Official Use Only

First Principles (Density Functional Theory) Calculations on PdT_{0.65} and ErT₂

Dwight Jennison

Surface and Interfaces Science Department 1114 Sandia National Laboratories* Albuquerque, New Mexico 87185-1415

E-mail: drjenni@sandia.gov

May be exempt from public release under the Freedom of Information Act (5 U.S.C. 552), exemption number and category: <u>Exemption 2, Sensitive Information</u>

Department of Energy review required before public release Name/Org: <u>Name Here and Organization name</u> Date: <u>Mon Day, Year (date on R&A form)</u> Additional Guidance (if applicable): <u>None</u>

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

<u>Outline</u>

PdT_{0.65}:

- Are there substantial fluctuations in bulk T-density at 300K? (Yes)
- Does T surface segregate? (Yes) Are there substantial fluctuations in the surface T concentration at 300K? (Yes)
- Does He prefer to diffuse through low-T regions? (Yes) What is the activation barrier in the bulk? (0.22 eV)
- Can we compute the fluctuations at 300K? (Yes, using DFT-MD and a new ASCII code)

ErT₂:

- Are there basic principles for using dopants to trap He and reduce early release and postpone catastrophic release? (Yes)
- Do we have numerical results? (Yes, substitutional Cu traps six or more He, but Cu also forms inclusions which can also trap He)
- Can we find a mixture that will produce both point and inclusion defects? (Yes, Cu inclusion trapping and Ag substutional trapping are being studied now)

Method

Density Functional Theory (DFT) in the Generalized Gradient Approximation (GGA) of the PBE form.

The ASCII SeqQuest gaussian based code and pseudopotentials of Peter Schultz (9235). See <u>www.cs.sandia.gov/~paschul/Quest/</u>.

Use supercells [i.e., $Pd_{32}T_{21}$ (65.6%) and $Er_{32}T_{64}$]

This gives the structural energies at 0 K. Compare these for stability at 300K (need 0.7 eV energy differences to be stable at RT).

Use the nudged elastic band (NEB) method to find diffusion barrier paths and heights.

Palladium Tritide Bulk Results

LATTICE CONSTANTS, theory:

Pd bulk: 3.89 Å (fcc) PdT_{0.65}: 4.05 Å (+ 4% is important for diffusion barrier)

T-DISTRIBUTION WITHIN BULK PdT_{0.65}:

Clustered-T: Relaxed cell energy = -1887.744 Ry Random-T spread out): Relaxed cell energy = -1887.756 Ry (diff = 0.2 eV, 1 Ry = 13.6 eV)

There exist RT fluctuations in T density (need DFT-MD simulations, now available with the parallel Quest code)!

Palladium Tritide Diffusion Results

He diffusion, theory:

- The He diffusion barrier through LOW-T regions is 0.22 eV, in "fair agreement with experiment" (?) (see Don Cowgill)
- The path is NOT octahedral-tetrahedraloctahedral, but is direct, w/He passing between two Pd atoms

Palladium Tritide Surface Results

SURFACE SEGREGATION FOR PdT_{0.65}(111):

surface T/Pd ratio			E(Ry)	∆ E(eV)
0.625	Relaxed Energy =	-1886.828	0.00	(~bulk)
0.75	Relaxed Energy =	-1886.842	-0.20	
0.875	Relaxed Energy =	-1886.861	-0.46	
1.00	Relaxed Energy =	-1886.885	-0.80	
(room	T fluctuating!)			

Should do DFT-MD at 300K to determine AVERAGE surface T density!

Erbium Tritide Bulk Results

LATTICE CONSTANTS, theory(experiment): Er bulk: a = 4.00(3.56) Å (hexagonal) ErT₂: 5.11(5.11) Å (CaF₂ structure) (expansion = 28%)

BASIC PRINCIPLE OF He TRAPPING:

Use an element with:

- 1) a smaller metallic radius than Er and,
- which does not bind strongly to it (e.g., trivalent Er, radius = 1.78 Å, vs. *monovalent* Cu, radius = 1.28 Å)

This way you form a NN region with a *lower* valence electron density

Erbium Tritide He Trapping Results

Energetics of He NN's to substitutional Cu vs. He's (i.e., in bulk)

Number of He in Cell (NN to Cu or not)	Delta E	
1: 0NN, RELAXED CELL ENERGY = -1778.51 Ry	0.0 eV	
1NN: RELAXED CELL ENERGY = -1778.58	-0.9 (RT stable)	
2: 0NN, RELAXED CELL ENERGY = -1784.13	0.0	
2NN, RELAXED CELL ENERGY = -1784.19	-0.7 (RT stable)	
3: 0NN, RELAXED CELL ENERGY = -1789.73	0.0	
3NN, RELAXED CELL ENERGY = -1789.91	-2.4	
4: 0NN, RELAXED CELL ENERGY = -1795.35	0.0	
4NN, RELAXED CELL ENERGY = -1795.49	-1.8	
6: 4NN, RELAXED CELL ENERGY = -1806.5	0.0	
6NN, RELAXED CELL ENERGY = -1806.6 Ry	-1.4 eV	

Erbium Tritide Cu Inclusion Results

TENDENCY TO FORM A Cu INCLUSION?

AS Er SUBSTITUTIONAL DEFECTS:

- Four Separate Cu: CONVERGED ENERGY (Rydberg) = -1880.96
- Four Clustered Cu: CONVERGED ENERGY (Rydberg) = -1880.94 (NO)
- AS ONE Er SUBSTITUTIONAL + 3 T SUBSTITUTIONAL (have NEAR IDEAL Cu-Cu spacings):
- Four Separate Cu: CONVERGED ENERGY (Rydberg) = -2032.78
- Four Clustered Cu: CONVERGED ENERGY (Rydberg) = -2033.39 (∆E ~ 7eV)
 DEFINITELY YES

Future Plans

For Pd-T:

Perform DFT-MD calculations, using the new parallel Quest code, to study bulk and surface fluctuations in Tconcentration; determine and average surface T-density.

For Er-T:

Study He trapping at the Cu inclusion interface.

Study substitutional He traps which do not make inclusions, e.g. maybe Ag (radius = 1.44 Å).

Study He bubble energetics ["coins" between (111) planes which make (111) bubble surfaces].

- For Pd-T, Don Cowgill and Jon Zimmerman
- For Er-T, Larry Pope and his department, and Dick Damerow
- For the SeqQuest ASCII code and the Er pseudopotential, Peter Schultz (9235); for testing the new parallel version, Thomas Mattsson (1674); for developing new functions that produce accurate surface energies, Ann Mattsson (9235)

Contact: drjenni@sandia.gov

