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•

 

Radioactive decay of tritium in 
metals creates high pressure, 
He-filled nano-bubbles.
-

 

TEM observed bubbles at 2 wks.
(Thomas et al., Schober et al.)

•

 

Bubble growth with age causes
-

 

material swelling
-

 

changes tritium retention
-

 

material fracture & He release.

•

 

Outline of presentation:
-

 

Synopsis of model for Pd tritide
-

 

Differences for Er tritide
(bubble shape, surface reactivity)

Modeling the Evolution of Helium 
Precipitates in Metal Tritides

Don F. Cowgill, Sandia National Laboratories, Livermore CA USA
Working Group on Metal Tritides, Albuquerque NM, October 13, 2004
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Typical He Release Spectrum:  Zr Tritide
•

 

Bubble evolution

 

is modeled as 4 
distinct, separable stages:

-

 

Bubble Nucleation (homogeneous)
Self-trapping (W.D. Wilson et al., 1981)

-

 

Bubble Growth
Disloc. Loop Punching (H. Trinkhaus, 1983)

-

 

Inter-Bubble Fracture
Blistering Criterion (J.H. Evans, 1977)

-

 

Linked-Bubble Network Generation
Classical Percolation Theory

•

 

The model is tested using predicted 
bubble density, size and pressure 
(& distribution), swelling, PCT shift, 
and He release behavior.
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A continuum-scale model, assembled from 
published results, captures the essential physics. 
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•

 

Modeled using 3 components: 
mobile He, He-pairs, bubbles:
dc1

 

/dt = g

 

-

 

2ps1

 

c1
2-ps2

 

c1

 

c2
+2q2

 

c2

 

-psB

 

(r)c1

 

cB
dc2

 

/dt = ps1

 

c1
2 -q2

 

c2

 

-ps2

 

c1

 

c2
dcB

 

/dt = ps2

 

c1

 

c2

generation rate, g = λ(3H/M) 
jump rate, p = 12DHe

 

/a2

pair dissoc. rate, q2

 

= 2pe-E2/kT

•

 

The mobile concentration drops 
as bubbles produce traps.

•

 

Bubble nucleation is 90% complete in a 2 days.

Using theoretical E2

 

& E3

 

and experimental DHe

 

gives correct cB

 

.

Bubble nucleation occurs by self-trapping 
during a short pulse in mobile He concentration. 
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•

 

Bubble growth relations:
-

 

Mass conservation:  (r/R)3

 

fp

 

= (vHe

 

/vMH

 

)(He/M)
(v=molar volume, fp

 

=.64 for random array packing)
-

 

Dislocation loop-punching:  p = 2γ/r + μb/r(1+ε)
(γ=surface energy, μ=shear modulus, b=Burgers vector)

-

 

Bulk He EOS: vHe

 

(p,T)

•

 

For a given bubble 
spacing R:  At each 
He/M there is a
unique r, p, vHe

 

:

Modeled bubble 
pressures agree 
with pAv

 

deduced 
by NMR.

Array of Spherical 
Source Volumes

TEM [1] gives 5e17 bubbles/cc
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A bubble’s growth is determined by its 
He supply rate -- its tritium source volume. 
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The bubbles cause swelling and lattice stress, 
which produces a shift in the hydride PCT. 
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= po
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/Rg

 

T), 
hydrostatic stress, σhy

 

= pHe

 

(dV/V)
Volume occupied by He bubbles:
dV/V = (vHe

 

/vMH

 

)(He/M)

M
ea

n 
Pl

at
ea

u 
Pr

es
su

re
 (t

or
r)

Model, 5e17 /cc

0.50.40.30.20.10.0
0.0

0.1

0.2

0.3

0.4

5e17/cc

Foil
NMR
PVT

5e18 /cc

He/M Ratio

S
w

el
lin

g,
 d

V
/V

Model, Bubble Density

Sw
el

lin
g,

 d
V

/V

He/M Ratio  

Swelling and PCT behavior are consistent with the lower bubble density 
found by TEM (Thomas et al., 1983), not higher (Thiebaut et al.,

 

2000).
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•

 

3He NMR (motion) separates 
sol-He from liq-He in bubbles.
•

 

He melting curve gives vHe

 

(TM

 

).
•

 

Growth relations convert fluid 
fractions to bubble distributions.
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Enhanced by normalization:
-

 

NMR missed He in 
bubbles with r < 12Å

The constant spacing distribution 
-

 

verifies nucleation has stopped
-

 

provides sensitive test of model.

