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CenSSIS Themes

“Diverse Problems — Similar Solutions”

A unified view of Subsurface Sensing & Imaging,
= Optical, Electromagnetic and acoustic sensing modalities
= Biomedical, biological, civil, industrial, and environmental applications

= Emphasis on signal processing issues: Inverse problems, image
reconstruction, image understanding, pattern recognition,...

A taxonomy and framework for diverse SSI problems:
= Physical, mathematical, and numerical models
= Sensing and Imaging Architectures

= |nformation Extraction Methods
= LPM, MVT, MSD
= Image & Change understanding

Cross-application software toolboxes for rapid prototyping

Hardware testbeds for multi-sensor fusion experiments



Unifying View of
ubsurface Sensing/lmaging Systems

Interrogating /
Probing wave(s)

Image/
Decision/
Features/

Coordinates/
Change...

Surface #2 -

The medium and object interact differently with the
interrogating waves to generate detectable contrast.



Passive Subsurface Sensing/Imaging Systems

E Image/
E Decision/
Features/
Surface #1 Coordinates/
® Change...
o
Clutter

Surface #2 -
Detector(s)

The medium and object emit differently to
generate detectable contrast.



Many Choices for Imaging Systems

Media/Target

= Emission
= Absorption
= Photoluminescence

= Fluorescence,...
= Scattering

= elastic < inelastic

* low < high

= linear < non-linear
= Quantum effects:

= entanglement

= contrast agents
= Bulk Effects:
= Reflection, refraction
= Diffraction
= Doppler
= Polarization change
= Dispersion
= Phase change
* Impedance

Excitation Detection

Acoustic —« EM
Coherent < Incoherent
Spatial Distribution
Spectral Distribution
(..RF>THz~IR-VIS-UV<Xx-ray..)
Temporal Distribution
(CW < Pulsed <~ Modulated)
Polarized — Unpolarized

Coherent «— Incoherent
Near-field — Far-field
Time-resolved < Integrating
Spectral <~ Narrowband
Spatial Distribution
Spectral Distribution

Influence field



Scope of Center Activities

Sub-cellular Biology

Tissues & Organs
= "'; =

. A, p—

100nm- 10 mm Optics Ultrasound 100 mm - 10 cm
Underground Underwater
Diagnosis Exploration

1cm-100m 10 cm - 1 km




Depth

R Transverse & axial
detail lengths

Contrast Scales:
Object: Adl e, or Ak/k,
Surface: Impedance mismatch

Low contrast —» Weak Scattering

High contrast — Strong Scattering

Wavelength 4

Penetration

d.— '« | d. Transverse & axial
X  resolution

VL= 1/L, +1/L, d, ~ A/sin6

Absorptionl l d,~ A/sin20
Scattering

Spatial Scales:

A <<D

A ~D

A>>D



Common Wave-media Interactions

Reflection

Absorption  Change of Phase Dispersion
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Multiple
Scattering

Diffusion

Velocity, impedance & absorption
coefficient as functions of position

Fluoresence/ Raman/NMR Dynamic scattering
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Nonlinear and Dual-Wave Interactions

Up-conversion: Harmonic imaging Down-conversion: Sub-Harmonic imaging
Acoustic
Diffuse Optical wave Diffuse Optical
Wave ] . Wave

Optical
wave

Acoustic
wave

Opto-Acoustic Imaging (OAl) Acousto-Optic Imaging (API)



.E What Are The

' Fundamental Science Barriers?

l Barrier 1

l Barrier 2

l Barrier 3

Inadequate understanding of the
physics of subsurface sensing
and imaging

Unreliable inversion methods for
inhomogeneous and cluttered
subsurface media

Lack of robust, physics-based
recognition and sensor fusion
techniques



% What Barriers Prevent the Development

Lack of computationally efficient,

l Barrier 4 realistic physical models

Lack of optimal end to end sensor

l Barrier 5 design methods

Lack of rapid processing and

l Barrier 6 management of large image databases

- Lack of validated, integrated processing
l Barrier 7 and computation tools

. Lack of a unified framework for diverse
l Barrier 8 gensing and imaging modalities



“ls” Principal Information Extraction Methods
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Focused or Focused or
Pulsed Probe Gated Detector

\/

Locallzed Probln 0

Wide Band /'
%Probe %

Narrow Band
Detectors

® } Detectors N ®'m o
Multi-Spectral Multi-View
Discrimination Tomography

(MSD) (MVT)



Subsurface Intervention Methods

Invasive Access

Clutter -
: _ Surface #1 /

Clutter ..)
@ Medium

Limited Access

Surface #2 Treatment

/ Map

Medium Beam Intervention



?” Beam Interventions

= Common Beam Types:

Optical (laser)
Acoustic (HIFU)

Radiation (x-ray, gamma ray, proton
beam, ...)

