Electronic and Energetic Properties of Helium in Pd Tritide: PdT_x ($0 \le x \le 1$)

Pei Lin, <u>Yan Wang</u> and M. Y. Chou School of Physics Georgia Institute of Technology

Supported by Savannah River National Lab and Department of Energy

Focus of This Report

From first-principles:

- to accurately determine the energetics of interstitial He and H in Pd metal
- to better understand the interaction mechanisms among different species
- Provide input parameters for the rate equations and continum models

- Theoretical Methods
- He in Pd vs. H in Pd
- He in PdT_x where $0 \le x \le 1$
- Small He cluster in a defect-free
 Pd lattice with and without H
- Conclusion

Standard models for "First-Principles" Calculations

Inputs: Atomic number Atomic arrangements Ground-state properties: Density functional theory ("One-particle" equations for the many-body problem)

Pseudopotential Methods

Calculational Methods

- Density functional theory with GGA
- Projector Augmented Wave (PAW) method
- Plane wave basis (VASP code)
- Energy cutoff: 390 520 eV
- Supercell containing 32 Pd atoms
- Diffusion path and barrier is studied by efficient nudged elastic band (NEB) method

Introduction

- He in Pd vs. H in Pd
- He in PdT_x where $0 \le x \le 1$
- Small He cluster with and without H
- Conclusion

Interstitial Sites in an FCC Lattice

Tetrahedral (T)

Octahedral (O)

<110> plane

Both He and H energetically Prefer the O site than the T site in the Pd lattice

Lattice Distortions

He at the octahedral site:

×	У	z	direct.	∆d/a	color
0.23	0.5	0.75	{100}	3.87%	Red (nn)
0.25	0.25	0.5	{111}	0.06%	Grey (nnn)
0.25	1	0.75	{100}	0.95%	light red (3 rd)
1	1	1	{100}	0.40%	light grey (4 th)

H at the octahedral site:

						1
×	У	Z	direct.	∆d⁄a	color	
0.23	0.5	0.75	{100}	0.62%	Red (nn)	
0.25	0.25	0.5	{111}	0.44%	Grey (nnn)	
0.25	1	0.75	{100}	0.11%	light red (3 rd)	
1	1	1	{100}	0.09%	light grey (4 th)	

a is lattice constant

Projected density of states (PDOS)

He and H diffusion in Pd

For both H and He, the minimum energy diffusion path is O-T-O; the local metal lattice distortion has big effects on the diffusion barrier.

Zero-point energy (ZPT) corrections

	Octahedral	Tetrahedral	TS
Hydrogen	0.08	0.19	0.16
Tridium	0.04	0.11	0.09
³ He	0.08	0.08	0.08
⁴He	0.07	0.07	0.08

- ZPT has a larger effect on H than on He.
- H diffusion barrier increases from 0.16 to 0.21 eV
- He diffusion barrier remains about the same

Hydrogen Expt. ZPE = 0.06 - 0.07 eV (Rush et al. 1984)

- Introduction
- H in Pd and He in Pd
- He in PdT_x where $0 \le x \le 1$
- Small He cluster with and without H
- Conclusion

Energetics of He in PdH_x

 $E_{He} = E(PdH_{x}He) - E(PdH_{x}) - E(He atom)$

He prefers empty octahedral sites. The energy of He decreases when more H atoms present in Pd. 14

He Diffusion in PdH_x

×	0	0.25	0.5	0.67	0.75	~ 1
0 (eV)	3.74	3.18	2.96	2.64	2.7	2.41
T (eV)	3.97	3.37	3.09	2.77	2.83	2.45
ΔΕ _{τ-0}	0.23	0.19	0.13	0.13	0.13	0.04

The existence of H modifies the energetics of He in the Pd metal. PDOS

PDOS

 $PdH_{0.5}$ vs. $PdH_{0.5}He$

- Introduction
- H in Pd and He in Pd
- He in PdT_x where $0 \le x \le 1$
- Small He cluster in a defect-free Pd lattice with and without H
- Conclusion

He-He separation: 1.77~1.82 Å He-He separation: ~ 1.79 Å

He cluster leads to local lattice distortions

Energy gain when moving one more He atom from the O site to the existing He:

Initial state	Final state	Energy gain		
		Pd ₃₂ He _n	Pd ₃₂ H ₈ He _n	
empty O site	1 He	3.6	3.2	
1 He	2 He	0.6	0.4	
2 He	3 He	1.5	1.2	
3 He	4 He	2.6	1.8	

It is energetically favorable for He atom to aggregate together at interstitial regions.

- Introduction
- H in Pd and He in Pd
- He in PdT_x where $0 \le x \le 1$
- Small He cluster with and without H
- Conclusion

- Interstitial He and H interact differently with Pd metal lattice. He has a low diffusion barrier in PdH_x systems.
- The coexistence of H atoms affects the energetics of He in Pd metal.
- Forming and the growth of a He cluster is energetically favorable in Pd with and without the presence of H.
- He-He separation in the cluster is about 1.8 Å, similar to that found in systems with Pd vacancies, but much smaller than that in the solid (2.8 Å).

Future Work

- Effect of H presence on He clustering around the vacancy
- Multiple vacancies nano He bubble
- Preferred shape of the nano bubble
- Growth of the nano bubble by emitting Pd self-interstitial atoms