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Objective 

Show morphology and distribution of 
hydrogen bubbles formed in Erbuim 

hydride films and how this may 
determine the distribution of 3He, using 

neutron small-angle scattering 
measurements and transmission 

electron microscopy.  
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Topics

The neutron generator:
A small-linear deuterium ion accelerator with a deuterium/tritium target utilizing the 

d+T and d+d fusion reactions to generate neutrons.

Erbium hydride formation and the release of 3He:
The decay of tritium to helium-three and the subsequent release of helium.  We 

want to understand the factors governing helium release.

The small-angle scattering experiment:
Neutrons provide good light element contrast.  The small-angle geometry provides 

a probe for structure between 1 and 100 nm.

A remarkable result:
Hydride formation introduces plate-like defects along preferred directions and 

distances to form a long length scale quasi-lattice.  These may serve as 
retention sites for helium.

The effect may be observed in other metal hydrides:
Similar, reversible effects may have been observed in palladium hydrides.
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Applications of Erbium Tritide films in Neutron Generators

• A neutron generator is a small electrostatic 
accelerator incorporating an ion source, ion 
optics and a target in a compact vacuum 
envelope.

• Deuterium ions (D+) derived from a plasma 
source are accelerated in electric fields to 
impact tritium atoms (T) in a target to yield 
neutrons through nuclear reactions,

 to provide 14 or 2.5MeV neutrons, respectively.
• They are used in,

– Bore hole logging
– Medical research
– Defense systems
– Contraband detection systems

• There are strict requirements of the defined 
operational characteristics and life.

  

� 

d + T →α+ n + 17.6MeV
  

� 

d + d→3 He+ n + 3.3MeV
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Target films are ErDxTy 

• Erbium hydride, as is the case with all rare earth 
hydrides, possesses the ability to 
accommodate hydrogen concentrations up to 
three times the atomic concentration of erbium.

• The dihydride phase assumes the CaF2 
structure with hydrogen atoms occupying 
tetrahedral sites.

• Because tritium is radioactive (τ1/2 = 12.3 yr), 
these binary hydride systems transform into 
ternary systems with time.

• 3He is generated at a rate given by the time rate 
of decay of tritium and may be expressed as
 G(t) = No(1 – e-λt)

• It is well known that much of the 3He generated 
does not readily diffuse from the film, but 
remains trapped within the polycrystalline 
material.

• Trapping mechanism is not understood.
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A fundamental understanding of helium release is required 
to predict the expected life of neutron generator. 

• He is eventually released into the vacuum envelope.
• Significant variation in point of release.
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Program Objective

• Provide a fundamental understanding of the 
behavior of 3He in erbium dihydride systems.
–  In order to optimize target film characteristics 

such that we minimize 3He release from the film, 
i.e., maximize 3He retention.

• Determine how process parameters influence 
this behavior.
– Materials properties are driven by structure, 

which in turn can be influenced by process 
parameters.
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Three known hydride phases in Erbium

? α: 
– a solid solution phase of hydrogen in the hcp Erbium lattice.
– H/Er < 0.5.

? β:
– a distinct chemical entity, ErH2.
– Forms an fcc (CaF2) lattice with hydrogen at the tetrahedral sites.
– 7% volume increase hcp->fcc.
– H/Er ≈ 1.8 to 2.2.
– Coexists with the α and γ phases

? γ:  H/Er ≈ 2.9 to 3.0
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Erbium film and hydride formation

• Erbium film:
– Electron beam physical vapor deposition at 

450oC 1 nm/sec. 
– A 100nm Mo layer deposited on silicon 

substrate {100}. 

– A 500nm Er layer deposited onto the Mo layer. 
• Hydride formation:

? β-phase: 
• ErT2 (Savannah River Technology Site).

• ErD2 (Los Alamos National Laboratory).
– tritium pressure of approximately 200Torr.
– temperature of 475oC. 

Silicon Substrate {100}
Molybdenum, 100 nm

Erbium
500 nm
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Summary

• Neutron generator technology plays a key role in 
a wide range of applications including national 
defense and security.

• Understanding the physical mechanism of 
neutron tube target aging is critical to our 
mission.

