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Mechanisms and Issues

Helium from Nuclear Transmutation: Production Rates 
& Recoil Energies
Helium Migration and Trapping
Helium Aggregation Kinetics: Bubble Densities & Size 
Distributions
Helium Densities in Bubbles or Precipitates
Equation of State for Helium
Helium-Induced Changes in Lattice Parameter & 
Sample Dimensions
Radiation-Induced Resolution of Helium in Bubbles
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Helium from Nuclear Transmutations

(n, α) Energies, MeV

Isotope   Q       He Recoil

Ni-59        5.096 4.751

Zn-65 6.481 6.082

Fe-55     3.584 3.323

Co-58    3.511 3.269

Co-57 1.618 1.504
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He generation rate in SS 316 irradiated in HFIR

At the end of its range (5-15 μm), Helium generates a displacement cascade with

100-300 Frenkel pairs. Helium will come to rest in a vacancy or vacancy cluster.
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Helium from Tritium Decay starts as an Interstitial

Tritium resides mostly in

interstitial positions.

Helium recoil energy is too

low to create a Frenkel

Pair.
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Helium as an interstitial is highly mobile …
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Diffusion of Helium as Interstitial

… but is is also very unstable and strongly trapped by vacancies.
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A vacancy can trap any number of Helium atoms…
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He V  ->  He  V + He  n n-1 Int.

… and when the number

exceeds more than 5, a

metal atom is expelled as

a self-interstitial rather

than a helium atom.
(First discovered in computer

simulations by Bill Wilson and 

later confirmed by many.)

Courtesy of Prof. Morishita, Kyoto Univ.
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Clusters with a Helium/Vacancy ratio > 1 are very stable

Vacancy
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HeVm → Vm + HeInt.

HeVm → HeVm−1 + V
HenV → Hen− int . + V
HenV → Hen−1V + HeInt.

Density of Helium in small bubbles is more conveniently expresses in terms 

of numbers of He atoms per vacant site, or simply as He/vacancy ratio.

Courtesy of Prof. Morishita, Kyoto Univ.
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Energy Landscape of Helium-Vacancy Clusters
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Expelled self-interstitials remain attached to helium-vacancy 
cluster as a loose aggregate

He

Displaced Fe

He20 V12 He19 V10

For larger bubbles, these aggregates become prismatic interstitial-type loops

Prof. Morishita, Kyoto University
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Mechanically stable He-V clusters in Fe
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Mobility of Helium-Vacancy Clusters

103

104

105

106

1 10

y
1000K, He/V=1.0

n1/3

D∝d-10.3

D∝d-5.4

D∝d-4.1

Theory predicts a size dependence of  D ∝

 

d^-4 for surface diffusion and D ∝

 

d^-3 for volume 
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Courtesy of Prof. Morishita, Kyoto Univ.
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Starting assumptions for helium bubble evolution model

Mean-field assumption for the rate coefficients: every 
bubble has the same environment
Helium is produced uniformly in space and time
Only V, SIA, and He-V species diffuse, and migration of 
He-V is rate controlling
Diffusion is strictly random: no long-range interaction 
between diffusing He and bubble
Radiation-induced re-solution of helium bubbles may 
occur
Impurity segregation to bubble surface or surface stress 
may result in interface controlled kinetics
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Bubble that form by one substitutional Helium at a time

dN1

dt
= G−16πr1DN1

2 − 4πDN1 ri Ni
i=2

∞

∑
dN2

dt
= 8πr1DN1

2 − 4πDN1r2N2

................................
dNi

dt
= 4πDN1ri−1Ni−1− 4πDN1ri Ni

Monomer equation
for He in solution

Dimer equation
for He bubble
nuclei

i-mer equation
for bubbles 
containing i He
Atoms and i
Vacancies.

Model confirms peaked bubble 
size distribution as seen in 
TEM observations.
But observed size distributions 
are wider, indicating significant 
materials heterogeneities.
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Stochastic effects of Helium generation and local 
environment spread out the nucleation burst

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Bonilla, Carpio, Neu, Wolfer

Physica D 222 (2006) 131
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Helium bubble evolution in Pu: almost instant nucleation, not much growth beyond 
1.5 nm, but steady increase in bubble density.
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Hydrogen and Helium storage in HFIR-irradiated USPCA containing 
4x1017 cm-3 “helium-filled cavities” to 34 dpa at 400ºC

Tanaka et al.,  1988 Specimens were irradiated in an 
aluminum gas-gapped 
assembly,filled with helium and 
never touching water.

After 13 years of storage in a dry 
canister, the gas contents of two 
specimens were measured.

2979 and 3012 appm He

3864 and 3790 appm H
JP-12 experiment

Bubbles seem to reach terminal size with 2 nm diameter
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Helium attrition from large bubbles by radiation effects ?

