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Color change during loading relates to metallic to 
semiconductor (MS) transition.  Both electrical resistivity and 
optical reflectance measurements seek to quantify this 
phenomena.

• Color changes (e.g. 
“robin’s-egg blue,olive 
green”) have empirically 
been used as an indicator 
of the loading process.

•Loading/unloading of Er films deposited on silica (transparent, insulating) 
substrates provides a useful “model” system to quantify the observed 
color changes in terms of optical and electrical properties measurements.
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Silica substrates were chosen for the first attempt to 
correlate resistivity and reflectance on identical samples.

• SNL provides “mirror-like” Er coating on Silica
– 25mm dia. x 3mm thick “standard blanks”
– 400 nm Er coating with native oxide (10 nm)

• LANL D-loads films
• LANL measures temperature-dependent resistivity
• LANL measures absolute specular reflectance (ASR) 

and transmission
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Temperature-dependent electrical resistivity is sensitive 
to hydrogen ordering in the crystal lattice.

β - phase (fluorite structure)

two tetrahedral sites ideally occupied.

Additional hydrogens x occupy 
octahedral

sites  xmax ~ 0.1  → trihydride γ phase.

β-phase (metallic or semi-metallic).

Hexagonal γ-phase (semiconducting).
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Temperature-dependent electrical resistivity is extremely 
sensitive to hydride stoichiometry, but not the oxidation 
layer thickness.

ErD2+x

Complex system that exhibits:

(1) structural ordering in octahedral H 
sublattice, 

(2) concentration dependent magnetic 
transitions, and 

(3)metal-to-semiconductor transitions. 

Vajda and Daou, Phys. Rev. B 49, 3275 (1994).
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The electrical resistivity measurement is performed using 
a cryostatically mounted four-point probe apparatus.

400-nm Er films 
deposited onto silica 
substrates (Sandia).  
D-loaded at LANL.

Standard four-point probe

Resistivity for a thin film of 
thickness t (t << s, where s is
probe spacing) is

ρ = π t
ln2
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Figure of merit:  
Δρmin ≈ 0.05μΩ − cm
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Temperature-dependent electrical resistivity of Er/silica
indicates presence of impurities in Er layer.

ρ(T) = ρr + ρmag (T) + ρph (T)
residual magnetic

spin
scattering

phonon
scattering

Residual resistivity ratio (RRR)

RRR =ρ(300 K)/ ρ(4 K)
RRR ≅

 

125/42 ≅

 

3
From Burger, et al.
RRR ≅

 

83/4 ≅

 

20
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ErD2±x
As received

Complex electronic behavior.

Very unstable--consistent 

with Vajda observations.

Stoichiometry may be close

to β-γ

 

transition.

ρ

 

(295K) = 31 μΩ-cm

Similar value reported

By Provo (29.1 μΩ-cm).
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Temperature-dependent electrical resistivity of “nominal” 
ErD2 /silica indicates lower room temperature resistivity.
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ErD2±x

Sample was left in 

vacuum (~ 10-6 Torr)

overnight with pump

off.  Res. vacuum 

(~ 10-1 Torr).  Chamber

evacuated, sample

cooled to 4 K and 

data taken.
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Temperature-dependent electrical resistivity of “nominal” 
ErD2 /silica shows metallic behavior after vacuum aging.
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ErD2+x resistivity vs. x

At the β limit (x ~ 0.09) there is 

strong divergence of room-temp.

resistivity.

Our ErD2+x data (either sample)

show resistivity of ca. 40 μΩ-cm

indicating stoichiometry near 2.025.

Extreme sensitivity of resistivity

to stoichiometry near β limit !

Vada and Daou, Phys. Rev. B 49, 3275 (1994)

Room temperature electrical resistivity of ErD2 /silica
suggests stoichiometry at ErD2.025 .
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ErD2±x Reflectance: observed changes in absolute specular 
reflectance (ASR) correlate with resistivity change.
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Mo Reflectance
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Thin dielectric overlayers can dramatically reduce metal 
reflectance.

15 nm thick oxide layer
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Unloaded-back side
60% handbook value

ASR:Unloaded Er film (substrate side)-The reduced 
reflectance implies a dielectric layer of higher refractive 
index than the incident media (n > 1.52).
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The Extended Drude Model provides the simplest approach 
to calculate optical reflectance from metals and dielectrics.

 = εr  + εm
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Drude Equation:
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Fresnel Equation: = 
(1+n)2 + k2

(1−n)2 + k2
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Unloaded-back side
Drude parameter “fit”

ASR:Unloaded Er film (substrate side)- The wavelength 
dependence is dominated by the “bulk” Er reflectance.

Drude
Parameter

Calculated 
Value

Fit 
Value

ωp (Hz) 2.84 x 1016 2.52 x 1016

τ

 

(sec) 0.167 x 10-15 0.25 x 10-15
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Data corrected for 7.5 nm oxide
Data corrected for 15 nm oxide
Drude “fit”

• still not good fit in visible region
• ωg , εm , εd variables highly correllated

ASR:Unloaded Er film (front side)- To a first approximation, 
the reflectance is described by a thin oxide layer atop the Er 
metal.
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ASR:Loaded ErD2 film (front side)- Measured reflectance in 
NIR due to Er metal, indicative of incomplete loading.
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Loaded ErD2/silica
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Transmission: Loaded ErD2 – Similar to metal bandpass filter, 
indicates optically thick Er metal with symmetric dielectric 
layers.
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Transmission:  Oxidized Er2 O3 film – Absorption peaks 
consistent with Er3+-doped SiO2
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•Annealed in oxygen at 800 C for 40 hours.
•4G11/2

4I15/2 at 380 nm and 4S3/2
4I15/2 at 520 nm Er3+ absorption
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Conclusions

• Reaction between Er and silica substrate.
– Increased ρ, decreased R
– Er3+ doped glass observed after annealing.

• Loaded films exhibit complex behaviors
– “Partial” loading due to low emissivity substrate
– Resistive transition at 235 K; disappears after vacuum aging
– Reflectance and transmission indicate Er metal still present.

• Repeat study using polished diamond substrates
– Transparent and insulating
– High thermal conductivity (thinner substrate)
– Chemically unreactive
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