• The application of various neutron scattering 
techniques provides not only a unique way of 
investigating 3He behavior in materials, but 
provides critical data necessary in the 
development of a fundamental understanding of 
such systems.
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Fundamentals of the Small-angle Scattering Technique

• A schematic of a typical small-angle scattering instrument:  

• An x-ray or neutron source is collimated into a beam with defined direction, 
typically using two pinholes.  

• The beam is scattering from the sample and the scattering is detected as 
scattering intensity as a function of scattering angle, 2θ, on a two dimensional 
detector.

2D Detector
Sample

Collimator

2θ

Source
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Small-angle Scattering Probes Large Scale Structure

• Scattering due to fluctuations 
in scattering length density. 

• Scattering intensity measured 
as a function of momentum 
transfer, Q.

• Inverse relationship between Q 
and real space length scales 
probed.

• Small-angle (low-Q) scattering 
probes large length scales.

• Scattered intensity, Fourier 
transform squared of structure, 
ρ(r).
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SAS as a Structural Probe

• X-ray and neutron SAS:
–  structures on length scales of 1-100 

nm. 
– Bulk properties.
– Three-dimensional structures.
– Particulate and continuous phase 

morphology.
– Neutrons:

• Useful to study bulk samples 
because they penetrate matter 
easily.

• Sensitive to light elements, such 
as hydrogen, carbon and 
nitrogen.

• Sensitive to isotopes, such as 
hydrogen and deuterium.

– X-rays:
• Electron scattering—sensitive to 

atomic number.
• High fluxes.

Reflectometry

X-ray and Neutron
Small-angle scattering

Dynamic and Static 
Light Scattering

X-ray and Neutron
Ultra Small-angle Scattering
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Neutron scattering: Light Element and Isotope Contrast

Hydrogen
Isotope

Scattering Length
(b) in (fm)

1H -3.7409 (11)
2D 6.674 (6)
3T 4.792 (27)
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• Good light element contrast and isotopic labeling.
• Light and heavy elements have similar scattering lengths.
• Good sample penetrability and no radiation damage.
• Wavelengths comparable with atomic and molecular length scales.
• Energies comparable with atomic vibrations and molecular dynamic energies.
• Atomic form factor constant in Q.
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Scattering Length for  X-rays
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– X-ray scattering 
lengths monotonic 
with Z ∝ρ.

– Large difference in 
scattering length 
between light and 
heavy elements.

– X-ray scattering 
lengths large.

– X-ray form factors a 
function of Q.

0 A-1
1.57 A-1
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Dynamic
collimation
aperture

Sample position
Removable spools

Scattering
tube

Collimation
tube

Optical
bench

T-zero chopper
Frame overlap chopper

Alignment mirror

Detector

Beamstop
Collimation
aperture
gamma shield
& attenuator

chopper monitor

Incident
beam
monitor

Guard and variable
collimator apertures

LQD: a state of the art TOF-SANS

2 min - 6 hoursTypical Measurement Times

Air, vacuum, closed cycle temperature
control, pressure to 3 KB, shear cellSample Environments

Partially-coupled liquid H2 at 20 K.Moderator
Two dimensional proportional counterDetector

10 x 13 mmTypical Sample Size
0.0023 - 0.5 Å-1Q-range

4 - 60 mradAngular Range
2 - 15 ÅWavelength Range

LQD Specifications • Brightest pulsed spallation cold 
moderator.

• Advanced background 
suppression.

• Advanced optics and count rate 
control.
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In situ structure and aging with small-angle neutron scattering

• Small-angle neutron scattering: 
– Sample chamber sealed with 

Conflat™ flanges containing fused 
silica neutron windows.

– 18-27 samples mounted in 
transmission geometry along the 
beam by the silicon support.

– Silica and silicon are nearly 
transparent to neutron beam. 

– Neutrons are non-destructive.
• Samples:

– ErT2 (β-phase): evolution of structure 
as T→3He+β-+ν, forming ErHexTy.

– ErD2 to check for loading effects.
– Er and Si baseline studies.

• In situ structural and aging studies:
– Evolution of structure determined 

from 3 months to 2-1/2 years by 
measuring samples measured in situ. 

– Angular studies for three-dimensional 
imaging.
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Erbium Hydride Structure—a surprise!

