UNCLASSIFIED

Working Group on the Physics and Chemistry of Metal Tritides, Sandia National Laboratories, October 13, 2004

Electrical Resistivity and Optical Reflectance Measurements of ErH(D)₂ Films on Silica Substrates

R. E. Muenchausen^{*}, D. W. Cooke, B.L.Bennett, Structure/Properties Group, Materials Science & Technology Division Los Alamos National Laboratory

UNCLASSIFIED

<u>rossm@lanl.gov</u>, (505)667-0391

Color change during loading relates to metallic to semiconductor (MS) transition. Both electrical resistivity and optical reflectance measurements seek to quantify this phenomena.

 Color changes (e.g. "robin's-egg blue,olive green") have empirically been used as an indicator of the loading process.

•Loading/unloading of Er films deposited on silica (transparent, insulating) substrates provides a useful "model" system to quantify the observed color changes in terms of optical and electrical properties measurements.

UNCLASSIFIED

Silica substrates were chosen for the first attempt to correlate resistivity and reflectance on identical samples.

- SNL provides "mirror-like" Er coating on Silica
 - 25mm dia. x 3mm thick "standard blanks"
 - 400 nm Er coating with native oxide (10 nm)
- LANL D-loads films
- LANL measures temperature-dependent resistivity
- LANL measures absolute specular reflectance (ASR) and transmission

UNCLASSIFIED

Temperature-dependent electrical resistivity is sensitive to hydrogen ordering in the crystal lattice.

 β - phase (fluorite structure)

two tetrahedral sites ideally occupied.

Additional hydrogens *x* occupy octahedral

sites $x_{max} \sim 0.1 \rightarrow trihydride \gamma phase.$

 β -phase (metallic or semi-metallic). Hexagonal γ -phase (semiconducting).

UNCLASSIFIED

Temperature-dependent electrical resistivity is extremely sensitive to hydride stoichiometry, but not the oxidation layer thickness.

Complex system that exhibits:

(1) structural ordering in octahedral H sublattice,

(2) concentration dependent magnetic transitions, and

(3)metal-to-semiconductor transitions.

Vajda and Daou, *Phys. Rev. B* **49**, 3275 (1994).

UNCLASSIFIED

The electrical resistivity measurement is performed using a cryostatically mounted four-point probe apparatus.

400-nm Er films deposited onto silica substrates (Sandia). D-loaded at LANL.

Resistivity for a thin film of thickness *t* (*t* << s, where *s* is probe spacing) is

 $\Delta \rho_{\min} \approx 0.05 \mu \Omega - cm$

UNCLASSIFIED

Temperature-dependent electrical resistivity of Er/silica indicates presence of impurities in Er layer.

Residual resistivity ratio (RRR) RRR = $\rho(300 \text{ K})/\rho(4 \text{ K})$ RRR $\approx 125/42 \approx 3$ From Burger, *et al.* RRR $\approx 83/4 \approx 20$

$$\rho(\mathbf{T}) = \rho_{\rm r} + \rho_{\rm mag}(\mathbf{T}) + \rho_{\rm ph}(\mathbf{T})$$

residual magnetic phonon spin scattering scattering

Temperature-dependent electrical resistivity of "nominal" ErD₂/silica indicates lower room temperature resistivity.

UNCLASSIFIED

Temperature-dependent electrical resistivity of "nominal" ErD₂/silica shows metallic behavior after vacuum aging.

Sample was left in vacuum (~ 10⁻⁶ Torr) overnight with pump off. Res. vacuum (~ 10⁻¹ Torr). Chamber evacuated, sample cooled to 4 K and data taken.

The World's Greatest Science Protecting America

UNCLASSIFIED

Room temperature electrical resistivity of ErD_2 /silica suggests stoichiometry at $ErD_{2.025}$.

Vada and Daou, Phys. Rev. B 49, 3275 (1994)

ErD_{2+x} resistivity vs. *x*

At the β limit (*x* ~ 0.09) there is strong divergence of room-temp. resistivity.

Our ErD_{2+x} data (either sample) show resistivity of *ca*. 40 $\mu\Omega$ -cm indicating stoichiometry near 2.025.

Extreme sensitivity of resistivity to stoichiometry near β limit !

UNCLASSIFIED

ErD_{2±x} Reflectance: observed changes in absolute specular reflectance (ASR) correlate with resistivity change.

Thin dielectric overlayers can dramatically reduce metal reflectance.

Mo Reflectance -%R(ex) -%R(Mo) %R(Mo/ox) % Refl. 15 nm thick oxide layer wavelength (nm)

• Los Alamos

UNCLASSIFIED

ASR:Unloaded Er film (substrate side)-The reduced reflectance implies a dielectric layer of higher refractive index than the incident media (n > 1.52).

The Extended Drude Model provides the simplest approach to calculate optical reflectance from metals *and* dielectrics.

ASR:Unloaded Er film (substrate side)- The wavelength dependence is dominated by the "bulk" Er reflectance.

ASR:Unloaded Er film (front side)- To a first approximation, the reflectance is described by a thin oxide layer atop the Er metal.

still not good fit in visible region

• $\omega_g, \epsilon_m, \epsilon_d$ variables highly correllated

UNCLASSIFIED

ASR:Loaded ErD₂ film (front side)- Measured reflectance in NIR due to Er metal, indicative of incomplete loading.

UNCLASSIFIED

Transmission: Loaded ErD₂ – Similar to metal bandpass filter, indicates optically thick Er metal with symmetric dielectric layers.

UNCLASSIFIED

Transmission: Oxidized Er₂O₃ film – Absorption peaks consistent with Er³⁺-doped SiO₂

•Annealed in oxygen at 800 C for 40 hours. • ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$ at 380 nm and ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ at 520 nm Er³⁺ absorption

UNCLASSIFIED

Conclusions

- Reaction between Er and silica substrate.
 - Increased ρ , decreased R
 - Er³⁺ doped glass observed after annealing.
- Loaded films exhibit complex behaviors
 - "Partial" loading due to low emissivity substrate
 - Resistive transition at 235 K; disappears after vacuum aging
 - Reflectance and transmission indicate Er metal still present.
- Repeat study using polished diamond substrates
 - Transparent and insulating
 - High thermal conductivity (thinner substrate)
 - Chemically unreactive

UNCLASSIFIED

