Hydrogen and Helium Isotopes in Materials February 2007

A Neutron Reflectivity Study of ErT₂ Films

Jim Browning - Sandia National Laboratories Greg Smith - Oak Ridge National Laboratory Clark Snow - Sandia National Laboratories Gillian Bond - New Mexico Institute of Mining and Technology Erik Watkins^{*} - Los Alamos Neutron Scattering Center Jarek Majewski - Los Alamos Neutron Scattering Center

*now at UC Davis

Acknowledgements

- Erbium and molybdenum film depositions carried out at SNL
 - Dale Blankenship
- Hydriding of the films was carried out at SRNL
 - Kirk Shanahan
 - David Bell
- IBA characterizations performed at SNL
 - Jim Banks
- Neutron scattering experiments performed on SPEAR at LANSCE
 - Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE) is supported under DOE contract W7405-ENG-36 and by the Department of Energy basic Energy Sciences.

Motivation

 Can we distinguish near surface differences in the erbium tritide layer (denuded zone ??)

 How does the tritide layer change as a function of ³He concentration?

Experiment

- Sample configuration:
 - Si <111> substrate
 - Deposition
 - 1000 Å Mo (to prevent formation of Er-Si compounds) deposited by e-beam PVD
 - 1500 Å of Er deposited by e-beam PVD
 - rate of 10 Å/s
 - Substrate temperature = 450°C
 - Hydriding
 - 450 °C at ~ 200 Torr
 - SS reactor
- Scattering Chamber:
 - Modified Nor-Cal 6" tee
 - Swagelok BW series valve
 - Sapphire windows
 - Sample sits on BN
 - Chamber evacuated ~ 1x10⁻⁷ Torr

Si dimensions: 2.54 cm x 5.08 cm x 0.635 cm

IBA characterization of tritide films

Atom	Sample 1 (atoms/cm²)	Sample 2 (atoms/cm²)
н	1.65x10 ¹⁷	2.31x10 ¹⁷
D	4.54×10 ¹⁵	4.89x10 ¹⁵
т	7.59x10 ¹⁷	7.14x10 ¹⁷
Er	4.86x10 ¹⁷	4.48x10 ¹⁷
(HDT)/Er	1.91	2.08

Deuteride layer thickness and SLD as measured over the duration of the study

Example of experimental results and subsequent model fit to data

Sample 1 ³He:Er = 0.073

Sample 1: layer thickness and SLD of near surface region as a function of ³He concentration

G:M=1.91

SLD consistent with high O and T concentration

Sample 2: layer thickness and SLD of near surface region as a function of ³He concentration

G:M=2.08

SLD consistent with high O and T concentration

Tritide layer swelling as a function of ³He concentration

G:M=1.91

Sample 1

Sample 2

A closer look at the swelling data

Sample 1

A closer look at the swelling data

Sample 2

Relationship between tritide swelling and ³He atomic volume

(Shobert, et al., Phys. Rev B, 31(11), 7109, 1985. Shobert, et al., Phys. Rev B, 40(2), 1277, 1989. Cowgill, SAND 2004-1739, 2004.)

- Where
 - v_{He} ≡ helium atomic volume
 - v_{MH} ≡ erbium atomic volume in the hydride
 - **Given** v_{M_H} ≈ 33.8Å³
 - Then Sample1: $v_{He} = 17.2 \text{\AA}^3$

Sample2: $v_{He} = 11.1 \text{\AA}^3$

Bubble pressure determined by use of Mill's EOS

Summary of tritide layer swelling data

	Sample 1	sample 2
HDT:Er	1.91	2.08
T:Er	1.56	1.59
Slope	0.503	0.326
³ He:Er	0.297	0.201
$\Delta \tau / \tau_o$	0.15	0.11
v _{He} (Å ³)	17.2	11.1
P (GPa)	0.95	3.12

Measured verses predicted SLD

Sample 1

Sample 2

Measured verses predicted SLD (corrected for oxygen)

Summary

- The data indicate the existence of a near surface region with a length scale of ~ 50 Å and of high scattering length density (consistent with high oxygen/tritium concentration).
- Tritide layer expansion yields information on helium atomic volume within a bubble.
- The helium atomic volume obtained in the experiment is used with Mill's EOS to estimate pressure within a bubble during the constant expansion stage.
- The sample with higher hydrogen isotope-to-erbium ratio shows a higher bubble pressure and indicates transition to higher helium atomic volume within a bubble occurring at a lower ³He:Er ratio.
- Film structure many interfaces make it difficult to analyze.
- Repeat experiment using sapphire or quartz substrate.

Introduction

- ³He out-gassing in many metal/metal hydride systems is characterized by two distinct regions
- Given the bulk of the ³He produced remains in the lattice

$$ErT_{2} \rightarrow ErT_{2-x}^{3}He_{x}$$

$$(T \rightarrow^{3}He + \beta^{-} + \overline{\nu})$$

 The intent of this work has been to determine how the ErT₂ film structure (interfacial and hydride layer) evolves with increasing ³He concentration in the lattice

Structure of erbium hydride

- The beta phase of erbium hydride assumes the fluorite structure
- The hydrogen-toerbium atomic ratio in the fluorite structure extends from about 1.85 to 2.15

