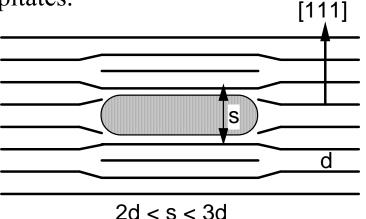

### **Physics of He Platelets in Materials**

Don Cowgill, SNL, Livermore CA USA H and He in Materials Workshop, Albuquerque, April 14, 2005



- Pd vs Er system
- Testing with XRD data
- Other materials & future efforts


*"In the spirit of a workshop, this is work in progress."* 

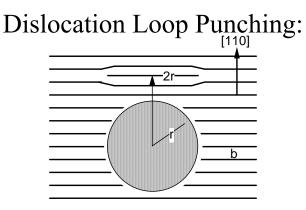


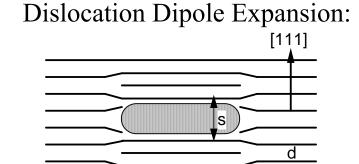


# Thin disk-shaped He platelets can exist with dislocation dipoles.

• In FCC structures, the [111] planes provide the greatest "space" for interstitial precipitates.




- Dislocations are formed when adjacent planes are displaced by d/2.
- The two dislocations remain attached to platelet provided adjacent (111) planes are concave toward platelet.
- The dislocations leave when the adjacent planes become straight.


The platelets are stable if they grow by radial expansion keeping s < 3d.



0504 dfc

# The pressure within the platelet has components due to surface and strain energies.

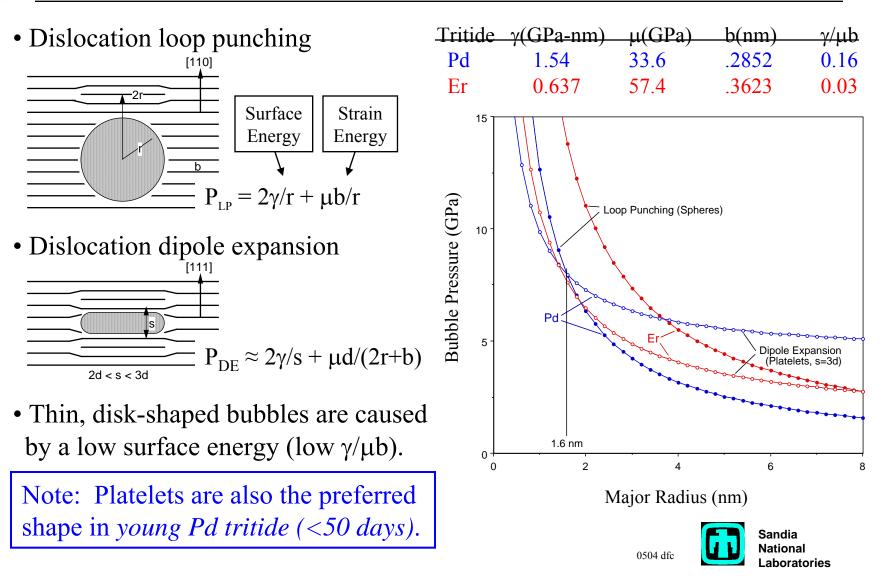






Surface Energy: $p_e dV = \gamma dA$  $p_e \pi r^2 b = \gamma 2\pi r b$  $p_e \pi[(r+b)^2 - r^2] s = \gamma 2\pi[(r+b)^2 - r^2 + (r+b)s - rs]]$  $p_e = 2\gamma/r$  $p_e \pi[(r+b)^2 - r^2] s = \gamma 2\pi[(r+b)^2 - r^2 + (r+b)s - rs]]$ Lattice Strain: $stress = \mu strain$  $p_s \pi r^2 = \mu [(b/2)/d] 2\pi rd$  $p_s \pi[(r+b)^2 - r^2] = \mu [(d/2)/b] 2\pi[(r+b) - r]b$  $p_s = \mu b/r$  $p_s = \mu d/(2r+b)$ Bubble Pressure: $p = p_e + p_s$ 