= Common Objectives:

Achieve desired spatial dose
distribution:

= Full coverage of pathology

= Minimize dose to background
Motion and deformation compensation
Conforming the beam to the treatment
map

Integrated approaches to diagnosis,
planning, execution, and follow up

= Examples

Laser retinal surgery

Radiation treatment of intra-ocular
tumors

Radiation treatment of cancer of lung,
prostate, ...

Surface #1

Clutter

Surface #2 Treatment

\/ Map
~

Beam Intervention



,emssa Beam Interventions (...contd)

= Common issues:

= Availability/otherwise of implantable
marker targets

= Relating several coordinate

systems: _ Surface #1 /
= [Imagery & coordinates of the surface

and the subsurface
= Marker targets

= Imaging and Beam coordinate Clutter .
systems biect _)
S onjec Medium

= |dentification of delicate
neighboring structures to be
avoided Surface #2 Treatment

Map
= Achieving adequate spatio-temporal /
sampling of moving 3-D structures
Beam Intervention
= Minimizing damage from imaging
probes



Before, During, and After Intervention

= Before intervention
= Establishing a spatial reference map
= Surface, subsurface, motions

= Reliable detection of pathology
= Accurate delineation of pathology & treatment map
= Planning the intervention optimally

= During intervention

m ggescgse knowledge and spatio-temporal control of

= Maximize dose to pathology & minimize dose to other
regions

n Complete & stable visualization with context

redictaple real-tlme motion compensation & spatial
erencm to map

Correctlon for patient pose and variable deformations
Responsibility and control

Spatial dosimetry

Alarms and safety cutoffs

Accounting for changes as they occur

= After intervention

= Accurate assessment of changes inflicted by
Intervention

= Updated planning for next intervention



‘%, Human Eye and Retina
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Current State of the Art

Infrared



2 What can we engineers do to help?

= Develop an integrated solution

= Optical hardware:
= Multi-spectral imaging
= Assisted laser guidance and safety shutoffs

= Computer Software:
= Establish a spatial map based on computer image
analysis
= Map-based spatial referencing and tracking for beam
delivery

= Tools to integrate with diagnosis, planning, and
delivery

= Computer Hardware:
= Enable predictable real-time computing
= Enable fast (parallel) computing



Towards a Smarter, Integrated System

Spectrum
CCD

ON/OFF mirror

L Tilted mirror o
Objective Lens  iih imaging aperture Dioptic Picture Angle
/ Coarrection Lens Focusing

Lens ,
< 650nm:

Sesom |

Dichroic
. iar Filter
Y-axis Steered, c \Q":D ICG Barrier Filter
Dot-Silvered 795nm (pass > 805nm)

G Ia&_ QTH Surgical Laser(Diode)

1-to-1 Relay Steered Mirror Lamp Real-Time Image Processor

795nm
Red-FreeQ Excitation
Filter Laser Diode

(510-600nmf——

. Integrating
Sphere

Collimator Lens Beam Mixer [ aser Line Filter
(795nm, BW 10nm)
Servo Display and
Interface




Branch Points

Fast and automatic

Sub-pixel traces and
interest points

Detailed vessel
morphometry



Main Ideas:

= 12-D model for the curved
retina imaged by uncalibrated
camera

= Dual-bootstrap registration:
= Minimum initialization needed
= Robust hierarchical estimation
= Automatic model selection

= Grow estimation zone based on
uncertainty (view)

= Performance:
= Large-scale Testing w/ 15,000
image pairs, 46 eyes covering 5
major diseases, up to 5 years
apart
= 99.5% success rate




Melanoma Example More Precise Mapping
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= Registered Movie




Change Detection

Before

Pathology
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= Direct applications
= Visualization
= Corrections
= Robust Change
* |Indirect applications:
= Basis for spatial mapping ~ 70°Mosaic of Retina



E De etermine lo C?tiog of laser
compu?gg spatlg map

* |ssues:
= High variability
* Inter-patient
= |ntra-patient

Speed (30-200fps)

H hedraattaer)?tgh nngllselsx

Minimize light levels and total
time

= Camera sensitivity
= Discomfort

Predictability for real-time
slizeligelullisy l Mosaic-Based Map




Instrument
View

%
Key ideas: "*v.,,%
Just-sufficient, opportunistic, Lt
Progressive, imprecise computation q\.ﬂ
Atlas = Mosaics + structure indexing \

database + treatment map
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Off-Line ' . = Issues:
Vision Algorithm )", Real-time
Object Code Implementation = Large and complex code
libraries (libc, vxl,
libm,..etc)
= Too expensive to re-write,
and evolve

= Unpredictable operations
such as dynamic memory
allocation

= [nterrupts, Scheduling,

Virtual Device . Erame Grabber Virtual Memory overheads,

Computational efficiency.

