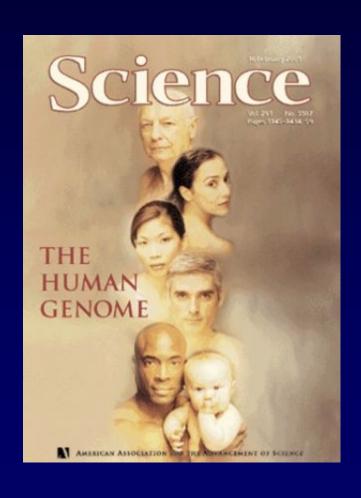
Education in Pharmacogenomics: Closing the Gap between Possibility and Reality

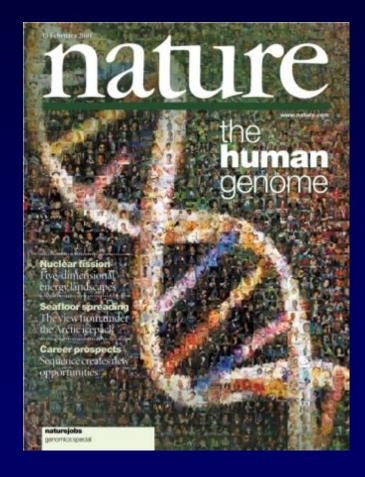
Drug Metabolizing Enzymes and Pharmacogenomic Testing Workshop

September 13-14, 2004 Johns Hopkins University Rockville, Maryland

Felix W. Frueh, PhD

Associate Director, Genomics
Office of Clinical Pharmacology and Biopharmaceutics
FDA/CDER


Genomics in Medical Education


"The explosion of information about the new genetics will create a huge problem in health education. Most physicians in practice have had not a single hour of education in genetics and are going to be severely challenged to pick up this new technology and run with it."

Francis Collins

Education: Teaching pharmaco physician personali

A Call fo

David Gurwitz¹, Abr

for Dental Health Professionals

For reprint orders, please contact: reprints@future-medicine.co.uk

Critical Issues in Dental Education: Genetics Education

Francis Collins, A

Dental H

Dr. Collins is Director, N Craniofacial Research, b Collins, Director, Nation Rockville Pike, Bethesd:

Submitted for publication

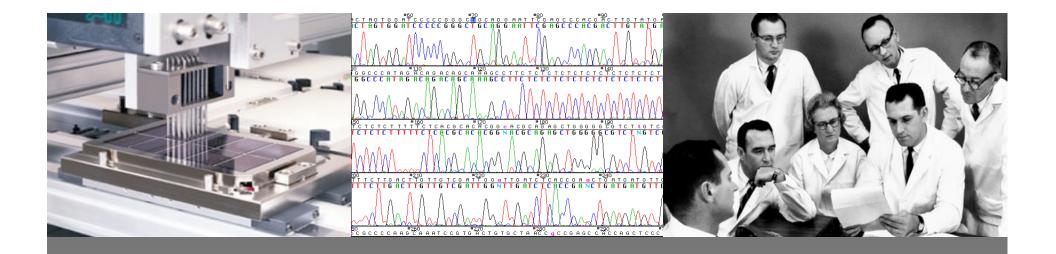
From pharmacogenetics to personalized medicine: a vital need for educating health professionals and the community

Felix W Fruehi !! & David Gurwitz?

¹Managing Partner, Stepoutside Consulting, LLC, Gaithenburg, MD 20878, Tet: + 1 301 208 8453; Fax: +1 301 330 1721; E-mail: lelix@stepoanide.com ²Sackler Faculty of Medicine, Tel-Aviv University. Tel-Aviv 69978, Israel

Author for correspondence

The field of pharmacogenetics will soon celebrate its 50th anniversary, Although science has delivered an impressive amount of information in these 50 years, pharmacogenetics has suffered from lack of integration into clinical practice. There are several reasons for this, including the unmet need for education at medical schools and the lack of awareness about the impact of genetic medicine on healthcare in the community. Recently, the FDA announced that it considers pharmacogenomics one of three major opportunities on the critical path to new medical products. This notion by the FDA is filling the regulatory void that existed between drug developers and drug users. However, in order to bring pharmacogenetic testing to the prescription pad successfully, healthcare professionals and policy makers, as well as patients, need to have the necessary background knowledge for making educated treatment decisions. To effectively move pharmacogenetics into everyday medicine, it is therefore imperative for scientists and teachers in the field to take on the challenge of disseminating pharmacogenetic insights to a broader audience.



