NSF Engineering Research Center for Subsurface Sensing & Imaging Systems

Badri Roysam, D. Sc., Associate Director of CenSSIS ERC Professor, Rensselaer Polytechnic Institute, Troy, NY.

About the CenSSIS ERC

Air Force Office of Scientific Research (AFOSR)

MicroBrightField, Inc.

Baytheon

The Basic Research Manager of the Air Force Research Laboratory

Rensselaer Polytechnic Institute

 Richard Radke (PhD), Daniel Freedman (PhD), Charles Stewart (PhD), Gang Lin (PhD), Howard Tanenbaum (MD), Anna Majerovics (MD)

Mass General Hospital

 George T. Y. Chen (PhD), Evangelos Gragoudas (PhD), Noah Choi (MD), Eike Rietzel (PhD)

Memorial Sloan Kettering

D. Michael Lovelock (PhD), Andrew Jackson (PhD)

Woods Hole

- Ali Can (PhD), Hanu Singh (PhD)
- Boston U.
 - Bahaa Saleh (PhD)

Overview of the CenSSIS Research Program

CenSSIS Themes

"Diverse Problems – Similar Solutions"

- A unified view of Subsurface Sensing & Imaging,
 - Optical, Electromagnetic and acoustic sensing modalities
 - Biomedical, biological, civil, industrial, and environmental applications
 - Emphasis on signal processing issues: Inverse problems, image reconstruction, image understanding, pattern recognition,...
- A taxonomy and framework for diverse SSI problems:
 - Physical, mathematical, and numerical models
 - Sensing and Imaging Architectures
 - Information Extraction Methods
 - LPM, MVT, MSD
 - Image & Change understanding
- Cross-application software toolboxes for rapid prototyping
- Hardware testbeds for multi-sensor fusion experiments

A Unifying View of Subsurface Sensing/Imaging Systems

The medium and object interact differently with the interrogating waves to generate detectable contrast.

Passive Subsurface Sensing/Imaging Systems

The medium and object emit differently to generate detectable contrast.

Many Choices for Imaging Systems

Media/Target

- Emission
- Absorption
- Photoluminescence
 - Fluorescence,...
- Scattering
 - elastic ↔ inelastic
 - low \leftrightarrow high
 - linear ↔ non-linear
- Quantum effects:
 - entanglement
 - contrast agents
- Bulk Effects:
 - Reflection, refraction
 - Diffraction
 - Doppler
 - Polarization change
 - Dispersion
 - Phase change
 - Impedance

Influence field

Detection

Coherent ↔ Incoherent Near-field ↔ Far-field Time-resolved ↔ Integrating Spectral ↔ Narrowband Spatial Distribution Spectral Distribution

Excitation

Acoustic ↔ EM Coherent ↔ Incoherent Spatial Distribution Spectral Distribution (..RF↔THz↔IR-VIS-UV↔x-ray..) Temporal Distribution (CW ↔ Pulsed ↔ Modulated) Polarized ↔ Unpolarized

Scope of Center Activities

Common General Considerations

Contrast Scales:

Object: $\Delta \alpha / \alpha_{b}$ or $\Delta k / k_{b}$ Surface: Impedance mismatch

Low contrast \rightarrow Weak Scattering

High contrast \rightarrow Strong Scattering

Spatial Scales:

$$\lambda \ll D$$
$$\lambda \sim D$$
$$\lambda \gg D$$

Common Wave-Media Interactions

CenSSIS

Opto-Acoustic Imaging (OAI)

Acousto-Optic Imaging (API)

What Are The **Fundamental Science Barriers?**

Inadequate understanding of the physics of subsurface sensing and imaging

Unreliable inversion methods for Barrier 2 inhomogeneous and cluttered subsurface media

Lack of robust, physics-based recognition and sensor fusion techniques

What Barriers Prevent the Development of an Integrated Engineered System?

Lack of computationally efficient, realistic physical models

Lack of optimal end to end sensor design methods

Lack of rapid processing and management of large image databases

Lack of validated, integrated processing and computation tools

Lack of a unified framework for diverse sensing and imaging modalities

Principal Information Extraction Methods

Subsurface Intervention Methods

Beam Interventions

Common Beam Types:

- Optical (laser)
- Acoustic (HIFU)
- Radiation (x-ray, gamma ray, proton beam, ...)
- Common Objectives:
 - Achieve desired spatial dose distribution:
 - Full coverage of pathology
 - Minimize dose to background
 - Motion and deformation compensation
 - Conforming the beam to the treatment map
 - Integrated approaches to diagnosis, planning, execution, and follow up
- Examples
 - Laser retinal surgery
 - Radiation treatment of intra-ocular tumors
 - Radiation treatment of cancer of lung, prostate, ...

