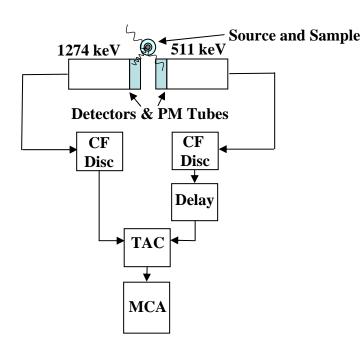
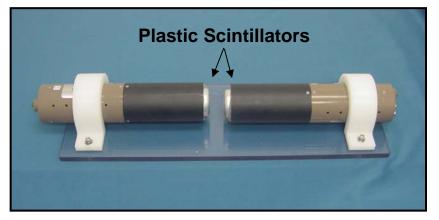
Positron Method For Detection And Measurement Of Helium-3 Bubbles

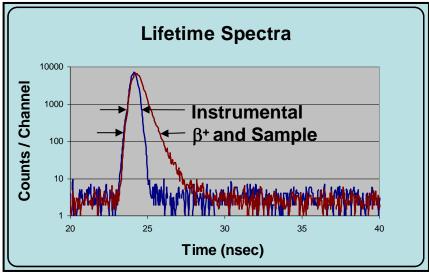
We Put Science To Work


R. A. Sigg and M. H. Tosten Analytical Development and Materials Technology Sections November 2, 2005

INCENTIVE

- Stainless Steels applied for tritium processing and storage
 - Tritium diffuses into the steel
 - Decays to ³He
 - Bubble formation
- Positron Annihilation Lifetime Spectrometry (PALS)
 - Scoping study
 - Potential for earlier detection of defect / bubble formation
 - Plant Directed R&D (PDRD) funded
- Complement previous and ongoing TEM studies


PALS Technique

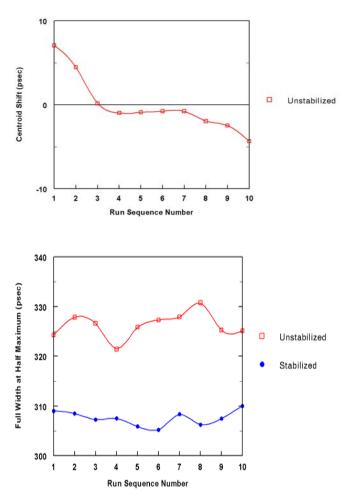


- Expose material to positrons (β⁺) from a ²²Na source
 - Sandwich source between stainless steel samples
 - Exposed surface: ~1 cm radius
- Measure time difference from decay to annihilation
 - Start signal: ²²Na gamma (1274 keV)
 - Stop signal: Annihilation photon (511 keV)
 - Select components for time resolution
 - "Fast-Fast" coincidence

PALS Technique

Time spectra

- Instrumental resolution
 - ⁶⁰Co
 - Coincident gamma-rays
 - No β⁺ diffusion and annihilation delay
 - 0.25 nsec FWHM
- Sample and positron source
 - Broad tail
 - Thermalization
 - Diffusion
 - Trapping
 - Annihilation



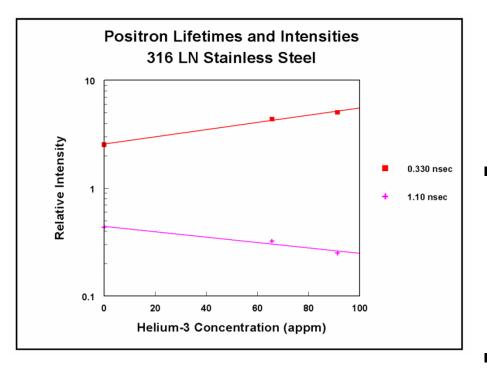
SAMPLES

- 304 and 316LN Stainless Steels
 - Control samples: No tritium exposure
 - Tritium-exposed samples
 - Tritium loaded: Pressurized, 350° C, 2 weeks
 - Ingrowth: -23° C, Duration: 6 to 9 months
 - Tritium removal: Vacuum, 450° C, 3 weeks
 - ³He Concentrations
 - Measured at PNNL
 - 304: 68.1 and 85.6 appm
 - 316LN: 65.7 and 91.3 appm

Stability

- Gain instability
 - Multiple spectra
 - Centroid shifts

- Corrected
 - Rebinned data
 - Constant centroid
 - Improved FWHM

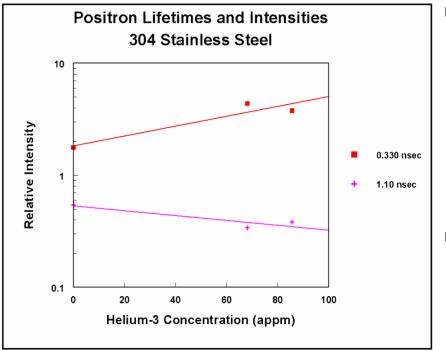


DATA ANALYSIS

- Spectra comprised of
 - Sum of several discrete exponential decay components
 - Sample
 - Source
 - Convolved by Gaussian broadening function
- Software
 - Lifetime 9
 - Least squares fit
 - Lifetimes
 - Intensities
 - Background
 - Zero offset channel (T₀)
 - J. Kansy, Nucl. Instr. Meth. A374: 235 (1996)
 - Maximum Entropy Lifetime (MELT) Method
 - · Yields more consistent lifetime estimates with fewer counts
 - Input to LT9 to reduce free parameters
 - M. Shukla et al, Nucl. Instr. Meth. A 335: 310 (1993)

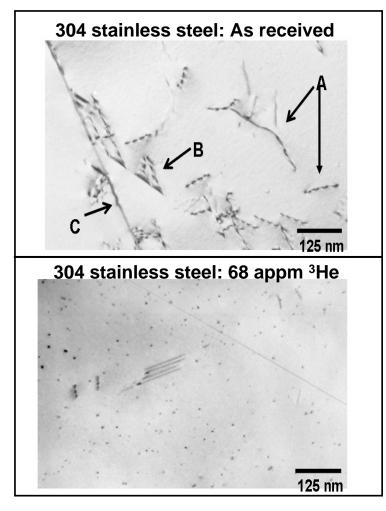
PALS Results

PALS


- Best for lifetimes >~ 0.050 nsec
- Data for 0.024 nsec not shown
- No clear changes in observed
 0.165 nsec lifetime component

Trendlines show changes

- 0.33 and 1.10 nsec components
- Intensities vary with ³He concentration
- Relatively few samples
- Low concentration range


PALS Results

- Trendlines again show changes
 - 0.33 and 1.10 nsec components
 - Intensities vary with ³He concentration
 - 0.33 component consistent with microvoids of ~15 vacancies
- However:
 - Relatively few samples
 - Low concentration range

TEM Results

- Analyzed helium bubble distribution
- 304 stainless steel
 - Helium bubbles observed
 - In the matrix (grain interiors)
 - On matrix dislocations: Associated with 10-20 nm diameter dislocation loops
- 316LN stainless steel
 - Surprisingly, no discernable helium bubbles were observed
 - Slight contrast variations at some dislocations may indicate possible bubble formation
 - No actual bubbles were observed

CONCLUSIONS AND RECOMMENDATIONS

PALS Method

- Applied to 304 and 316LN Stainless Steels
- Scoping study shows changes with increasing ³He concentration
- Recommend
 - Larger number of samples to confirm results
 - Higher ³He concentrations than those available for this study
 - Determine a "true" number density of bubbles/loops in the 304 specimens for comparison with PALS data
 - Investigate differences between PALS and TEM results on 316LN

