Helium Bubble Microstructures in Austenitic Stainless Steels and Metal Hydride Materials

We Put Science To Work

M. H. Tosten Materials Science and Technology

> Contributors: M. J. Morgan S. L. West G. K. Chapman D. Z. Nelson

Outline

- Helium Bubbles in Austenitic Stainless Steels:
 - Basic Helium Bubble Microstructures (Tritium-Tricked Material)
 - Typical nucleation sites and bubble distributions
 - Fusion Weld Heat-Affected Zones (Tritium-Tricked Material)
 - Influence of elevated temperature and solidification stresses
 - Irradiated and Welded Type 304 Stainless Steel
 - Irradiation damage, elevated temperature and solidification stresses
 - Retired Tritium Reservoir
 - Bubbles in the inner wall region following burst testing
- Helium Bubbles in Lanthanum-Nickel-Aluminum Metal Hydrides
 - LaNi_{4.7}Al_{0.3}

Strain contrast from bubbles in the austenite matrix

"Homogeneously" nucleated bubbles and bubbles on dislocations

Large number of bubbles on dislocations

SRNL

Bubbles on incoherent twin boundaries

Bubbles on a high angle grain boundary and at carbide/matrix interfaces

Bubbles in a recrystallized grain and bubble-free zone at the grain boundary

Helium Bubbles in Fusion Weld Heat –Affected Zones

Low heat input (~25 kJ/in²) GMAW overlay (center) and autogenous GTAW stringer beads

Helium Bubbles in Fusion Weld Heat –Affected Zones

Dislocation loops (and bubbles) in the austenite matrix – base material

Helium bubble microstructure in HAZ at 0.5 mm beneath the GMAW overlay

Bubbles on incoherent twin boundaries – base metal and HAZ

Bubbles on carbides in the HAZ – 0.5 mm beneath the GMAW overlay

Bubble growth and coalescence can lead to He embrittlement cracking in HAZs

Helium Bubbles in Irradiated and Welded 304 Stainless Steel

Overlay Weld on a Disc Removed from an SRS Reactor Tank Wall

3.0 inches

Helium Bubbles in Irradiated and Welded 304 Stainless Steel

- Type 304 stainless steel from tank wall of a retired reactor at SRS.
 - 1.3 cm thick plate
 - Thermal and fast neutron fluences(energies > 0.1 MeV):
 - 2.6 x 10^{21} n/cm² inside surface
 - 7.6 x 10²⁰ n/cm² outside surface
 - He⁴ concentration 10.4 appm (inside) 5.0 appm (outside)
 - GMAW overlay
 - 308L filler wire
 - Weld penetration 0.08 mm into base metal

Radiation damage and dislocations in the base material

Helium Bubbles in Irradiated and Welded 304 Stainless Steel – 10 appm He

Dislocation substructure in GMAW HAZ

Helium Bubbles in Irradiated and Welded 304 Stainless Steel – 10 appm He

Large helium bubbles in the GMAW HAZ

~30x more cracking seen in irradiated material compared to tritium-tricked (at the same He level)

Helium bubbles on dislocations and "clusters" of bubbles visible in the matrix

He bubbles on an incoherent twin boundary

Cavity formation at a grain boundary

Lanthanum-Nickel-Aluminum Metal Hydrides

- Metal hydrides used to store tritium
 - Several alloys investigated/conditions
 - LaNi₅
 - $LaNi_{4.75}AI_{0.25}$ 200 day and 5 year samples
 - LaNi_{4.7}Al_{0.3} 21 month bed
 - 50,000 appm He
 - Vacuumed outgassed to remove tritium (centerline temp ~ 300°C, higher near vessel walls)

TEM samples

- Powder crushed and dispersed in acetone
- Deposited on C-covered, Cu grid
- Phases present:
 - $LaNi_{4.7}AI_{0.3}$ matrix, Ni_3AI , La_2O_3 , $La(OH)_3$

Lanthanum-Nickel-Aluminum Metal Hydrides – 50,000 appm He

Small, helium bubbles in a single phase, $LaNi_{4.7}AI_{0.3}$ region

Lanthanum-Nickel-Aluminum Metal Hydrides – 50,000 appm He

Polycrystalline "shard" containing many small bubbles and facetted bubbles/voids

Lanthanum-Nickel-Aluminum Metal Hydrides – 50,000 appm He

Large, facetted bubbles/voids in material near the vessel wall

Helium Bubble Microstructures in Austenitic Stainless Steels and Metal Hydride Materials

- Summary:
 - The development of helium bubble microstructures (e.g., in stainless steels) are extremely dependent on the pre-existing microstructure
 - Dislocation density
 - Precipitate distribution
 - Grain boundary types and area
 - Vacancy concentration
 - Irradiation-induced defects
 - Elevated temperature excursions and the coinciding microstructural changes that occur can lead to significant helium re-distribution and bubble growth/coarsening.
 - Tritium-tricked material is different than irradiated material but cold work may be a substitute for displacement damage.

Helium Bubble Microstructures in Austenitic Stainless Steels and Metal Hydride Materials

Future Endeavors

- SRNL continues to study tritium effects on materials (stainless steels, polymers, hydrides)
- Facilities exist to tritium-charge-and-age materials and to analyze the microstructure/mechanical property relationships that develop as a result of helium ingrowth.
- SRNL is interested in teaming with others to explore new materials/systems

Extra Slides

Why Are Annealed Microstructures More Susceptible to Helium Embrittlement Than HERF Microstructures?

Annealed 75 ksi

HERF 96 ksi

HERF 135 ksi