$$p_{lp} = 2\gamma/r + \mu b/r$$


$$p_{de} = (2\gamma/s) \left[ (2r+b+s)/(2r+b) \right] + \mu d/(2r+b)$$

$$p_{de} = 2\gamma/s + \mu d/2r, \text{ at large } r$$



0504 dfc

## The bubble shape and growth process depend on the tritide's mechanical properties.



## This bubble shape condition holds for precipitates in a number materials.

| Material | γ(GPa-nm) | µ(GPa) | b(nm)     | 2γ/μb | shape                  |
|----------|-----------|--------|-----------|-------|------------------------|
| ErT      | 0.637     | 57.4   | .3623 fcc | .061  | platelets              |
| ScT      | 0.954     | 54.0   | .3382 fcc | .104  | early platelets, then? |
| TiT      | 1.39      | 76.2   | .3111 fcc | .117  | platelets & elongated? |
| Ni       | 1.72      | 76.5   | .2490 fcc | .180  | spheres?               |
| ZrT      | 1.48      | 32.6   | .3522 fcc | .258  | spheres                |
| PdT      | 1.54      | 33.6   | .2852 fcc | .322  | spheres                |
| Be       | 1.10      | 146    | .359 hex  | .051  | platelets              |
| Ti-α     | 1.39      | 40.1   | .291 hex  | .238  | platelets              |
| W        | 2.22      | 158    | .273 bcc  | .103  | platelets              |
| V-α      | 1.95      | 47.4   | .263 bcc  | .312  | spheres                |
| Nb-a     | 1.90      | 38.2   | .285 bcc  | .350  | spheres                |

- Surface energy/strain energy ratio for spherical bubbles
- Platelets are prefered for small r, where  $s/2r > 2\gamma/\mu b$ .



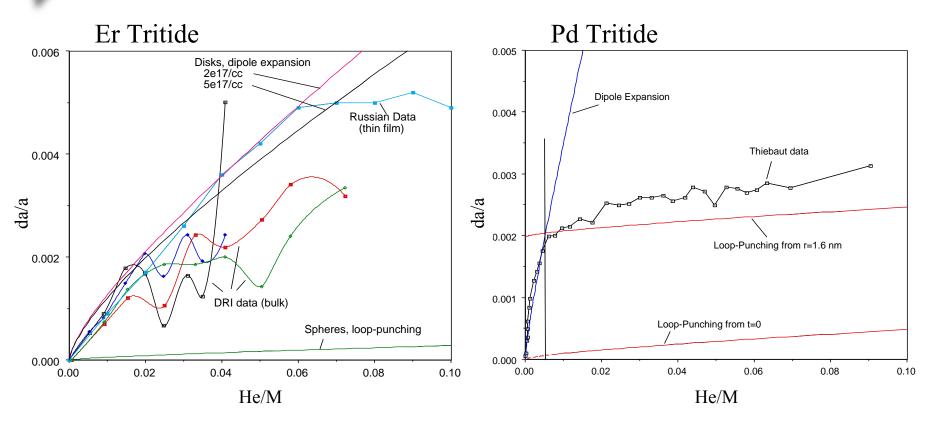
### Testing of pressure formulation is provided by lattice dilation data on aged tritides.

- Tensile stress created by the precipitates produces a positive da/a.
- <u>Spherical bubbles at Loop Punching pressure:</u> Hydrostatic tensile stress balances bubble pressure

 $\begin{array}{ll} p_{LP}(\Delta V/V) = B^*(3 \ da/a)_{LP}, & B^* = bulk \ modulus \ of \ aged \ material \\ where \ \Delta V/V = (4/3) \ \pi r^3 \ n_B, & n_B = bubbles/cm^3 \end{array}$ 

$$(da/a)_{LP} = p_{LP}(\Delta V/V) / 3B^*,$$

• <u>Platelets at Dipole Expansion pressure:</u>

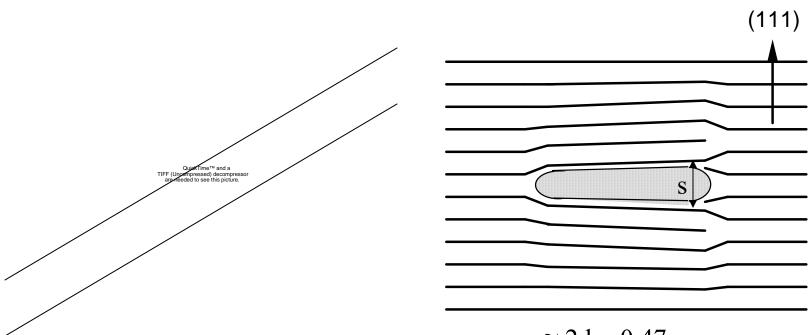

[111] tensile stress balances platelet pressure, 4 components Projection along [100] cubic axes =  $1/\sqrt{3}$ 

 $p_{DE}(\Delta A/A) 4/\sqrt{3} = E^*(da/a)_{DE}, \quad E^* = Young's modulus of aged material where <math>\Delta A/A = \pi r^2 (n_B/4)^{2/3}, \quad n_B = bubbles/cm^3$ 

$$(da/a)_{DE} = 4 p_{DE}(\Delta A/A) / E*\sqrt{3}$$



#### Lattice dilation data for both ErT and PdT show the effects of rapid platelet growth.




- Neither can be explained by dislocation loop punching alone.
- The model produces the correct transition point for the Pd system.
- How are platelets formed?