¹Department of Human Genetic ²Felsenstein Medical Research

³Department of Physiology and

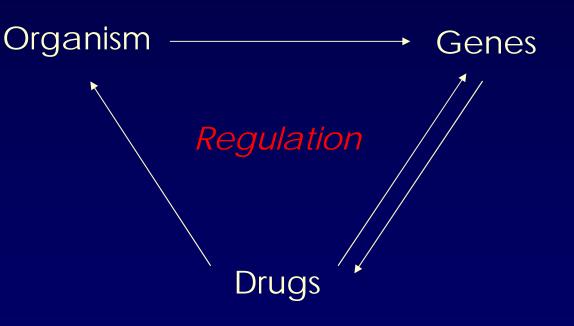
Stakeholders

	Education
	Privacy and Informed Consent
Patients	Legal Protection
	Education
	When and How to Use a Test ?
Physicians	Pharmacodiagnostics
	_
	Coverage
	General Availability
Health Care Providers	Recommendations
	Develotion of Pharmaconnectic Tools Hoose
	Regulation of Pharmacogenetic Tests, Usage
Regulators	Use of Test Results on Drug Labels
	Impact on Revenue
	Incentives to Develop Tests
Pharmaceutical Industries	New drug development
	Numerous Platforms and Methods
Technology Developers	Biology, Genetics

VISION:

Pharmacogenomics will improve health care.

PGx is part of biomedical research providing a toolkit to assess an individual's response to drug therapy.


PGx should be used in the clinic as every other analytical tool is used: to identify the best possible care for the patient.

Context: Genes and Drugs

How are genes regulated by drugs?

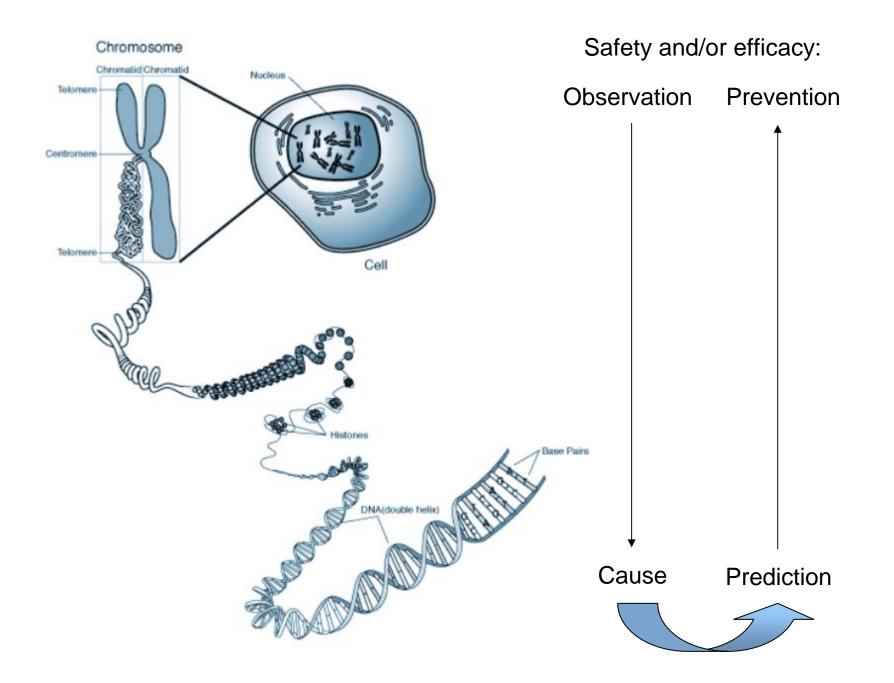
Which genes are regulated?

What genetic variations are important for drug response?

Context: Genes and Drugs

Environment Regulation Organism Genes Regulation Drugs

How are genes regulated by drugs?


Which genes are regulated?

What genetic variations are important for drug response?

