
J. A. Knapp,
W. R. Wampler, J. C. Banks, and J. F. Browning

Sandia National Laboratories

Working Group on the Physics and Chemistry of Metal Tritides
October 13, 2004 
Albuquerque, NM

Thanks to: J. E. Mikkalson, S. Van Deusen, E. Staab, and T. D. Kraus

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000.

New research capabilities: 
He-3 Ion Beam Analysis System and 

Indentation of Tritiated Samples
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Multi-element ion beam analysis system
-- Simultaneous, non-destructive profiling of H, D, T, 3He, O, and 

surface C. 

-- Unique system based on heavy ion Elastic Recoil Detection in 
building 884. 

-- Status: assembly underway 

Nanoindentation of tritiated films

-- Mechanical property measurements for tritiated thin films.

-- Containment procedures allow use of indenter in 884.

-- Status: operational

Two new capabilities for 3He studies
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Problem: profile light elements in Erbium Tritide films
-- Need to simultaneously analyze H, D, T, 3He, O, and surface C. 

-- Existing HDT analysis chamber cannot measure 3He or measure O 
on a Si substrate. 

-- New system detector configuration determined using extensive ion 
beam simulations. 

Applications:

-- Profile 3He and T to study “denuded” zone and early 3He release.

-- Study profile changes as films age.  (technique is non-destructive).

-- Correlate film composition with fabrication parameters and 
mechanical properties.

New IBA system to study 3He release
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Analysis method

• Heavy ion elastic recoil 
detection (ERD) with 36 
MeV Si+ analysis beam

• Thick ΔE-E detector at 20º 
to profile H, D, T, 3He

• Thin ΔE-E detector at 10º 
to profile O, C

• Each detector pair has a 
thin foil to block the Si 
analysis beam.

Dual E-E detectors Δ

36 MeV Si +

 10o

Mo or Si

20o

Er(H,D,T)  +   He3
2

10o



Working Group on the Physics and Chemistry of Metal Tritides 

ΔE-E detector at 10° in, 20° out
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Energy spectra - ΔE-E detector #1

• Sample: 200 nm Er(H,D,T)2 

with 10% 3He and 5% O

• 36 MeV Cl+ beam incident 
at 10°, exit at 20°, 1.3 msr

• 65 µm ΔE
• 1x105 ion histories
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ΔE-E detector at 10° in, 10° out
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Energy spectra - ΔE-E detector #2
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• Sample: 200 nm Er(H,D,T)2 

with 10% 3He and 5% O, 
plus 5 nm surface C

• 36 MeV Cl+ beam incident 
at 10°, exit at 10°, 1.3 msr

• 8 µm ΔE only
• 1x105 ion histories
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He-3 ion beam analysis system
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Goniometer and main chamber
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Sample goniometer

• X-Y-Z axes

• 3 rotation axes

• Sample loading 
and heating in 
separate 
chamber
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Problem: Target film mechanical properties are important but 
largely unknown
-- Need to nondestructively measure mechanical properties of 

tritiated films as they age. 

-- Nanoscale mechanical properties are central to understanding 
early He release and film failure.

-- Separating thin film properties from the substrate is an additional 
complication requiring detailed modeling.

Applications:

-- Track changes in mechanical strength as 3He increases and 
composition changes.

-- Study effects of alloying additions and impurities on strength.

Mechanical properties of tritiated films



Working Group on the Physics and Chemistry of Metal Tritides 

Nanoindentation of tritiated films

• Samples, indenter tip and optical 
microscope enclosed in a bag.

• Samples loaded and unloaded in 870.

• Tip and sample hardware dedicated 
to tritium usage.

Sample containment fixturing
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Nanoindentation of Erbium Tritide
Finite-Element modeling of force and 
stiffness determines film hardness and 
Young’s modulus.  
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In situ scan profiling of the residual 
indent may determine the coefficient of 
work hardening.  (under development)

Residual indent profile and pileup imaged 
using the indenter tip and the new nano- 
positioning stage
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Modeling of nanoindentation
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Simulation: finite element modeling – vary yield and elasticity for just
the layer until a good fit to experiment is obtained. 
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Simulations use Abaqus/Standard 6.3 
on a 450 MHz Sun workstation.  

2D: 30-60 mins.        
3D: up to a few days.

Properties of the indenter and 
underlying layers and substrate are 
fixed at known values.

Y and E for the layer are varied until a 
good fit to experiment is obtained. 

Tip yielding, stress, friction are 
all modeled.

Two primary simplifications:
2-dimensional axisymetric
meshes
isotropic elastic-plastic materials 
with Mises yield criteria

Hardness of the layer material  
is determined by an additional 
simulation of a “bulk” sample of 
just the layer material:

Y, E 

Finite-element simulations of 
nanoindentation
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Samples: ErD2 and ErT2 layers on Mo/Si
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Er, ErD2 and ErD2 implanted with 5% 4He

Finite- 
element
analysis

Er layer on Mo/Si(111):
Y:   0.15 ± 0.04 GPa
E:   77 ± 12 GPa 
H:   1.9 ± 0.4 GPa

ErD2 layer on Mo/Si(111):
Y:   1.53 ± 0.19 GPa
E:   155 ± 9 GPa 
H:   4.5 ± 0.4 GPa

ErD2 layer implanted with He
Y:   3.32 ± 0.41 GPa
E:   142 ± 10 GPa 
H:   8.3 ± 0.8 GPa
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He bubbles strengthen the 
material, but are susceptible 
to failure in shear. 
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Multi-element ion beam analysis system
-- Simultaneous, non-destructive profiling of H, D, T, 3He, O, and 

surface C. 

Nanoindentation of tritiated films

-- Mechanical property measurements for tritiated thin films.

Summary
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