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• Helium Bubble Linkage and the Transition
to Rapid He Release in Pd Tritide

(SAND 2006-7779)

• Effects of the Beta-Induced Reactivity of
Er Tritide:  Simulation Experiments

He Retention in Tritides:  Importance of
Bubble Location and Spacing Distribution

Don Cowgill, SNL, Livermore CA USA
H and He in Materials Workshop, Albuquerque, Feb 6-7, 2007
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Model predicts bubble characteristics
and He the release spectrum.
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Computed He release shows all the 
     features observed for tritides.
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Low early release fraction

Slow rise with age

Onset of accelerated release

The He release spectrum is
critically dependent on the

bubble spacing distribution.
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• 3He T1 (motion) separates sol-
He from liq-He in bubbles.

• Growth relations convert fluid
fractions to bubble distributions.
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The constant spacing distribution
 - verifies nucleation has stopped
 - provides a sensitive test of the

nucleation and growth models.

The bubble spacing distribution in PdTx
was determined by 3He NMR.
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• Stress created by neighbors leads
toward bubble coalescence.

• Stress-directed bubble growth occurs
only for non-symmetric arrays.

- requires a spacing distribution.

• SD-growth is interrupted by inter-bubble
ligament fracture.
- linkage starts with closely-spaced
bubbles.
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The Critical He/M for Bubble Linkage
depends on bubble spacing.
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Linked Volume Fraction increases with
He/M concentration
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• Linkage by SD-growth to
IB-fracture 
- begins at .32 He/M
- at .44He/M, incorporates

widely-spaced bubbles
- at .39 He/M, reaches the

Critical Volume Fraction
for infinite percolation:

• From classical percolation
theory in 3d, VC = .15

• In “rapid  release”, the
release rate is 1-2 times the
generation rate:

Rel/Gen = (He/M)      dV
d(He/M) ≈ .4(3) = 1.2
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Percolation of surface-connected, linked-bubble
clusters gives the transition to rapid release.
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• Fractional He release:
- spherical particles

VP = V [1-(1-dC/RP)3]
- films (thickness L) on substrates

VF = V (dC/L)

Linked cluster diameter,
dC(nm) = 1.67/(VC-V).675
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• The mobile Helium
concentration near the
surface is too low to
nucleate bubbles.

• The He escape length
λesc ≈ dZ/2 produces an
early release fraction.
- For PdT, λesc ≈ 40Å

• Bubble denuded zone dZ produced
by He self trapping: 50-100 Å

Early He release depends on the bubble
density and defect trapping near surfaces.

Depth (Å)

M
ob

ile
 H

e/
M

 (p
pm

)

dc2/dt = ps1cm
2 - q2c2 - ps2cmc2

cm

3002001000
0

1

2

3

4

5

6

Depth, x (Å)

B
ub

bl
es

/M
et

al
 (

pp
m

)

D = 3 A2/s
Ep = .20 eV

1 h

3 h

9 h

15 h

22 h

Bubble
Denuded
Zone

B
ub

bl
es

/M
 (p

pm
)

Depth (Å)



Sandia
National
Laboratories0701 dfc

9

• He escape depth from [111] oriented
ErT2 films = 1.8 Å (Snow et al, 2006)

• What makes He immobile in this layer?
1) Trapping at Er2O3 precipitates?

- requires O/Er ~1 in “hydride”
2) Trapping within Er(OT)3 layer?
3) Er(H,T)3 near-surface layer?

- produced by H2O oxidation
- He migration blocked by H

• Testing (3) using ErH2 films, exposed
to water vapor in the ALS (LBNL).

- radiation-enhanced oxidation
- H-pickup (resistivity, TDS)
- effect on He migration (HeIRE)
- work in progress

However, for Er tritide films, only 3He
born within the top monolayer escapes!

TEM by Brewer et al, 2004

He Platelets [111]

Er2O3

Er H3 

or Er(OH)3
He Platelets

 ~ 1018/cm3

Trapped He 
or very fine 

platelets

H2O vapor
! !

Er H2
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• Same average energy
of 5-10 keV.
- Power deposited by
tritium betas is E*N(E)

• Energy is deposited
uniformly throughout
the film
- Only 10% of incident
energy is absorbed,

Energy deposition by synchrotron-based
X-rays is similar to tritium betas.

Comparison of Energy Deposition Spectra
Tritium=blues, X-rays=reds (LEX-D code)
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• Experimental Arrangement:

X-ray exposures of ErH2 films were done at the
Advanced Light Source synchrotron (LBNL)

Sample Cell
on Scanner Cooling Block

• Environment:  Water vapor in flowing He.
- Eliminated ozone produced by X-rays in air.

Vertically Scanned

Beamline 3.3.2
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We exposed a stripe across the samples.

#108K
1.3 hr
.17 Torr, 0.8% RH
120 ma-hr

#170K
1.5 hr
10 Torr, 48% RH
120 ma-hr

#168K
7.5 hr
9.5 Torr, 45% RH
680 ma-hr

X-ray sensitive paper
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X-ray exposures in H2O vapor increased
the oxide thickness, similar to betas.

• Nascent-H pickup is expected
to be too small to discern by
thermodesorption.

• Plans (delayed by funding):
- Use D2O
- Expose larger ErH2 area
- Quantify nascent-D by NRA
or TDS
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Hydrogen pickup can be deduced in-situ from
the change in electrical resistivity of the film.
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Measured diffusivity in Pd agrees with
model value for average bubble density.

• The HeIRE technique
uses small volumes &
rapid valve timing.
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Experiments with ErH2 films show lower
diffusivity and significant He trapping at RT.
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• He diffusion through Er2O3 is
assumed rapid.

• Early time dependence is
approximated by draining of
slab (L=He+ range, SRIM):

p(He)≈[4Dt/πL2]1/2

• The re-emission fraction
indicates lots of low-energy
traps:
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17The cause of low early He release from
Er tritide films remains a mystery.

• Films appear to possess a “hydride phase” layer with significant He trapping.
Er films have an Er(OH)3 layer over Er2O3.

(Y.G. Wu et al., Proc. SPIE 4086 (2000) 360
& observed by Roland Schulze, LANL)

Tritide betas appear to assist
- migration of OH through oxide
- conversion of Er(OH)3 to Er2O3?

Er(OH)3 - 326.8 kcal/mole
Er2O3  - 453.6 kcal/mole

Reaction of OH with ErH2 beneath the oxide
should produce more Er2O3 & stable ErH3:
 9 ErT2 + 3 OH = Er2O3 + 7 Er(H,T)3

• The beta-enhanced surface chemistry of tritides can be simulated using
synchrotron X-rays on hydrides.  -- We have observed oxide growth.

• Effects on He migration can be examined by implant/re-emission techniques.
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