Initial observations of He Bubbles in Palladium

Hydrogen and Helium Isotopes in Materials Working Group Albuquerque, NM

Paul G. Kotula¹ and David Gelles²

¹Sandia National Laboratories, Albuquerque, NM

²Pacific Northwest National Laboratory, Richland, WA

Outline: Initial Observations

Specimen Prep/Microscopy

- In situ FIB lift out (He Implanted Pd)
- "Powder in tube" method (Tritided Pd)
- RAD: JEOL 2000FX, TEM/STEM, EDS, digital camera
- Non RAD: Tecnai F30ST, TEM/STEM, HAADF, EDS, digital cameras, EFTEM
- He-Implanted Pd foil
- Tritided Pd powders
- Conclusions

Dual-Beam FIB / SEM / Micromanipulator

Pd powder prep procedure

- Entire procedure done in a Tritium envelope
- Powder placed in brass tube
- Tube filled with epoxy (Gatan G1, Epotec 353ND)
- Epoxy vacuum infiltrated
- Cured at 50°C overnight or at 100°C for a few minutes
- Sliced/lapped/polished to 100 μ m thickness
- Dimple polished to 10-20 μ m
- Argon ion milled to perforation
 - Low angle (4 degrees) ion-milling from both sides until perforation in the center. Finish off with <2kV ions.
- It is unlikely that the electron transparent powder saw any mechanical deformation from the sample prep process.

He-implanted Pd

Underfocused BF Image

ADF STEM Image

Note: Coalescence of bubbles on grain boundaries

Comparison of ADF-STEM and Underfocus BF Images

Tecnai F30-ST

Bubble density measurement in helium injected Pd foils

Bubble density/swelling in helium injected Pd foils

• Quantification of bubble density/swelling

Area	Depth (nm)	Mean diameter (nm)	Swelling (%)	Density (cm ⁻³)
1	130	1.12	0.28	3.65x10 ¹⁸
2	180	1.15	0.23	2.73x10 ¹⁸
3	250	1.17	0.34	3.74x10 ¹⁸
4	310	1.29	0.46	3.94x10 ¹⁸

Therefore, TEM results are in agreement with previous measurements.

First Observations of Tritided Pd powder

~1-10nm bubbles

Distribution of bubble sizes observed

Larger bubbles observed on grain boundaries

Distribution of bubble sizes Larger bubbles on grain boundary

Apparent faceting of bubbles in thicker regions

Bubble size distribution

Very large bubble

30nm bubble

Conclusions

- FIB (in-situ lift out, low kV Ar-ion milling) can be used effectively to prepare high-quality TEM sections of FCC metals with nm-sized bubbles
 - Less chance of having contamination issues
 - Much faster specimen preparation
 - Bubble density measurements
- "Powder in tube" also an effective method for preparation of tritided powders
- Tritided Pd
 - -Low kV Ar-ion final thinning essential
 - Distribution of bubble sizes 1-30nm in a limited sampling with some faceting and large bubbles on some grain boundaries
 - Larger bubbles due to coalescence?

