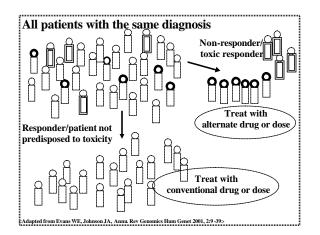
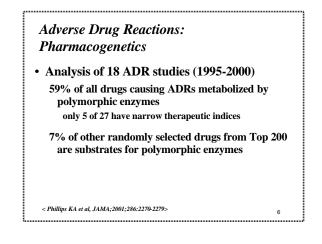
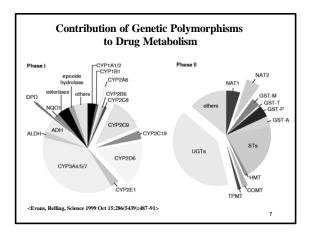
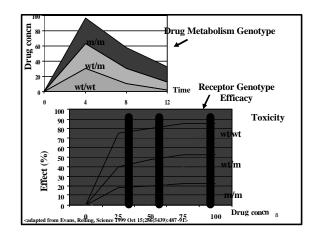
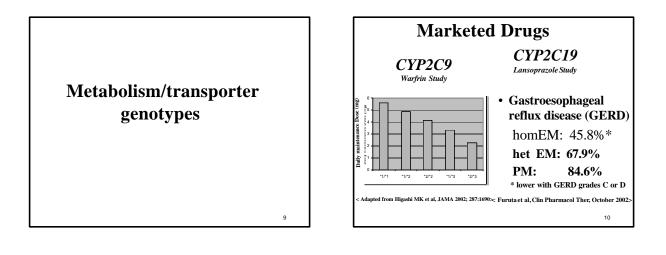

32nd Annual meeting : American College of Clinical Pharmacology Exposure-Response (E-R) Relationships - From Research to Clinic: Adjusting Dosage Regimens to Manage Risks September 21, 2003, Tampa, FL


Effect of *Pharmacogenetics* and *Drug-Drug Interactions* on Exposure-Response: What Needs to be Done?

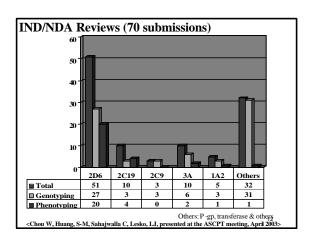

Shiew-Mei Huang, Ph.D. Deputy Office Director for Science Office of Clinical Pharmacology & Biopharmaceutics, OPS CDER, FDA


Examples of Poor or Non-Responders (%)			
Asthma	40-75		
Cancer	70-100		
Depression	20-40		
Diabetes	50-75		
Duodenal U	20-70		
Hyperlipidemia	30-75		
Hypertension	10-70		
Migraine	30-60		
OA/RA	20-50		
Schizophrenia	25-75		
3M Silber, in "Pharmacogenomics", Ed Kalow/Meyer/Tyndale, Marcell Dekker 2001>			



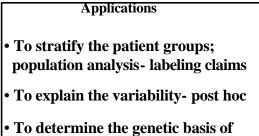


Marketed Drugs (cont'd)

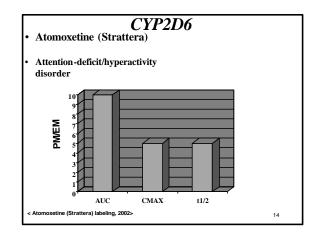

CYP3A5/P-gp tacrolimus/cyclosporine (Zheng HX et al)

P-gp/OATP digoxin/fexofenadine/pravastatin (Hoffmeyer et al.; Ameyaw MM; Kim R et al, JohneA et al)

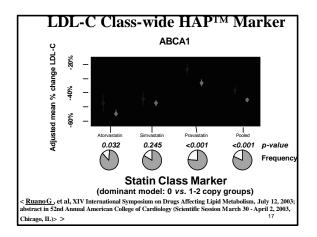
UGT1A1 *irinotecan* (Mathijssen RHJ, et al, Iyers, L, et al.,)

