

Optical Technology Center

A role for MOEMS and micro-optics in image guided intervention

David Dickensheets Electrical and Computer Engineering Montana State University

Image-Guided Interventions (IGI) for Medical Applications Workshop May 13-14, 2004 Montana State University - Bozeman

Optical Technology Center

Subsurface and Volume Imaging Requires 3-D Beam Control

Tip-tilt mirrors for beam scanning
Deformable mirrors for focus control
Application to confocal microscopy and OCT

Example of MOEMS-enabled imaging: CMaRS Confocal microscope and Raman spectrometer

Electrical and Computer Engineering

Optical Technology Center

Calcite Image and Spectra

Demonstration OCT probe with MOEMS dynamic focus mirror

Optical Technology Center

MOEMS for endoscopic microscopy

Fluorescence confocal laser scanning microscope compatible with endoscopic delivery.

Bronchial epithelial cells in culture, stained by CMFDA

Integrating functionality Enables Compact Instrument Architecture

Combining tip-tilt and focus control: Next-generation miniature F-CLSM

Optical Technology Center

 $V_f = 0$ $\Delta z = 0 \ \mu m$

 $V_f = 100 v$ $\Delta z = -80 \mu m$

Electrical and Computer Engineering

Images made using 3-D MOEMS scan mirror

Images taken at two focus settings of mirror, with sample moved to best focus as indicated. Word width is 270 μ m. NA=0.12, λ =650 nm.