Possible Mechanisms:

1) Collision cascade from nearby U-recoils (85 keV) destroy bubble and 

disperse Helium atoms.
To match data, the efficiency has to be high: up to 5000 energized Pu atoms

have to disperse the helium in a bubble ! MD simulations contradict it.

2) High energy α flux expels He atoms at the rate of He diffusion to bubble.
α-range in Pu: 10 μm

A 1.5 nm bubble is hit once every 5 days, and an average energy of 30 eV is 
deposited to 150 He atoms. 

The gas temperature rises to 2200 K . It takes 30 ps to cool.

If one He atom is dissolved in 9 α-hits or in 45 days, then He capture is balanced by 
loss. 

Process scales with 3R2/32.
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Cascade-induced Helium mixing is too inefficient to explain 
termination of bubble growth                                A. Kubota, unpublished results

0.045 ps: 20 keV early 
cascade track producing 2 
He energetic recoils.

0.077 ps: 20 keV early 
cascade track, 3rd He 
recoil produced.

0.14 ps: Full cascade 
bloom, 4th He recoil 
produced.

0.37 ps: Larger overlap 
between cascade bloom 
and bubble to produce 
secondary He.

20-keV Cu recoil in Cu with a 1-nm diameter He bubble producing 4 ejected He.
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He He

He

He

He

He

He HeHe HeHe
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0.031 ps: 20 keV early 
cascade track directed 
towards He bubble.

0.051 ps: Cascade 
branching occurs before 
reaching the bubble.

0.88 ps: Cascade 
continues around the 
bubble.

0.43 ps: Full cascade 
bloom with no ejected He.

1 nm He bubble

recoil

20-keV Cu recoil in Cu with a 1-nm diameter He bubble producing no ejected He.
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QuickTime™ and a
Cinepak decompressor

are needed to see this picture.
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Bubble Heating from Electronic Stopping of α’s
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Pressure-induced termination of bubble growth ?

Proposed Mechanisms:

1) High stress field around bubble repels approaching He-V defect.

2) Surface stress creates an activation barrier for He-V defect.

3) Impurity segregation creates a surface activation barrier.

4) He-V absorption restricted to surface ledges.

These mechanisms are difficult to quantify.

Mechanism 1 is unlikely: Hydrostatic stress around bubble 

is somewhat attractive and bubble is softer than matrix.

Mechanism 2 appears possible if He-V defect has large, negative

relaxation volume (First-principle calculations in progress).

Mechanism 3 and 4 are not supported by TEM observations.
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Helium bubbles in aged Pu are almost solid helium precipitates
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Surface energy determines thermodynamic equilibrium 
and surface stress mechanical equilibrium

g* is the surface stress 

on a stress-free solid, ε

 

= 0.

γ(ε) is the surface energy at

surface strain ε.

Surface stress is

g(ε) = dγ(ε) / dε

For bubbles with no stress 
field

p = 2g*/ r , σ

 

= 0.

Surface stress may create an activation barrier for He-V entry into bubble
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Only very high gas pressures can reverse the inward cavity 
relaxation caused by the surface stress
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Lattice expansion from helium in metal tritides
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Helium bubble swelling > Helium-induced lattice dilation
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It appears that 1% He is in defects other than bubbles

Helium Bubble Swelling

Lattice dilation caused by

Helium bubbles
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High precision dilatometry monitors dimensional changes in 
δ-Pu samples enriched with 238Pu
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Ga segregation

Linear increase is due to He 
and implies a He density of 
He/Vac. = 2.8 in bubbles.

Positron lifetimes of 180-200 
ps imply a density of 
He/Vac. = 2 to 3.

From Chung et al., 
J. Nucl. Matls. 355 (2006) 142
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Combined Helium Bubble and Void Formation in Austenitic Steels 
Irradiated in HFIR-like Reactor

at 500 oC at 700 oC

Void
nucleation
barrierEquilibrium

bubble

Equilibrium
bubbles

He/Vac. = 2

High pressure He bubbles coexist with voids Only equilibrium bubbles exist

Surh, Sturgeon, Wolfer, submitted to J. Nucl. Mater.
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Summary and Conclusions

All metals can store Helium in the form of high-pressure bubbles or 
platelets
Helium density in bubbles and other forms of precipitates 
(platelets) is from 2 to 3 He/Vac. when formed at temperatures 
below 0.4 TM
Bubbles produce dimensional increases that is greater than 
inferred from lattice parameter changes: 3ΔL/L > 3Δa/a 
Bubbles formed from nuclear transmutations seem to reach a 
terminal size
Two possible mechanisms have emerged to explain terminal size 
that require further study
Both dilatometry and x-ray diffraction experiments should be done 
on a wider variety of materials
Helium bubbles formed in conjunction with voids also have He 
densities of about 2  He/Vac. when formed at T < 0.4 TM
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