Environment

- Age
- Gender
- Race
- Body mass index
- Alcohol
- Tobacco

- Diet
- Co-morbid conditions
- Drug interactions
- Concomitant conditions
- Altered organ function
- •

Year	Milestones in PGx. Event	Ref.
1955	Bonicke and Orlowski describe the relation of excretory levels to therapeutic results for the antituberculosis drug isoniazid	[28,29]
1957	Arno Motulsky describes that 'idiosyncratic drug reactions might be caused by otherwise innocuous genetic traits and enzyme deficiencies,' and delineates the field	[30]
1959	Friederich Vogel coins the term 'pharmacogenetics' and defines it as 'clinically important hereditary variations'	[31]
1962	Werner Kalow publishes the book entitled 'Pharmacogenetics – Heredity and the Responses to Drugs'	[32]
1963	Remmer and Merker describe phenobarbital-induced changes in liver endoplasmic reticulum and associate the observation with changes in drug-metabolizing enzymes	[33]
1964	Arno Motulsky describes glucose-6-phosphate dehydrogenase (G6PD) deficiency, thalassemia and abnormal hemoglobins in the Philippines	[34]
1977	Mahgoub et al. describe the polymorphic hydroxylation of debrisoquine in man	[35]
1988	Gonzalez et al. characterize a common genetic defect in the CYP2D6 gene in humans deficient in debrisoquine metabolism	[36]
2000	The NIH announces the formation of the Pharmacogenetics Research Network	[104]
2003	Completion of the Human Genome Project	[105]
2003	FDA issues draft 'Guidance for Industry: Pharmacogenomic Data Submissions'	[106]

NIH: National Institutes of Health; PGx: Pharmacogenetics/pharmacogenomics.

Frueh and Gurwitz (2004), Pharmacogenomics 5(5)

Today: CYP2D6, 2C9, 2C19
UGT1A1
TPMT

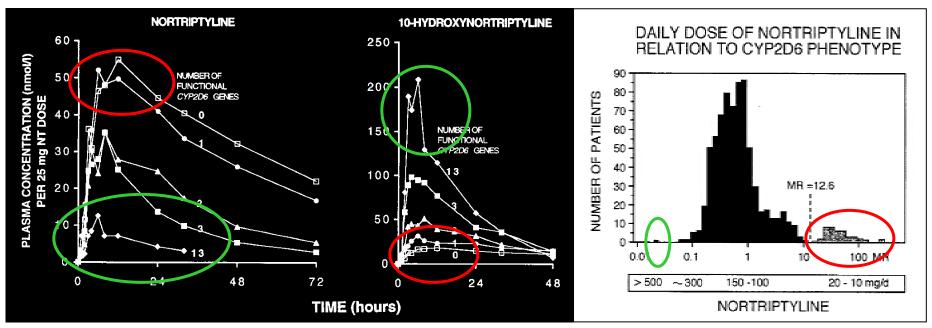
Known/probable valid biomarkers

But:

Table 2. Increase in publications with 'pharmacogenetics' or 'pharmacogenomics' as keywords.

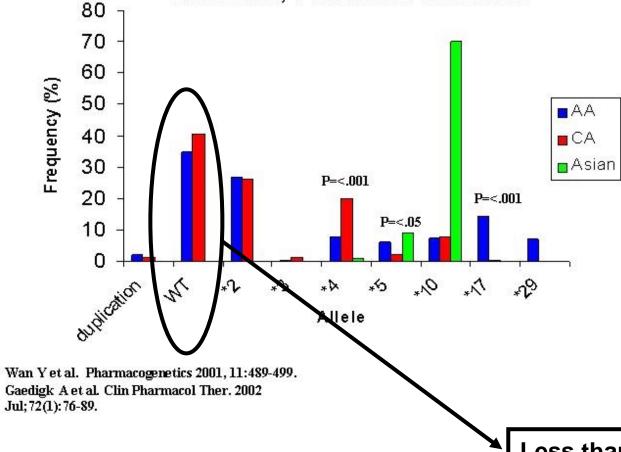
Period	Number of published articles			
1960-1969	147			
1970–1979	228			
1980-1989	156			
1990–1999	603			
2000-present	1160			

Medline search performed April 21, 2004.


Frueh and Gurwitz (2004), Pharmacogenomics 5(5)

The number of PGx articles is increasing exponentially. We need to capitalize on this knowledge: Education is the fist step.