= COTS a good match to
exploratory vision code,
hyper-threaded CPUs
Solution:

= Linux kernel-based virtual
devices




Visible
Camera
Fundus
Microscope

A

Proton Beam

Requires 3-D radiation
treatment plan to:
= Maximize tumor dosage

= Minimize non-tumor
dosage

= Motion compensation
= Safety Shutoffs
= Spatial Dosimetry
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Future IGT System

3-D Fusion Map

Visible

------- Camera
Fundus

Microscope

Fiducial
Sutures




IGT for Deformable Structures

o
=

a‘f.-.
bony pelvis —'—o
bladder —]——o
periprostatic fat ——————————_9

prostate —e——r—""®

!
rectum ——p——————.

:1j04 Patient Name:rjo4 55 ID:1j04 55 Desc:from oahu

= Examples:
= Prostate, lung

= 4D Systems needed
= Visualization
= Segmentation
= Planning Tools
= Delivery Tools

Multiple motions and
deformations

= [ntra-fractional motion:
(lung, abdomen)

= [nter-fractional motion:
(organ deformations &
change)

= Motion of beam delivery
system



Patient in restraint
3D CT “du jour” taken

Patient-specific fractional dose
calculations & adjustments

Transfer patient to Linac for dose
delivery

= Conformal radio-therapy

* [ntensity-modulated radio-therapy

|




-~ Rectum

Intra-patient variability,
10 days apart Inter-patient variability
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= Problem:

= Given a new daily CT scan, just prior to a radiation
fraction, segment the prostate, bladder, rectum, etc.
for IGT and conformal avoidance

= Approach:

= Construct effective low-dimensional models for intra-
and inter-patient variability

= Robust fitting of models to image data
= Update the treatment plan

= Current Limitations:
= Timeliness and verifiable accuracy of the model
fitting
= Expert manual segmentation takes 15-45 mins
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Inter-Patient Modes of Variation
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Mean fitting error vs. number of modes

- |nter-patient model, 30 datasets
— |ntra-patient model, 19 datasets

10 12
Number of modes




e Joint Modeling of Variations

& @

Joint shape
model of
prostate,
bladder, and
anterior rectal
wall




s estimated fit




Find the enclosing surface o(b) whose sample density p is closest to
the model density q, subject to position and shape constraints
Imposed by the coupling.

q(2)
K (0(b)) = | d
tpaciteibier ) Ja@tog| Loy 7
divergence / \

sample density model density



8 of 17 axial slices
Blue = Ground Truth
Red = Algorithm Result (55 sec)




Prostate Model Fitting
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Volume error: 1.4e3 mms3
Centroid error: 2.7 mm




8 of 35 axial slices
Blue = Ground Truth
Red = Algorithm Result (307 sec)




Automatic fitting algorithm is 5 to 10X faster than
manual contouring

Accuracy comparable to manual segmentation

» Can be edited as needed

» Will enable accurate radiation delivery on day of
treatment




AD CT Imaging = | Optimization & Planning
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Lung Tumor Motion
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. Challenges and Opportunities from 4D
&
= Artifact-free 4D Imaging ===
= Need for motion-compensated

reconstruction

= Effective visualization tools
needed

= Effective and timely segmentation
Variability

Low contrast, poor edges

Massive data volume!
Verification/visualization tools

" 4D Image Browser

= 4D Dose calculation tools
= 4D Dose delivery systems

= Deformable registration with
change intelligence



X® Improving Deformable Registration

= Temporal Registration of CT Lung
Volumes
for Improved Radiation Treatment

= Sub-millimeter accuracy desired
notwithstanding lung deformations

= New B-spline registration
algorithm: uncertainty driven
hybrid of intensity-based and
feature-based techniques

= Preliminary tests:

= B-spline deformation model:
1.5mm accuracy

= Current State of the Art
11.7mm accuracy




* Image-guided intervention is a powerful
multi-disciplinary technology driver

= Several disciplines

Computer vision

Imaging

Systems

Imaging Systems

Chemistry and Physics

High-speed Computing

= Common, pervasive themes across applications
= Need to enhance cross-disciplinary collaboration

= Need to achieve greater efficiency in building new
systems
= Toolboxes, Frameworks, Taxonomy,...
= Could be applied to several other areas:
= Cell and tissue level work
= Biotechnology automation
= Environmental remediation



Thank you & keep in touch!

Badri Roysam

Professor of Electrical, Computer, & Systems
Engineering

Associate Director, CenSSIS ERC

Rensselaer Polytechnic Institute

Troy, New York 12180

Phone: (518) 276 8067

Email: roysam@ecse.rpi.edu
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