Scientists use, and create, many different kinds of equations to help them quantify their data, and make predictions.

A scientific theory describes how quantities ought to be logically related to each other, and provides a mathematical procedure for working with nature in a symbolic way.

A model of Jupiter's magnetic field.

Equations are used to extract information from data, and to model how qualities (speed, distance, temperature etc) are interrelated.
$>$ Equations help scientists extract information from basic data, and allow them to make predictions.

Now you try!

Here's how to do it!
If a pebble falls from the top of a building and takes 10.0 seconds to reach the ground, how high is the building? This equation predicts the distance of the fall (H) based on the time (T)

$$
H=9.8 \mathrm{~T}^{2}
$$

with $T=10.0$ seconds :
$H=9.8(10)^{2}$ meters $=980$ meters

Evaluate the following equations for the indicated values of the variables:

1) $d=d_{0}+V_{0} T+1 / 2 a T^{2} \quad$ for $a=32, V_{0}=25.7, d_{0}=5.5$ and $T=15.7$
2) $E=m c^{2}$
3) $L=4 \pi R^{2} S T^{4}$
4) $M=9.54 \times 10^{15} \mathrm{Tm}^{3}$
for $m=15$ and $c=299,792.5$
for $R=6.9 \times 10^{10}, S=0.000058$ and $T=5770.0$

$$
\text { for } T=3987.6 \text { and } m=30.5
$$