• No diffraction from 
Si <100>—above the 
Bragg limit for λ.
• A few diffraction 
spots in Erbium 
films.
• Cruciform Patterns 
Observed in all 
Erbium Hydride 
Samples:

– Arms at 90º.
– Sometimes a ropy 
appearance.
– Sometimes distinct 
diffraction spots.
• Very low Q values

– implies large repeats 
~10’s nm.
• Oriented structure.
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Hydriding process introduces a large scale quasi-lattice into 
the film

Given the properties of the Fourier 
transform we must be looking at 
families of stacked planes at 90º 
viewed edge on.

• Scattering Intensity— 
Product of four terms: 

• N: number of objects.
? Δρ = ρA - ρB: scattering 
length density contrast.
• V: object volume.
• P(Q): object form factor.
• S(Q): object structure 
factor.

� 

I(Q) = NΔρ2V 2P(Q)S(Q)

A DISK TRANSFORMS TO A ROD
STACKED DISKS 
TRANSFORM TO STACKED 
DISKS

NΔρ2S(0)

Q
0

(2π/d)
4321-1-2-3-4-5 6

y

z

xR

Qz

Qx

Qy

~ 1/R

d

2π/d
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Strong Selection for planes viewed perpendicularly

• Ewald sphere change size (wavelength).
• Orientation.
• See different families of planes

2π/λ
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With the evolution of 3He the diffraction becomes stronger

 

• Same sample three months and 2.5 years after hydridization.
• Three months: 

– Ropy appearance.
– Broad, poorly resolved diffraction peaks.
– Peaks close to equal intensity.

• 2.5 years:
– Diffraction peaks well resolved.
– Some peaks are significantly brighter.
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A  long scale quasi-lattice

• Lattice spacings:
– large ~100 Å.
– Vary with different 

batches.
– No obvious d-preference.
– Ambiguous as to intra 

and/or inter sample 
variability.

• Changes with time:
– Observed only in ErT2.

– Diffraction peaks more 
distinct as 3He 
accumulates.

• Indications:
– Defects introduced by 

hydridization.
– 3He may accumulate 

in defects.
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Bubble content:  10 GPa plausible, but no proof. 

• Calculation is subject to uncertainties.
• Based on observations from other systems, 

Bubble pressure ≈ 10 GPa.
• Assume no isotope effect.
• Difficult to determine bubble content.

nucleus b 
(fm)

ρ (1010 cm-2) Δρ2 
(1024 
cm-4) (ErX2)

D 6.67 11.5 6.49 25.1

T 4.79 8.24 5.33 8.64

3He 5.74 7.69  5.57

Er 7.79 2.58   

He EOS: PRL 60:2649

H2 EOS: Nature 383:702
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TEM:Transverse film sections show bubbles on the {111} 
planes

a) Bright-field transmission electron micrograph
b) Selected-area diffraction pattern close to <110> zone axis

•  Two sets of plate-like helium bubbles are visible, at an angle of ~72°
•  Helium bubbles appear to lie on {111} planes

a bb

TEM Samples:
• Wafer with films cleaved into strips
• Strips mounted in sandwich configuration
• Cross-section cut, ground and polished
• Sample dimpled until film thickness ~ 10 µm 
• Ion milled at ~3.5 - 4° and 5kV until perforation 
• Examined in JEOL JEM-2000FX TEM at 200 kV
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Issues

• These results came as a surprise.
• Issues:

– What is determining the preferred orientation?
– Why are there preferred long range spacings into a quasi-

lattice?
– Why is there four-fold symmetry in the diffraction pattern?

• Supporting data (TEM and XRD) suggest “platelet” like 
structure populating the (111) planes in similar samples.

• Possible explanation: Defects are controlled by stress field 
introduced by Si substrate.
– Si (100) surface.
– Si cut along (011).
– Large Mo modulus—could transmit stress between Si and 

ErH2 lattice.

(100)
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Conclusions

• SANS 
– provides contrast not not available by other means.
– Neutron penetrability allows studies of samples in 

situ.
– Provides a non-destructive probe. 

• Hydride formation: 
– introduces plate-like defects along preferred directions and 

distances to form a long length scale quasi-lattice.  
– These may serve as retention sites for helium.