Beam Interventions (...contd)

- Common issues:
 - Availability/otherwise of implantable marker targets
 - Relating several coordinate systems:
 - Imagery & coordinates of the surface and the subsurface
 - Marker targets
 - Imaging and Beam coordinate systems
 - Identification of delicate neighboring structures to be avoided
 - Achieving adequate spatio-temporal sampling of moving 3-D structures
 - Minimizing damage from imaging probes

Before, During, and After Intervention

Before intervention

- Establishing a spatial reference map
 - Surface, subsurface, motions
- Reliable detection of pathology
- Accurate delineation of pathology & treatment map
- Planning the intervention optimally

During intervention

- Precise knowledge and spatio-temporal control of dose
- Maximize dose to pathology & minimize dose to other regions
- Complete & stable visualization with context
- Predictable real-time motion compensation & spatial referencing to map
- Correction for patient pose and variable deformations
- Responsibility and control
- Spatial dosimetry
- Alarms and safety cutoffs
- Accounting for changes as they occur

After intervention

- Accurate assessment of changes inflicted by intervention
- Updated planning for next intervention

Human Eye and Retina

- Leading Causes of Blindness
 - Age-Related Macular Degeneration
 - Diabetic Retinopathy
 - Glaucoma
 - Retinopathy of Prematurity
- Laser Retinal Surgery = Best-available Treatment
- Failure Rate ≈ 50%

With macular degeneration, print may ap or distorted, and , at's of words L-y be missing.

Scotoma

Dry AMD

Wet AMD

Current State of the Art

659 80-42-93 0-42-9

What can we engineers do to help?

Develop an integrated solution

Optical hardware:

- Multi-spectral imaging
- Assisted laser guidance and safety shutoffs

Computer Software:

- Establish a spatial map based on computer image analysis
- Map-based spatial referencing and tracking for beam delivery
- Tools to integrate with diagnosis, planning, and delivery

Computer Hardware:

- Enable predictable real-time computing
- Enable fast (parallel) computing

CenSSIS

Towards a Smarter, Integrated System

What it takes: Fast feature Extraction

- Fast and automatic
- Sub-pixel traces and interest points
- Detailed vessel morphometry

What it takes: Precise Registration

Main Ideas:

- 12-D model for the curved retina imaged by uncalibrated camera
- Dual-bootstrap registration:
 - Minimum initialization needed
 - Robust hierarchical estimation
 - Automatic model selection
 - Grow estimation zone based on uncertainty (view)
- Performance:
 - Large-scale Testing w/ 15,000 image pairs, 46 eyes covering 5 major diseases, up to 5 years apart
 - 99.5% success rate

What it takes: Cross-Modality Mapping

Visible

Fluorescein

Vein occlusion

Melanoma Example

Wet AMD More Precise Mapping

Mapping Changes

Registered Movie

Change Detection

What it takes: Joint Mosaicing & Mapping

- Direct applications
 - Visualization
 - Corrections
 - Robust Change
- Indirect applications:
 - Basis for spatial mapping

~ 70° Mosaic of Retina

What it takes: On-line Registration

- Determine location of laser with respect to precomputed spatial map
- Issues:
 - High variability
 - Inter-patient
 - Intra-patient
 - Speed (30-200fps)
 - High data rate (1M pixels x frame rate x channels)
 - Minimize light levels and total time
 - Camera sensitivity
 - Discomfort
 - Predictability for real-time control

Fast Map-based Positioning

Key ideas: Just-sufficient, opportunistic, Progressive, imprecise computation Atlas = Mosaics + structure indexing database + treatment map

Hybrid Tracking and Referencing

CenSSIS

Instrument View

Real-Time Computing Issues

 Linux kernel-based virtual devices

Treating Intra-Ocular Tumors

Requires 3-D radiation treatment plan to:

- Maximize tumor dosage
- Minimize non-tumor dosage
- Motion compensation
- Safety Shutoffs
- Spatial Dosimetry