Tomorrow: CYP2D6, 2C9, 2C19
CYP3A4
UGT1A1
TPMT
...


We Know It, Are We Using It?

 Poor Metabolizers require 10x lower dosage (~20 mg/day) of nortriptyline than Extensive Metabolizers (~200 mg/day)

Dalen et al., Clin Pharmacol Ther (1998), 63(4)

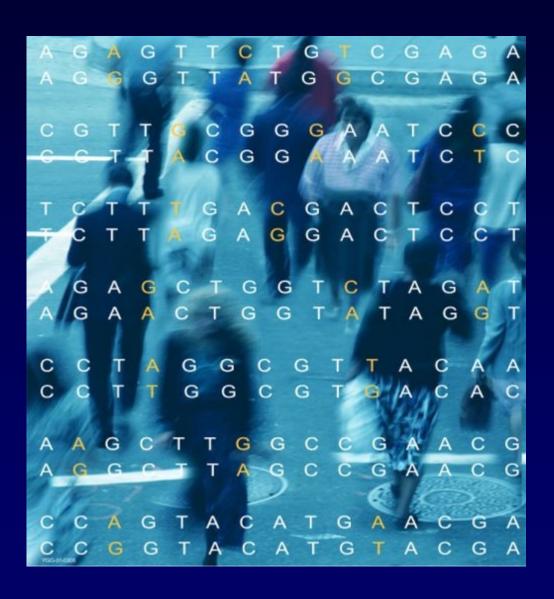
Allelic Frequencies of CYP2D6 in African-Americans, Caucasians and Asians

Less than half of the population carries the "wildtype" allele!

Drug Labeling Regulations

• 21 CFR 201.57:

"...if evidence is available to support the safety and effectiveness of the drug only in selected subgroups of the larger population with a disease, the labeling shall describe the evidence and identify specific tests needed for selection or monitoring of patients who need the drug."


Substrates 1A2	286	2C19	2C9	2D6	2E1	3A4,5,7	
amitriptyline		Proton Pump	NSAIDs:	Beta Blockers:	Anesthetics:	Macrolide	HMG CoA
caffeine	bupropion cyclophosphamide	Inhibitors:	diclofenac	carvedilol	enflurane	antibiotics:	Reductase
	efavirenz		ibuprofen	S-metoprolol	halothane	clarithromycin	Inhibitors:
clomipramine	200,200,000,000,000	lansoprazole					
clozapine	ifosfamide	omeprazole	meloxicam	propafenone	isoflurane	erythromycin (not	atorvastatin
cyclobenzaprine	methadone	pantoprazole	S-	timolol	methoxyflurane	3A5)	cerivastatin
estradiol		E-3810	naproxen=>Nor		sevoflurane	NOT azithromycin	lovastatin
fluvoxamine		1001000200300	piroxicam	Antidepressants:		100000000000000000000000000000000000000	NOT pravastatin
haloperidol		Anti-epileptics:	suprofen	amitriptyline	acetaminophen	Anti-arrhythmics:	simvastatin
imipramine N-DeMe		diazepam=>Nor	5764	clomipramine	=>NAPQI	quinidine=>3-OH	
mexiletine		phenytoin(O)	Oral	desipramine	aniline	(not 3A5)	Steroid 6beta-Ol
naproxen		S-mephenytoin	Hypoglycemic	imipramine	benzene		estradiol
ondansetron		phenobarbitone	Agents:	paroxetine	chlorzoxazone	Benzodiazepines:	hydrocortisone
phenacetin=>			tolbutamide		ethanol	alprazolam	progesterone
acetaminophen=>NAPQI		amitriptyline	glipizide	Antipsychotics:	N,N-dimethyl	diazepam=>30H	testosterone
propranolol		carisoprodol		haloperidol	formamide	midazolam	
riluzole		citalopram	Angiotensin II	perphenazine	theophylline	triazolam	Miscellaneous:
ropivacaine		clomipramine	Blockers:	risperidone=>9OH	=>8-OH	unaconami	alfentanyl
tacrine		cyclophosphamide	losartan	thioridazine		Immune	buspirone
theophylline		hexobarbital	irbesartan	unorradeare		Modulators:	cafergot
verapamil		imipramine N-	iibesaitaii	alprenolol		cyclosporine	caffeine=>TMU
		DeME	amitriot dia a				cocaine
(R)warfarin zileuton		indomethacin	amitriptyline celecoxib	amphetamine bufuralol		tacrolimus	
						(FK506)	dapsone
zolmitriptan		R-mephobarbital	fluoxetine	chlorpheniramine		110.4.4	codeine- N-
		moclobemide	fluvastatin	chlorpromazine		HIV Antivirals:	demethylation
		nelfinavir	glyburide	codeine (=>O-desMe)		indinavir	dextromethorpha
		nilutamide	phenytoin=>4-	debrisoquine		nelfinavir	eplerenone
		primidone	OH	dexfenfluramine		ritonavir	fentanyl
		progesterone	rosiglitazone	dextromethorphan		saquinavir	finasteride
		proguanil	tamoxifen	encainide		les vices except and	gleevec
		propranolol	torsemide	flecainide		Prokinetic:	haloperidol
		teniposide	S-warfarin	fluoxetine		cisapride	irinotecan
		R-warfarin=>8-OH		fluvoxamine			LAAM
				lidocaine		Antihistamines:	lidocaine
				metoclopramide		astemizole	methadone
				methoxyamphetamine		chlorpheniramine	odanestron
				mexiletine		terfenidine	pimozide
				nortriptyline			propranolol
				minaprine		Calcium Channel	quinine
				ondansetron		Blockers:	salmeterol
				perhexiline		amlodipine	sildenafil
				phenacetin		diltiazem	sirolimus
				phenaceun		felodipine	tamoxifen
						lercanidipine	taxol
				propranolol			
				quanoxan		nifedipine	terfenadine
				sparteine		nisoldipine	trazodone
				tamoxifen		nitrendipine	vincristine
www.dru	id-intera	200112F	com 🗀	tramadol		verapamil	zaleplon
	ig iiitoit	4 - (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		venlafaxine			zolpidem

