. 10 hours out of comm range)

• 46.2 km of driving (K10 Red + Black)

• 25 lidar panoramas (250 scans)

• 30 GB of survey data
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Statistics

Cost (field-test only)

• 6 people field team

• 25 days (10 July – 3 August 2007)

$195,178TOTAL

HMP support, satellite comm, field
transport, fuel, etc.

$119,279Contracts

Lodging + ME&I

Transport (equipment)

Transport (personnel)

Category

$32,572

$13,942

$29,384

Cost

21 days at Haughton, 4 travel days

3,500 lbs (via ANG + Twin Otter)

Commercial air (SFO - HMP)

Notes
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Lessons Learned

Operations

• Dense coverage requires long distance driving

• Continuous navigation is a key enabler for long-duration, long-
distance driving

• Instrument constraints have a huge impact on systems operations

Visualization tools

• Essential for rapid contingency handling & high duty-cycle

• Provide awareness of robot status & perception

• Unified science & robot data facilitates situational awareness

Software Architecture

• Modular reconfigurable architecture enabled rapid instrument
integration and field test adaptations

• COTS tools greatly facilitated development

! Google Earth: geo-spatial display & public outreach

! CORBA: robust comm performance across satellite links
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Conclusion

Key Points

• Systematic survey is one task that should be performed by robots

! Robotic surveying is realistic & achievable (TRL 5)

! Unproductive for crew to have to perform manually

• Intermittent control is sufficient for IVA & ground operations

• Mission performance can be increased by off-loading utility tasks
(routine, tedious, repetitive) to robots
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Project Team
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