Current Proton Beam Therapy

Generalized 3-D Ocular Atlas

Future IGT System

IGT for Deformable Structures

- Examples:
 - Prostate, lung

4D Systems needed

- Visualization
- Segmentation
- Planning Tools
- Delivery Tools
- Multiple motions and deformations
 - Intra-fractional motion: (lung, abdomen)
 - Inter-fractional motion: (organ deformations & change)
 - Motion of beam delivery system

Current Method

- Patient in restraint
- 3D CT "du jour" taken
- Patient-specific fractional dose calculations & adjustments
- Transfer patient to Linac for dose delivery
 - Conformal radio-therapy
 - Intensity-modulated radio-therapy

CenSSIS

Challenges: Appearance & Shape Variability

Intra-patient variability, 10 days apart

Inter-patient variability

Engineering Implications

- Problem:
 - Given a new daily CT scan, just prior to a radiation fraction, segment the prostate, bladder, rectum, etc. for IGT and conformal avoidance
- Approach:
 - Construct effective low-dimensional models for intraand inter-patient variability
 - Robust fitting of models to image data
 - Update the treatment plan
- Current Limitations:
 - Timeliness and verifiable accuracy of the model fitting
 - Expert manual segmentation takes 15-45 mins

Inter-Patient Modes of Variation

Modes learned from MGH data (25 scans)

Intra-Patient Modes of Variation

Modes learned from MSKCC data (19 scans)

How Many Modes to Consider?

Joint Modeling of Variations

Joint shape model of prostate, bladder, and anterior rectal wall

Fitting the Model to a New Image

Density Matching Algorithm

Find the enclosing surface $\omega(b)$ whose sample density *p* is closest to the model density *q*, subject to position and shape constraints imposed by the coupling.

Kullback-Leibler divergence

 $K(\omega(b)) = \int q(z) \log\left(\frac{q(z)}{p(z;\omega(b))}\right) dz$

sample density

model density

Prostate Model Fitting

8 of 17 axial slices Blue = Ground Truth Red = Algorithm Result (55 sec)

Prostate Model Fitting

Volume error: 1.4e3 mm³ Centroid error: 2.7 mm

Joint Model Fitting

8 of 35 axial slices Blue = Ground Truth Red = Algorithm Result (307 sec)

Joint Model Fitting

- Automatic fitting algorithm is 5 to 10X faster than manual contouring
- Accuracy comparable to manual segmentation
 - Can be edited as needed
 - Will enable accurate radiation delivery on day of treatment

Towards 4D Systems

Optimization & Planning

Massachusetts General Hospital

M anon2563 Sep 25 2002 01:46:59 PM \$12×512 Mag = 1.00 FL: POT:

GE MEDICAL SYSTEMS LightSpeed QX/i CT06 OC0 Ex 2363 SI: 100 PROC hm: 1+C 514 DFOV \$0.0em

\$246

2 5 Ũ

Ρ

А

2 5 0

Lung Tumor Motion

Caveat: Single cycle looped!

Challenges and Opportunities from 4D

- Artifact-free 4D Imaging
 - Need for motion-compensated reconstruction
- Effective visualization tools needed
- Effective and timely segmentation
 - Variability
 - Low contrast, poor edges
 - Massive data volume!
 - Verification/visualization tools
- 4D Dose calculation tools
- 4D Dose delivery systems
- Deformable registration with change intelligence

Improving Deformable Registration

- Temporal Registration of CT Lung Volumes for Improved Radiation Treatment
- Sub-millimeter accuracy desired notwithstanding lung deformations
- New B-spline registration algorithm: uncertainty driven hybrid of intensity-based and feature-based techniques
- Preliminary tests:
 - B-spline deformation model: 1.5mm accuracy
 - Current State of the Art 11.7mm accuracy

Image-guided intervention is a powerful multi-disciplinary technology driver

- Several disciplines
 - Computer vision
 - Imaging
 - Systems
 - Imaging Systems
 - Chemistry and Physics
 - High-speed Computing

Common, pervasive themes across applications

- Need to enhance cross-disciplinary collaboration
- Need to achieve greater efficiency in building new systems
 - Toolboxes, Frameworks, Taxonomy,...
- Could be applied to several other areas:
 - Cell and tissue level work
 - Biotechnology automation
 - Environmental remediation

Badri Roysam Professor of Electrical, Computer, & Systems Engineering Associate Director, CenSSIS ERC Rensselaer Polytechnic Institute Troy, New York 12180 Phone: (518) 276 8067 Email: roysam@ecse.rpi.edu

