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Metal tritide films are essential for applications such as neutron 
generators, but the property changes as the T decays lead to 
problems.

We have been following the mechanical properties of Erbium 
Tritide films as they age.  We found that the films first 
strengthened, then softened.

The two regimes can be explained by dispersion strengthening 
combined with a simple elastic softening due to the bubble 
growth.

Metal tritide films
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Samples: ErT2

 

layers on Mo/Si

Sample preparation

•500 nm Er 
95 nm Mo
•Silicon

•Hydrided 
with  100% 
Tritium

•Aged in 
vacuum

~ 1 nm
bubbles

6.4 nm
bubbles

3He bubbles

TEM cross-section
bright-field, ~{110} zone
62 days after hydriding.

Tritium decays into 3He, forming 
platelet-like bubbles on (111) planes. 
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Oxide forms during hydriding and 
upon air exposure. 
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aged 1173 days

IBA of aged ErT2

 

shows 
expected levels of T, 3He

Calculated buildup of 3He 
for 100% T-loaded ErT2
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Nanoindentation of tritiated films
Containment procedures allowed use of 
indenter outside T envelope.

Only known nanoindentation of tritiated 
thin films.

Finite-element modeling* is used to 
determine film yield strength and 
Young’s modulus separate from the 
substrate:

-

 

Properties of the indenter and underlying 
layers and substrate are fixed at known 
values.

-

 

Properties of the layer are varied until a 
good fit to experiment is obtained. 

-

 

Tip yielding, stress, friction are all 
modeled. 

*J.A. Knapp, et al., JAP, 85

 

(1999) p.1460.

Y = 2.12 ±

 

0.2 GPa
E = 133 ±

 

9 GPa
(film only)

ErT2

 

aged 924 days

Raw indentation data
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increased 
as 3He bubbles formed 
and grew.   After an 
initial increase, the 
hardness of the films 
leveled off and then  
decreased as the films 
aged. 

Nanoindentation: yield strength
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Young’s modulus

 initially stayed constant 
and then decreased at 
about the same time as 
the yield started to 
decrease.

Nanoindentation: Young’s modulus
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Mechanical properties: two regions

Region 1
• increasing yield strength 

with bubble growth
• nearly constant or 

decreasing elastic 
properties

Region 2
• decreasing yield strength
• decreasing elastic 

properties
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Region 1 -
 

dispersion hardening
Bubbles pin dislocations
• study in Ni(He) shows Orowan-

 
type strengthening even though 
bubbles are shearable

• implants with 1 to 10 at.%:  
spherical bubbles from 1 to 6.4nm

Calculation confirms pinning*

Three effects provide binding:
1) reduction in dislocation strain 

energy
2) absence of core energy 
3) barrier to surface step formation 

in bubble

*calculation by S.M. Myers

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CRSS (GPa)

 RT
 200°C
 500°C

Yi
el

d 
st

re
ng

th
 (G

Pa
)

Ni(4He)

Ni implanted with 1-10 at% 4He

J.A. Knapp, et al., JAP, 103, 013518 (2008)
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Bubble sizes
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Days after loading

3He platelet diameterTEM measurements
• sizes measured up 547 

days: 15.7 nm
• sizes consistent with 

no new nucleation after 
the first few weeks

Linear fit to volume
• constant thickness
• assumes no nucleation 

after the first few weeks
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Bubble pressure
Bubble pressure is needed to deduce number density
• Since these are platelets we use Cowgill’s formula for pde

 

, 
calculated pressure for dipole expansion.1
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d = {111} interplanar spacing
s = platelet thickness  (2d<s<3d)
r = platelet radius
γ = surface energy   (0.637 J/m2)
b = burgher’s vector   (0.3623 nm)
μ = shear modulus   (70 GPa)

• The He equation of state by Kortbeek

 

& Schouten2

 

then provides 
the He density in the bubbles, giving the number density.

1Don Cowgill, HHIMC presentation, 2005.
2P.J. Kortbeek

 

and J.A. Shouten, J. Chem. Phys. 95 (1991) p.4519.
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Orowan-type strengthening for platelets
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For platelets the calculation of Critical Resolved Shear 
Stress τ is more complicated than for spheres or rods.
• We use a formula computationally derived by Zhu and Starke1:

tp = platelet thickness
Dp = platelet diameter
fv = volume fraction
b = burgher’s vector   (0.3623 nm)
μ = shear modulus     (70 GPa)
r0 ~ burgher’s vector (used ½b) 

1A.W. Zhu and E.A. Starke, Jr., Acta. Mater. 47 (1999) p.3263.
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Yield strength

 

increases in 
proportion to τ

 

(CRSS)
• constant of proportionality 

is the Taylor Factor 
(typically 2-3)

• here we use 2

Calculation of τ

 

diverges

 when platelet diameters 
are equal to the average 
center-to-center spacing
• estimate of CRSS 

becomes invalid when 
bubbles nearly overlap.

diameter ≈

 

spacing

τ

 

x Taylor factor + Y0
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Mechanical properties: two regions

Region 1
• increasing yield strength 

with bubble growth
• nearly constant or 

decreasing elastic 
properties

Region 2
• decreasing yield strength
• decreasing elastic 

properties
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Region 2 -
 

elastic softening

200 nm

Mises stress
(GPa)

6.39

1.82

3.19

Mises stress for nanoindentation of ErTx

 

with 5 vol.% He

Bubbles lower the average  
elasticity and strength
• as the bubble volume fraction 

increases, elasticity and yield 
strength decrease.

• FEM simulations using 2-12 vol.% 
bubbles, with varying sizes and 
shapes, quantify the effect.
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Elastic modulus

 decreases as bubble 
volume density 
increases.
• might be expected from 
“rule-of-mixtures”

• FEM calculation is not 
scaled
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Yield strength

 

also 
decreases as bubble 
volume density 
increases. 
• Not expected from simple 
“rule-of-mixtures”

 

-

 

FEM 
simulations required.

• effect is clear in region 2, 
where dispersion 
hardening is no longer 
effective.



HHIMC 2008 - slide 18

Summary

Region 1
• increasing yield strength 

with bubble growth
• nearly constant or 

decreasing elastic 
properties

• dispersion hardening

Region 2
• decreasing yield strength
• decreasing elastic 

properties
• elastic softening
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