The bubble spacing distribution can be deduced 
from 3He NMR data and the growth relations.
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The shape of this bubble spacing distribution 
results from nucleation dynamics. 

•

 

Geometric effect: Repeated 
sub-division of larger bubble-

 free regions    
-

 

weighted by probability for 
self-trapping cm

2

-

 

randomly located within 
region of high, uniform cm

•

 

Peaking increases with sub-

 division cycle and stops when 
cm

 

becomes sufficiently low.

•

 

Result is independent of initial 
trap distribution (for low ctrap

 

).
-

 

Inhomogeneous defect-nucl. 
bubbles experience “fill-in”.
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•

 

As the bubbles grow, tension on the 
inter-bubble ligament increases.

•

 

Evans’

 

fracture criterion:

For plane through adjacent bubbles,
fracture occurs when:

pLP

 

(bubble area)

 

> σF

 

(metal area)
(σF = fracture strength ≈

 

µ/4π)

•

 

Valid when neighboring ligaments 
fracture simultaneously (surrounding 
lattice provides no support).

Rapid release should occur when 
bubbles at mean bubble density

 undergo inter-bubble fracture.
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Rapid Helium Release.
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•

 

Both curves are modified by local 
stresses due to bubble interactions.

Presenter
Presentation Notes
Note grain groups stacked like a deck of cards.  Average grain size looks to be about 400 nm.  



Sandia
National
Laboratories0409 dfc

9

The Critical He/M is reduced by bubble 
interactions and depends on bubble density.

•

 

Optimum bubble density for high Crit. He/M depends on fracture strength. 
•

 

Increasing the bubble density reduces

 

the critical age. 
-

 

Regions with high bubble density begin linkage first.
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Combining the critical He/M curve with the bubble 
spacing distribution gives fractional bubble linkage.
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•

 

The long-range linkage needed for He release 
from large particles requires higher He/M.
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The diameter of linked-bubble clusters is 
calculated from Classical Percolation Theory. 

dc
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j
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Dimensional Invariants

•

 

A cluster of linked-bubbles can be described as a 
cluster of adjacent (linked) sites. 

•

 

For site occupancy =

 

ρ

 

(fraction of sites linked),
the volume fraction v for touching spheres 
centered on the sites is v=fp

 

ρ. 
(Large bubbles are considered as groups of small

 
bubbles (sites) with packing fraction fp

 

=1.)

• At ρ=ρc

 

, percolation threshold, the cluster is 
infinite with a critical volume fraction

 

vc

 

=fp

 

ρc

 

.

• For ρ<ρc

 

, dimensional invariants relate v to dc

 

:
-

 

the #sites in average cluster, s(ρ) ∝

 

1/(ρc

 

-ρ)j+1

-

 

the cluster size, dc

 

∝

 

s1/D, (D=fractal dimension).
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Fractional release is determined by the particle’s 
volume fraction with clusters intersecting surface. 

•

 

Integration over linked-volume 
fraction within dc

 

-thick layer 
gives quantity of He released.

Layer thickness 
defined by size 
of linked-bubble 
cluster

•

 

For small particles and thin films, 
this layer becomes a significant He 
fraction at younger age, lowering 
the “effective”

 

Critical He/M.
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•

 

Escape of He generated 
in this region produces 
the Early Release 
Fraction:

•

 

Bubble nucleation is evaluated using 
coupled diffusion eqs. for c1

 

, c2

 

, cB

 

:
dcn

 

/dt =

 

-

 

Dn

 

d2cn

 

/dx2+(gen & loss)n

•

 

Near surfaces, the mobile He conc. c1

 
is too low to nucleate bubbles.

Early He release results from He generated 
near surfaces and surface-connected porosity.