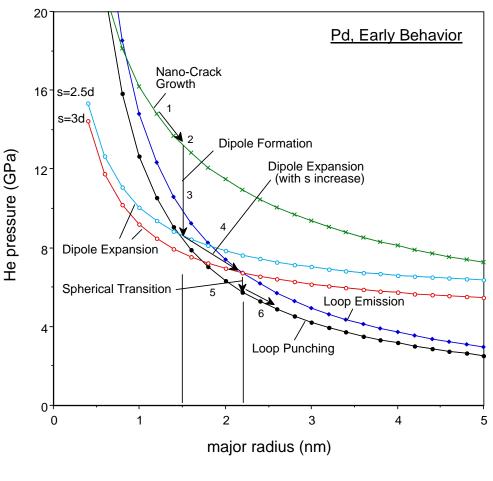


### **T**ransition of a nano-crack to a platelet can begin with a dislocation near the crack tip.

#### $PdT_{0.6}$ aged 3 months

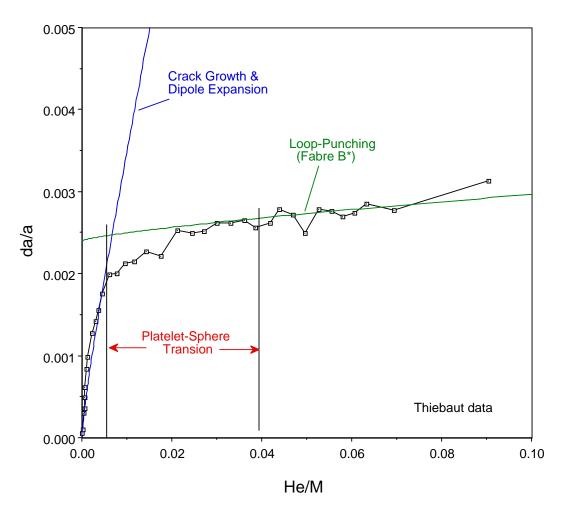


 $s \approx 2d = 0.47 \text{ nm}$ 


0504 dfc

HR-TEM [110] view (Thiebaut)



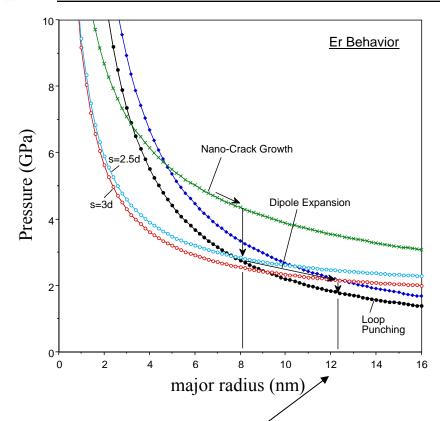

## The early growth of bubbles in PdT appears to have several stages.

- 1. He atoms collect in (111) planes and open nano-cracks (Griffith):  $P_{nC} = 4\gamma/s, s = 4[\gamma(1-\nu)r/\pi\mu]^{1/2}.$
- 2. Dislocation dipoles form when the nano-crack gap reaches s=2d.
- 3. Platelet pressures drop as their thicknesses increase to s≈2.5d.
- 4. The platelets expand radially until s=3d, where the dipole escapes.
- 5. [110] loops are emitted as the platelets transition to spheres.
- 6. Spherical bubbles continue to grow by normal loop-punching.



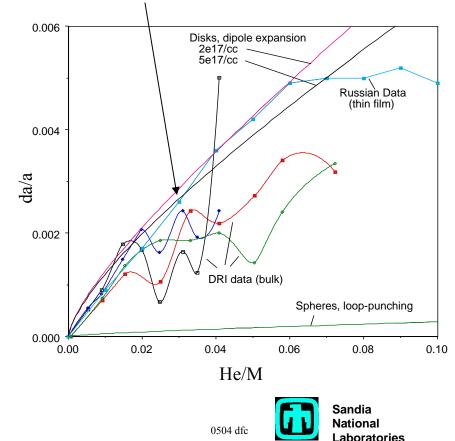


# Lattice dilation "details" of PdT appear to support the existence of multiple stages.




- Initial Griffith crack growth at high pressure will produce an even rise.
- The bubble volume increases by 8X during the transition from platelets to spheres.
- Emitted dislocations must remain trapped between "bubbles".
  - Bubble source volumes remain constant!)