Drugs, Genes, Tools

DNA chip-based test

It Concerns All of Us

Genetic Testing

Purpose

Disease Genetics

Diagnostic or prognostic testing

Pharmacogenetics

Drug response profiles and tests

What is tested

"Causal" genes Rare mendelian diseases Common complex disease susceptibility genes

Genes for drug metabolism, transport, action SNP profiles for drug metabolism, action

Value

New disease insight and medicines

Optimize drug response

Concerns

Ethical, legal, social issues
Potential for "family" or unsolicited information

Ethical, Legal, Social Issues

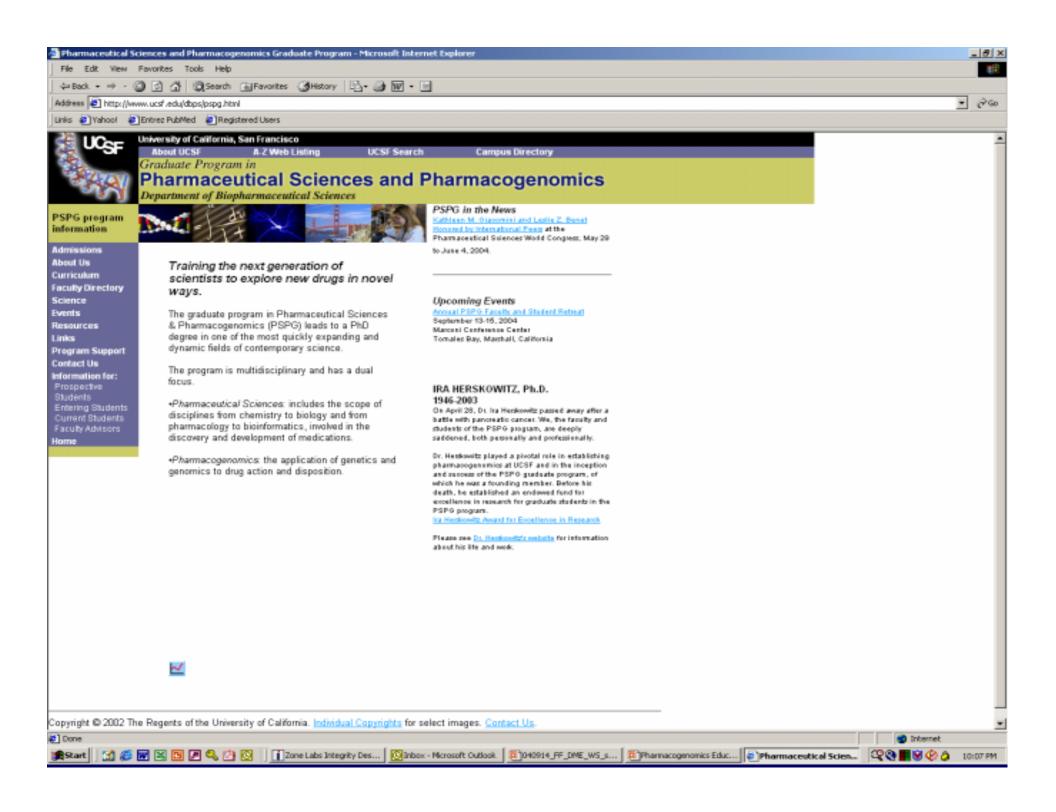
- What to do if no alternatives are available
- Consequence of not performing a test if available
- Privacy and confidentiality of genetic information
- Fairness in the use of genetic information by insurers, employers, courts, schools, adoption agencies, and the military, among others
- Psychological impact, stigmatization, and discrimination due to an individual's genetic differences
- Uncertainties associated with gene tests for susceptibilities and complex conditions (e.g., heart disease, diabetes, Alzheimer's)
- Fairness in access to advanced genomic technologies.
- Conceptual and philosophical implications regarding human responsibility, free will vs genetic determinism

