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Focus of This Report

From first-principles:

* to accurately determine the energetics of
interstitial He and H in Pd metal

- to better understand the interaction mechanisms
among different species

* Provide input parameters for the rate equations
and continum models



Outline
im— ".'"

* Theoretical Methods

* He in Pd vs. H in Pd

* He in PdT, where O < x ¢ 1

- Small He cluster in a defect-free

Pd lattice with and without H
- Conclusion




Standard models for
"First-Principles” Calculations

Inputs: Atomic number
Atomic arrangements
Ground-state properties:
Density functional theory

("One-particle” equations for the many-body
problem)

Pseudopotential Methods



Calculational Methods

* Density functional theory with GGA

* Projector Augmented Wave (PAW) method

* Plane wave basis (VASP code)

* Energy cutoff: 390 - 520 eV

» Supercell containing 32 Pd atoms

» Diffusion path and barrier is studied by
efficient nudged elastic band (NEB) method



Outline

He in Pd vs. H in Pd



Interstitial Sites in an FCC Lattice

Tetrahedral (T) Octahedral (O)

Both He and H energetically
Prefer the O site than
the T site in the Pd lattice




Lattice Distortions

He at the octahedral site:

X Yy z direct. Ad/a color
0.23 | 0.5 | 0.75 {100} 3.87% Red (nn)
0.25 | 0.25 | 0.5 {111} 0.06% 6rey (nnn)
0.25 1 0.75 {100} 0.95% light red (3d)

1 1 1 {100} 0.40% light grey (4th)

H at the octahedral site:

X Yy z direct. Ad/a color
0.23 | 0.5 | 0.75 {100} 0.62% Red (nn)
0.25 | 0.25 | 0.5 {111} 0.44% 6rey (nnn)
0.25 1 0.75 {100} 0.11% light red (3rd)

1 1 1 {100} 0.09% light grey (4h)

a is lattice constant




Projected density of states (PDOS)
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Charge depletion—¢
at He site Pd

Ap = p(PdHe) - p(Pd) - p(He)
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He and H diffusion in Pd

. —#— unralaxad
aE —— relaxed by MEBE

' <110>: directly between two O-O sites.
=, f\ ,
I H /N <111>: O-T-O site.
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For both H and He, the minimum energy diffusion path
is O -T-O; the local metal lattice distortion has big
effects on the diffusion barrier. I




Zero-point energy (ZPT) corrections

Octahedral | Tetrahedral TS

Hydrogen 0.08 0.19 0.16
Tridium 0.04 0.11 0.09
3He 0.08 0.08 0.08
‘He 0.07 0.07 0.08

* ZPT has a larger effect on H than on He.
- H diffusion barrier increases from 0.16 to 0.21 eV
- He diffusion barrier remains about the same

Hydrogen Expt. ZPE = 0.06 - 0.07 eV (Rush et al. 1984)
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He in PdT, where O< x < 1
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(PdH) (V)

Energetics of He in PdH,

Yan Wang, et al. PRB 53, 1 (1996)
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E..= E(PdH,He) - E(PdH,) - E(He atom)

He prefers empty octahedral sites. The energy of He
decreases when more H atoms present in Pd.
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He Diffusion in PdH,

Potential Energy (eV)

X 0 026 05 067|075 | ~ 1
O (eV) 3.74 | 3.18 | 2.96 | 2.64 | 2.7 | 2.41
T (eV) 3.97 (1 3.37 | 3.09|2.77 | 2.83 | 2.45
AE; , 0.23(0.19|0.13 |1 0.13 | 0.13 | 0.04
* 0.25
The existence of H
M—_‘ modifies the energetics
0.5 of He in the Pd metal.
B - 1

1 1 1 1 1 1 1 1 |
0 02 04 06 08 1 12 14 16 18
Angstrom 15



PDOS
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PDOS

PdHO.5 VS. PdHOO5H€
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- Small He cluster in a defect-free
Pd lattice with and without H
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He-He separation: He-He separation:
1.77~1.82 A ~1.79 A

He cluster leads to local lattice distortions



Energy gain when moving one more He atom
from the O site to the existing He:

Initial state Final state Energy gain

Pd;,He, Pd;,HgHe,

empty O site 1He 3.6 3.2
1 He 2 He 0.6 0.4
2 He 3 He 15 1.2
3 He 4 He 2.6 1.8

It is energetically favorable for He atom to
aggregate together at interstitial regions.

21
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- Conclusion
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* Interstitial He and H interact differently with
Pd metal lattice. He has a low diffusion
barrier in PdH, systems.

* The coexistence of H atoms affects the
energetics of He in Pd metal.

* Forming and the growth of a He cluster is
energetically favorable in Pd with and without
the presence of H.

* He-He separation in the cluster is about 1.8
A, similar to that found in systems with Pd

vacancies, but much smaller than that in the
solid (28 A) 23



Future Work

» Effect of H presence on He clustering
around the vacancy

» Multiple vacancies - nano He bubble
* Preferred shape of the nano bubble

* Growth of the nano bubble by emitting Pd
self-interstitial atoms

24
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