Return to NIEHS
Increase text size Decrease text size

Duke-HHMI Researcher Delivers Rodbell Lecture

By Robin Arnette
June 2008

Lefkowitz couldn’t resist a few good-natured jokes about his many colleagues and friends in the audience.
Lefkowitz couldn’t resist a few good-natured jokes about his many colleagues and friends in the audience. (Photo courtesy of Steve McCaw)
Host David Armstrong laughed as he described the Rodbell Lecture invitation to Lefkowitz “as one of the biggest honor[s] with the smallest honorarium attached to it” he has received.
Host David Armstrong laughed as he described the Rodbell Lecture invitation to Lefkowitz “as one of the biggest honor[s] with the smallest honorarium attached to it” he has received. (Photo courtesy of Steve McCaw)
Rodbell’s widow and honored guest, Barbara, center, has attended the Rodbell Lectures regularly since her husband’s death. She is shown here sitting with family friend Hillel Koren, Ph.D., on her right.
Rodbell’s widow and honored guest, Barbara, center, has attended the Rodbell Lectures regularly since her husband’s death. She is shown here sitting with family friend Hillel Koren, Ph.D., on her right. (Photo courtesy of Steve McCaw)
An early colleague of Rodbell’s, NIH Senior Investigator and former NIEHS Scientific Director Lutz Birnbaumer, Ph.D., listened as his long-time friend Lefkowitz described the state of transmembrane investigations in the 1970s.
An early colleague of Rodbell’s, NIH Senior Investigator and former NIEHS Scientific Director Lutz Birnbaumer, Ph.D., listened as his long-time friend Lefkowitz described the state of transmembrane investigations in the 1970s. (Photo courtesy of Steve McCaw)
Lefkowitz joked as he received the Rodbell hand statue, “I want to point out… that this [the image of cells grasped between the thumb and forefinger] stands for the zeroes that are not on the honorarium.”
Lefkowitz joked as he received the Rodbell hand statue, “I want to point out… that this [the image of cells grasped between the thumb and forefinger] stands for the zeroes that are not on the honorarium.” (Photo courtesy of Steve McCaw)
Nobel Prize winner Rodbell died shortly after delivering the first Rodbell Lecture in 1998.
Nobel Prize winner Rodbell died in 1998. (Photo courtesy of Steve McCaw)

It has been nearly a decade since Martin Rodbell, Ph.D., NIEHS Scientific Director from 1985–1989, delivered his last lecture at the Institute in November 1998. Since then the lecture series that bears his name has brought a number of prominent researchers to NIEHS to discuss their work and distinguished careers in science. On May 5 Robert J. Lefkowitz, M.D., became the tenth speaker to give the Dr. Martin Rodbell Lecture Series seminar in Rodbell Auditorium. The talk was titled "Seven Transmembrane Receptors," and David Armstrong, Ph.D., acting chief of the Laboratory of Neurobiology, hosted the event.

Lefkowitz(http://www.biochem.duke.edu/faculty/robert-lefkowitz) Exit NIEHS Website, the James B. Duke Professor of Medicine and Biochemistry at Duke University Medical School, is also an investigator with the Howard Hughes Medical Institute (HHMI), an appointment he received in 1976. He was also elected to the National Academy of Sciences in 1988.

Lefkowitz began his talk with reflections on one of his mentors. "I consider myself fortunate that I began my own research career in 1968 in Building 10 of the NIH where there was tremendous intellectual ferment," he said. "A number of the real giants of modern biomedical research were plying their trade, none more important than Marty Rodbell."

After paying homage to Rodbell, Lefkowitz divided his discussion into three parts: a brief historical perspective on seven transmembrane receptors, current research efforts on the function and regulation of these receptors, and the possible development of a new therapeutic.

Work from many different labs has determined that seven transmembrane receptors, also known as G protein-coupled receptors, are the largest, most versatile and ubiquitous of the several families of plasma membrane receptors. They are involved in a variety of physiological processes in mammals including the sense of taste and smell. However, it wasn’t until the 1970s that researchers could even study these receptors on the molecular level.

Lefkowitz admitted that when he started his career, there was still a lot of skepticism within the scientific community as to whether these receptors existed, so he and his collaborators developed a new technology called radioligand binding to study them. Lefkowitz used the technique to examine the β-adrenergic receptor and discovered a variety of receptor subtypes. "We were able to document that the receptors were not static entities; their numbers could vary dramatically under various pathophysiological circumstances," he said.

In 1986 he cloned and sequenced the β2-adrenergic receptor. The results signaled the beginning of a new era in receptor research. Lefkowitz said, "It surprised us and everybody else in the signaling community because it contained all of the characteristics of what we know today as G protein-coupled receptors: seven membrane spans, sites for glycosylation at the amino terminus and sites for regulatory phosphorylation in the cytoplasm." Most strikingly it was homologous with rhodopsin, a chromoprotein contained in the light-sensitive rod cells in the retina of the eye.

The Lefkowitz lab currently focuses on understanding the complexities behind the activation and desensitization of these receptors. When a G protein-coupled receptor is activated, it stimulates G proteins. Often second messenger kinases are stimulated to produce a cellular response. Furthermore, the activated form of the receptor is recognized and phosphorylated by a small family of regulatory kinases called G protein-coupled receptor kinases (GRKs). β-arrestins, a second family of proteins, bind and sterically interdict further signaling of the G protein, a process known as desensitization. Research has determined that the β-arrestin/GRK system also serves as a signaling intermediate involved in the activation of a growing list of biochemical signaling pathways including cell survival and anti-apoptosis, chemotaxis, dopaminergic behaviors and cardiac contractilities to name a few. Because β-arrestins are able to scaffold together several members of an individual pathway, Lefkowitz believes it may be the key to the treatment of disease.

"Biosensors have determined that distinct conformations of β-arrestin correspond to distinct conformations of the receptor, and these are associated with distinct functions," he explained. "We think this may provide the basis for a new type of therapeutic."



"Spring GEMS Meeting..." - previous story Previous story Next story next story - "Fogarty Director Highlights..."
June 2008 Cover Page

Back to top Back to top