Socio-Economical Aspects: An Incentive

1973: 28% of hospitalized patients had adverse drug reactions (Miller, Am. *J. Hosp. Pharm.* 30: 584-592)

1979: 17% of hospitalized children had adverse drug-attributed events (Mitchell et al., *Am. J. Epid.* 110: 196-204)

1994: 2,216,000 serious adverse drug reactions in hospitalized patients (Lazarou et al., *JAMA* 279: 1200-1205)


1995: Adverse drug reactions identified as 4th to 6th leading cause of death, causing >100,000 deaths per year

(Johnson & Bootman, *Arch. Intern. Med.* 155: 1949-1956)

1995: Drug-related morbidity and mortality estimated at **US\$ 76.6 billion** (Johnson & Bootman, *Arch. Intern. Med.* 155: 1949-1956)

2000: Drug-related morbidity and mortality estimated at **US\$ 177.4 billion** (Ernst & Grizzle, *J. Am. Pharm. Assoc.* 41: 192-199)

Now, what about EDUCATION?

FOCUS AREAS

Students can undertake fundamental research in either of the program's focus areas:

Pharmaceutical sciences, including molecular pharmacology, drug transport and metabolism, mathematical modeling of complex systems, and gene delivery

Research focus areas in the pharmaceutical sciences include the following:

Molecular/cellular studies of mechanisms involved in drug absorption, distribution, metabolism, toxicology and elimination

Molecular pharmacologic studies focused on the mechanisms of drug action Integrative systems research in pre-clinical and clinical pharmacokinetics/pharmacodynamics Modeling of complex systems

Drug delivery systems; gene therapy

Pharmacogenomics or toxicogenomics, which is the application of genetics and genomics to the study of pharmacology or toxicology

Research focus areas in pharmacogenomics include the following:

Use of model organisms to study mechanisms of drug action, resistance, metabolism or transport Analysis of drug response by functional genomics using DNA expression arrays

Development of computational tools to analyze expression data (this is the new bullet)

Understanding the genetic basis for variation in drug response clinically

Understanding the genetic basis for variation in response to environmental agents (toxicogenomics) Students may choose from a variety of electives offered by this program and other programs on campus, including courses in mathematical modeling, toxicology, drug metabolism, transport, molecular biology, cell biology, genetics, and bioinformatics.