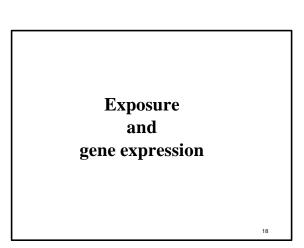

TPMP

6-mercaptopurine (Krynetski and Evans)


Shiew-Mei Huang, ACCP, September 21, 2003

11


- To determine the genetic basis of adverse events/efficacy
- To use enriched populations for efficacy trials


13

Atomoxetine				
ADR	PM	EM		
decreased appetite	23%	16%		
insomnia	13%	7%		
sedation	4%	2%		
depression	6%	2%		
tremor	4%	1%		
early morning awakening	3%	1%		
pruritus	2%	1%		
Atomoxetine (Strattera) labeling, 2002>	2%	1% ₁₅		

• <u>Laboratory Tests</u>	
• <u>Poor metabolizers (PM) of CYP2D6.</u> <u>higher AUC</u>	<u>. 10-fold</u>
Laboratory tests are available to identify CY PMshigher blood levels in PMs lead to rate of some adverse effects of STRATTERA	
<strattera- atomoxetine="" laeling=""></strattera->	16

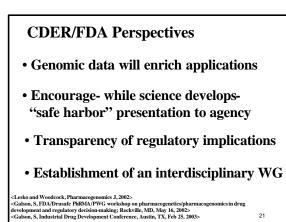
Shiew-Mei Huang, ACCP, September 21, 2003

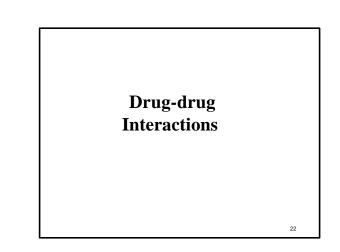
• CDER/FDA pharmacogenetics working group

Lesko*, Huang (OCPB) Collins, Sistare (OTR), Wang (OB) Meyer, Pazdur, Williams, Leighton (OND)

Hackett, Mansfield; Essayan; MacGregor (CDRH, CBER, NCTR)

19

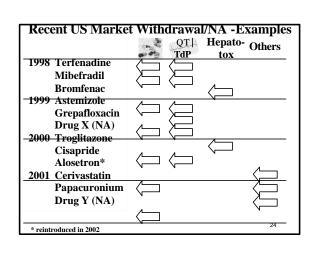

* Chair of the working group


Guidance Development

-Safe Harbor'' -(Genomic Data Submission) guidance - Draft by 2003; Nov 13-14, 2003 BIO/DIA/FDA/PhRMA/PWG workshop; info at www://diahome.org May 2002 workshop proceedings in Lesko LJ et al, J Clin Pharmacol 43, April 2003

"Pharmacogenetics and pharmacogenomics: clinical and non-clinical studies and in vitro diagnostic tests in marketing applications for human drug products and biologicals" - Draft by 2004

20



Post-marketing dosage changes 1980-1999 (n= 499)

- 71% evaluable
- 21% had dosage changes

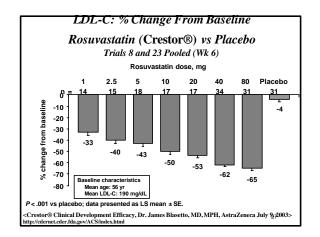
Cross J, et al, Pharmacoepidemiology Drug Safety, September, 2002

- 79% safety-related reduction
- changes included: specific populations and drug interaction sections

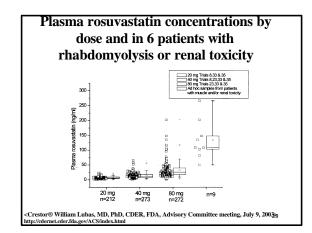
Shiew-Mei Huang, ACCP, September 21, 2003