ERF = xd

 

/L, layer
3xd

 

/Rp
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•

 

High initial release until bubbles 
become large enough to compete with 
nearby surfaces or grain boundary 
pipelines.

•

 

Low, slowly increasing ERF with the 
breach of a few near-surface bubbles.

•

 

Sharp onset of rapid release with the 
creation of an interconnected bubble 
network.
-

 

Inter-bubble fracture causes release 
rate to exceed generation rate until 
network is complete.

The model produces a He release spectrum 
with all the characteristics of observed release.
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•

 

Bubble Nucleation

 

by He self-trapping using theoretical He 
pairing energies and measured effective DHe

 

gives 
-

 

bubble density and denuded zone in agreement with TEM 
-

 

correct Early Release Fraction and initial drop 
-

 

explanation of Bubble Spacing Distribution deduced by NMR.

•

 

Bubble Growth

 

by dislocation loop punching gives 
-

 

correct Bubble Pressure, Swelling, and PCT shift with age
-

 

evolution of bubble distribution in agreement with NMR.

•

 

Bubble Linking

 

by inter-bubble fracture using the average bubble 
density gives Critical He/M observed for large grain material.

•

 

Linked-bubble network growth

 

by percolation gives 
-

 

lower Critical He/M found for small particles and thin films
-

 

typical thermal effects.

Model Summary and Testing:

The model shows how the He release spectrum from an aging 
tritide is controlled by the bubble spacing distribution.
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The bubble shape and growth process depend 
on the tritide’s mechanical properties.

•

 

Dislocation loop punching

•

 

Dislocation dipole expansion

•

 

Micro-crack growth requires  
higher pressures: PμC

 

= 2γ/s + πμs/[2(1-ν)r]
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The low surface energy (low γ/μb) for Er tritide 
results in thin, disk-shaped bubbles.
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Dislocation dipoles are also favored 
early in life for Pd tritide.
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•

 

This mechanism will lower the 
computed bubble pressure at 0.5 yr 

-

 

from 10 to 8 GPa, 
and produce better agreement with 
the pressure deduced by NMR.

•

 

It will also change the bubble 
spacing distribution computed for 
the 0.5 yr sample. 

200150100500
0.00

0.02

0.04

0.06

0.08

Source Radius, R(Å)
F(

R
)d

R
, n

or
m

al
iz

ed

0.5 yr

2 yr
4 yr
7 yr

Loop-punching 
calculations

Isolated bubbles

Interacting bubblesB
ub

bl
e 

Pr
es

su
re

 (G
Pa

)

Bubble Radius (A)

F(
R

), 
no

rm
al

iz
ed

Source Radius, R(Å)

Presenter
Presentation Notes
Note grain groups stacked like a deck of cards.  Average grain size looks to be about 400 nm.  



Sandia
National
Laboratories0409 dfc

18

•

Observed bulk ErTx swelling and lattice dilation 
can both be explained by dipole growth.
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•

 

For either growth mechanism, 
swelling can be fitted by varying 
the bubble density and adding an 
initial incubation period.

•

 

A rapidly-growing lattice parameter 
supports the dipole process.  
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•

 

Swelling incubation and Δa/a oscillations may be due to linkage of 
neighboring disks which should begin around 0.02 He/M.
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•

 

Without near-surface layers, early 
release is high: 

ERF

 

≈

 

1/(nB

 

)1/3L 
≈

 

.01 for 5e17 bubbles/cc.

•

 

Near-surface impurities reduce 
the tritium concentration in this 
critical range and lowers the ERF.

•

 

Ambient exposure may generate 
a temporary tri-hydride layer --

 which can raise the nB

 

and 
shorten the He escape depth.

•

 

Rapid oxidation with background 
H2

 

O vapor releases near-surface 
bubbles and complicates testing.

Early release from Er films may be reduced 
by air-modified surface layers.
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OH-

 

reaction produces
-

 

oxide growth
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Bakeout frees He to diffuse 
-

 

rapid self-trapping
produces very high
bubble density

TEM by P. Kotula, SNL
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Summary:  The Nano-bubble Evolution Model 
can be modified for differences in tritide systems.
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