0504 dfc




#### The He precipitates in Er tritide remain 2-dimensional throughout life.



• The linking of large platelets by should begin prior to the spherical transition, where  $\Delta A/A \approx 3$ .

• Pressure changes during transions from nano-cracks to platelets may explain oscillations in bulk da/a data.



#### Work on platelet structures is continuing.

- Thin (111) platelet bubbles can be associated with nano-cracks or dislocation dipole structures.
- Additional theoretical work is examining
  - formulations of platelet characteristics
  - linking of platelets by inter-platelet fracture
- Continued testing will examine
  - the bubble pressure and spacing distribution from 6 month-old Pd tritide (in spherical transion stage).
  - observed bubble shapes in other materials (e.g. SiC).
  - observed bubble shapes in implanted materials.
  - early decrease of Pd tritide plateau pressure (better data needed).
  - proposed TEM studies in selected materials to characterize shapes and identify transition points.
- A comprehensive effort to obtain model-testing data should improve early bubble characterization in PdT.



### The bubble pressure and spacing distribution for young PdT deviate from spherical growth.

• A platelet shape will lower the 0.08 computed bubble pressure at 0.5 yr 4 ýr 7 yr - from 10 to 8 GPa, 0.06 and produce better agreement with F(R), normalized the pressure deduced by NMR. 0.04 0.5 yr 12 Loop-punching 10 calculations 0.02 Bubble Pressure (GPa) 8 0.00 100 150 Source Radius, R(Å) Isolated bubbles • It will also change the bubble spacing distribution computed for Interacting bubbles 2 the 0.5 yr sample. 0 -0 20 40 60 80 Sandia Bubble Radius (A) National 0504 dfc aboratories

200

| Technique                                             | Information E                                                                                                                                                 | xisting Pd Data (agree, disagree)                                                                                                          |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| TEM:<br>Brewer, Gelles (PNNL)                         | He bubbles<br><u>Number density</u> , size, distributions<br>Profiles, effect of intrinsic defects of<br><u>Onset of <i>IB-fracture</i>, μ-fracture netwo</u> |                                                                                                                                            |
| NMR:<br>Curro (LANL), Cowgill                         | He atoms in bubbles<br>He density distrib. (& pressure from<br>Changes with temp, anneal, phase<br><u>Effect of bubble interactions / IB-fract</u>            | $\Delta v_{He} / \Delta \Phi$ - Cowgill                                                                                                    |
| Swelling:                                             | Integrated bubble volume, $\Delta T \& \Delta \Phi$ ef (Onset of IB-fracture?)                                                                                | ffects $\Delta V/V$ (He/M) - Guthrie, Abell                                                                                                |
| XRD, PCT:<br>Majzoub, Walters (SRNL)                  | Lattice strain, mean bubble press., $\Delta T$ PCT shifts (plateau, boundaries)                                                                               | effects da/a - Thiebaut<br>∆p <sub>H</sub> - Guthrie                                                                                       |
| Early He Release (ERF):<br>Cowgill, Mintz (LLNL)      | He escape depth, bubble profile<br><u>Dependence on nucleation condition</u>                                                                                  | ERF - Meyer                                                                                                                                |
| He Thermodesorption:<br>Walters (SRNL)                | <u>μ-fracture network percolation</u><br>Effects of powder particle size                                                                                      | Crit. He/M - Coronado, Meyer                                                                                                               |
| He-Implanted Material:<br>Hertz                       | TEM, NMR, swelling for growth & frac<br>XRD for lattice strain; n-indent for E                                                                                | ture data; ∆V/V(He/M) - Pontau, Hertz<br>* n <sub>B</sub> - Gelles                                                                         |
| Nano-indentation:<br>Moody, Knapp                     | Mechanical props. of un-aged & <u>aged</u><br>Elastic modulus of composite                                                                                    | $\begin{array}{ll} \underline{material} & c_{ij}(t_o) \ \ - \ (Wolfer), \ c_{ij}(t) \ \ - \ Schwarz \\ E^*(t_o) \ \ - \ Fabre \end{array}$ |
| He Implant/Re-emission:<br>Cowgill                    | He diffusivity, <u>pairing energy</u><br><u>Temperature dependences</u>                                                                                       | D <sub>He</sub> - Cowgill                                                                                                                  |
| SAXS/SANS/PAS/EXAFS/EELS:<br>Majzoub, Browning, Hertz | Bubble data?<br>(Onset of bubble coalescence / IB-frac                                                                                                        | R(EXAFS) - Thiebaut<br>cture?)                                                                                                             |



