X-ray and neutron diffraction of Er-hydride films

Mark A. Rodriguez Sandia National Laboratories Albuquerque, NM 87185-1411

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

- Structures of hexagonal Er metal, ErH₂ fluorite, Molybdenum
- Texture issues and processing effects
- Idea of pole figure integration
- Promising neutron diffraction work

Structures of target and substrate have high symmetries

c-axis

Moly metal (BCC)

- Er layers shift from HCP to FCC during loading
- Large void in center of fluorite lattice

Texture definitions

Random grain orientation = no texture

<u>Fiber</u>

out-of-plane (YES) in-plane (NO)

Rolling Texture

out-of-plane (YES) in-plane: 1-dimension of freedom, other fixed

<u>Bi-Axial</u>

out-of-plane (YES) in-plane (YES)

Typical θ –2 θ x-ray diffraction patterns reveal out-of-plane texture effects

[S837431]marodri]<l:\RUBY\ErH> Tuesday, Mar 18, 2003 10:34a (MDI/JADE6)

Several processing issues control texture of Er and ErH₂ films

• Er deposition rate and/or temperature

- Faster deposition rates encourage randomization
- High deposition temperatures encourage grain growth
- Presence of oxygen
 - O₂ encourages Er (002) out-of-plane texture
- Texture of underlying Moly
 - Can dictate Er and ErD₂ texture via substrate templating

Deposition temperature/rate can dramatically alter resulting Er microstructure

Note: underlying Moly was not strongly textured

Presence of oxygen strongly affects texture of deposited Er film

Sample with oxygen shows strong (002) out-of-plane texture

Substrate etching changes Moly texture - dictates ErD₂ grain orientation

450°C, 200 Å/sec

No Etch

Moly pole figures (15x random)

 $ErD_2 \ pole \ figures \ (5x \ random)$

Moly pole figures (10x random)

Can we use XRD data to model Helium in ErT_2 lattice?

- Generate calculated pattern with Helium atom present in octahedral (oct) site.
- Perform Rietveld structural-refinement on calculated pattern using fluorite structure (without He addition).
- Perform difference-Fourier analysis to see if He electron density is detectable.
- Correct peak intensities are crucial.

Calculated data for ErH_2 with He added at $(\frac{1}{2} \frac{1}{2} \frac{1}{2})$ site shows electron density in difference-Fourier mapping

Rietveld refinement of calculated pattern

Er

Contour plotted at 1.7

He was inserted into the model and refined To ~1 or full occupancy (as expected)

Accurate integrated intensities are crucial for He site occupancy measurements with XRD

	(111)	(200)
ErH ₂	100%	48%
ErH ₂ He	100%	54%

Biggest change of intensity:

6% increase in (200) with He addition at octahedral site

Challenge for this type of analysis – Texture

ErT₂ films on Moly show texture effects that bias intensities in standard θ -2 θ scans

Approach: Collect intensity of hkl in many different orientations (pole figure) to un-bias observed intensities due to texturing.

Pole figures for ErT₂ films show texturing effects and influence of Moly substrate

Bi-modal distribution of ErT₂ grain orientations

Relative intensity ratios derived from ErT_2 pole figures are much better estimates than θ -2 θ scans

		Filename	Position	Volume	de el 🕅 🕅 🕷	1 💁 🗗 🖣 🛱 🛣 🛛	
0	1 Mo200 rat	Al		18318e+007	e Figure Display [Uni	titled*]	
1	1 FrT200 ra	\$ 0	0.000000 97	45921e+006 File E	dit Insert Operation	ns Window Help	
2	1_ErT220.ra	WI	0.000000 51	66477e+006		X B R X 3 80 1	a 100% 1
2	1 Mo110 ray	Al C	0.000000 3/	97202e+007			
4	1 ErT111 ra	w		33742e+007	-		
Γ	ErT ₂	θ–2θ normal scan	Pole integration	θ–2θ normal scan	Pole		
f	ilm	200/111 %	200/111 %	220/ 111 %	220/111 %		
f	ilm Iominal	200/111 %	200/111 % 41	220/111 % 4	220/111 %		
f № 4 T	ilm Iominal 0% hickness	200/111 % 19 26	200/111 % 41 42	220/111 % 4 3	220/111 % 24 22		
f N 4 T 2 tl	ilm Iominal 0% hickness 0% hickness	200/111 % 19 26 8	200/111 % 41 42 49	220/111 % 4 3 4	220/111 % 24 22 29	0 50 	100 11.05 Z: 262.

Laboratories

Neutron diffraction is being investigated as a diagnostic tool for ErD₂ films

- Advantage
 - Unlike x-rays, neutrons scatter well from deuterium (and tritium)
- Disadvantages
 - Need large volume of sample
 - Difficulties for analysis of thin films
 - Limited facilities and beam-time
 - Samples may activate

Recent neutron diffraction experiments at LANSCE /LANL show promise for structural analysis

- First attempt: HIPD (2002)
 - 6 ErD_2 films on moly-coated silicon ($\text{ErD}_2 = 0.2 \times 10^{-3} \text{ cc}$)
 - Result...
 - need more ErD₂ signal, patterns swamped by Si peaks
- Second attempt: HIPPO (2003)
 - 80 ErD_2 films deposited on 40 thin Moly foils ($\text{ErD}_2 = 3x10^{-3} \text{ cc}$)
 - Result...

ErD₂ phase detected in neutron diffraction measurement: possible sensitivity to oct. site

Summary

- ErD₂ and ErT₂ film microstructures are strongly effected by processing conditions.
- Both X-ray and neutron diffraction are being pursued to help diagnose structure/property issues regarding ErT₂ films and these correlations to He retention/release.
- Texture issues are great challenge for determination of site occupancy.
- Work on pole-figure-integration looks to have promise addressing texture issues in ErD_2 and ErT_2 films.

- I would like to thank Darrick Williams and Sven Vogel of LANL for their help with neutron data collection.
- I would also like to thank Colleen Frazer and Luke Brewer, Ralph Tissot, Mike Eatough, Jim Browning, Clark Snow and Bonnie Mckenzie of SNL for their contributions to this work.
- Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