PGx Education in Medical Schools

- Example: Tel-Aviv University, Israel
 - Incorporated PGx in the 2nd year MD pharmacology course
 - Additional elective PGx courses are offered to graduate students
 - Graduate course includes human genetics, and description of PGx-oriented clinical trials
 - Graduate students present on PGx studies and discuss PGx aspects of therapeutic areas
- Other Medical Schools have similar programs, but most schools do not
- World-wide Survey of Medical Schools re PGx education is being conducted

World-wide Survey: Questionnaire

- 1. Does your MD program include some form of PGx education as part of the pharmacology or the human genetics studies?
- 2. How many hours of lectures are given?
- 3. During which year of preclinical studies?
- 4. Does your PGx education for MD students include case studies?
- 5. If your school does not yet offer PGx education, do you expect that it will be incorporated to the MD program
- 6. What are the most often used educational tools?
- 7. Do you offer a dedicated PGx course for PhD students?
- 8. Comments and suggestions

World-wide Survey: Questionnaire

Which of the following topics/concepts are included

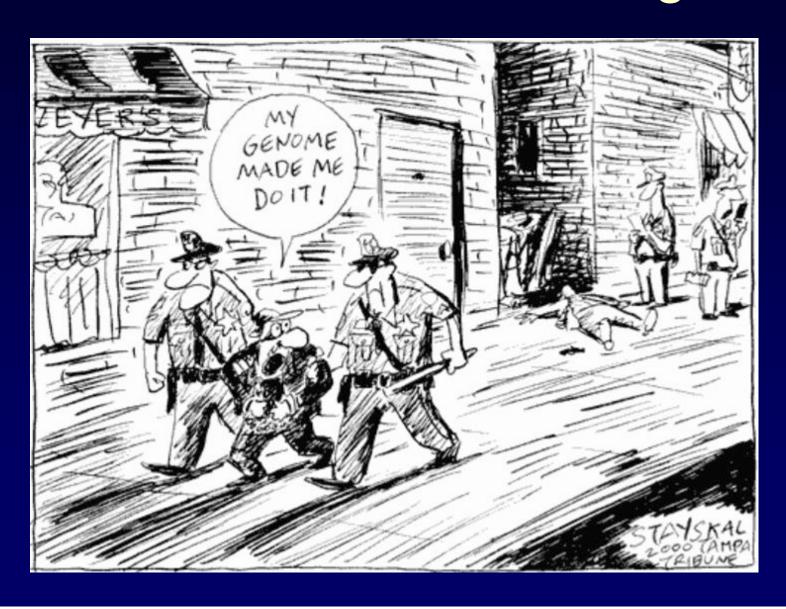
- SNPs
- CYP450 genes
- CYP2D6 "poor metabolizers"
- CYP2D6 gene duplication and "super metabolizers"
- Ethnic differences in CYP450 alleles
- P-glycoprotein (MDR-1)
- Thiopurine methyltransferase (TPMT) alleles
- Dihydropyrimidine dehydrogenase (DPD) and 5-FU pharmacokinetics
- Beta-2 adrenergic receptor polymorphism and asthma drugs
- Apo-E polymorphism and Alzheimer drugs
- Serotonin transporter (5-HTT) promoter polymorphism and antidepressants

World-wide Survey: Results

- At most, 4 hours of PGx teaching for MD students
- Typically on their 2nd year Pharmacology classes
- Case studies often included
- CYP450s, oncology PGx, given high priority
- Lack of textbook materials is evident; journal articles are often used
- Many Med Schools do not include PGx teaching
- Graduate-level courses are very rare (TAU; UCSF)

Summary: Possibility

- It's true: PGx research has generated a large amount of information
- This information is more than basic research and is often clinically relevant
- We can capitalize on this information and actively contribute to improve health care


Summary: Reality

- There is an unmet need for PGx education at medical schools
- PGx suffers from a lack of integration into clinical practice
- There is also a lack of awareness about the impact of genetic medicine on healthcare in the community at large
- Half of the amount of PGx research of the last 50 years was published in the last 5 years only: "give us some time!"

Summary: Closing the Gap

- Public awareness rises with the use of PGx in the clinic: it is a synergistic process, but it will start in the clinic
- A number of well-understood, clinically proven applications for PGx exist: we need to start using them more broadly (e.g. DMEs) – new ones are emerging (e.g. EGFR)
- Novel scientific approaches will lead to a better understanding of complex genotype-phenotype relationships
- Standards to validate probable genomic biomarkers need to be established to thrive the future clinical use of PGx

But We Need to Do It Right!