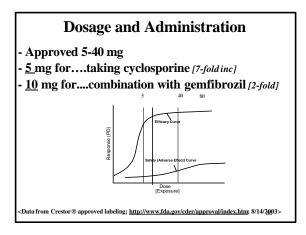
23

Elderly populations

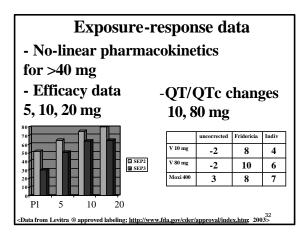

- ... Patients ..with ACE inhibitors .. with

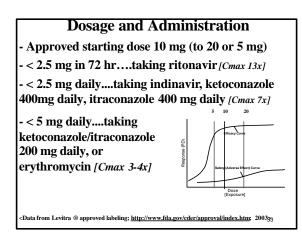
 hyperkalemia (n = 523) were ~ 20
 times more likely to have a... potassium-sparing diuretic in the previous week
- ...Patients .with digoxin toxicity (n = 1051) were about <u>12 times</u> more likely to have ... clarithromycin in the previous week...

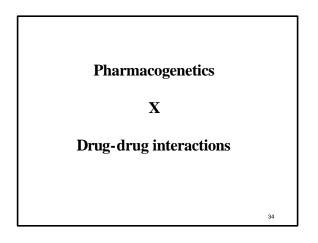

JAMA, 2003;289 (13):1652 >

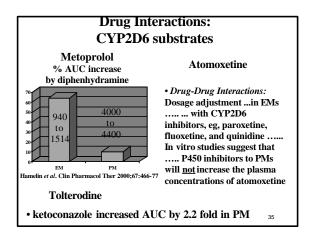

25

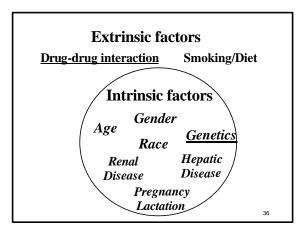
Rosuvastatin (Crestor)			
<u>Co-administration</u>	Rosuvastatin <u>AUC Cmax</u>		
Cyclosporine	7x	11x	
Gemfibrozil	2x	2x	
		26	

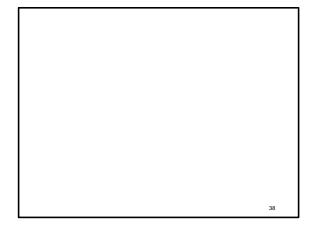

Incide	ence of	CK elevation	ns and		
myopathy seen in phase II/III					
	(mg)	CK>10xULN	MYOPATHY (all cases)		
Baycol	0.4	1.6%	1.0-1.6%		
	0.8	2.1%	0.9-1.0%		
	Pbo	0%	0%		
Rosuva	5	0.4%	0.2%		
	10	0.2%	0.1%		
	20	0.2%	0.1%		
	40	0.4%	0.2%		
	80	1.9%	1.0%		
All marketed STATINS ^a	5-80	0.03-0.9%	0-0.5%		
	 Data from Tables 10, 11 FDA briefing packet^a 				
Crestor® William Lubas, MD, PhD, CDER, FDA, Advisory Committee meeting, July 9, 2003 p://dernet.cder.fda.gov/ACS/index.html					






Shiew-Mei Huang, ACCP, September 21, 2003


Vardenafil (Levitra) - CYP3A4/5, 2C9 substrate		
<u>Vardenafil 5mg</u>	Varda <u>AUC</u>	anafil <u>Cmax</u>
Ritonavir (600 BID)	49x	13x
Ketoconazole (200 QD)	10x	4 x
Indinavir (800TID)	16x	7x
Erythromycin (500TID)	4 x	3x
<levitra® <u="" approved="" labeling;="">http://www.fda.gov/cder/approval/index.htm; 2003> 31</levitra®>		



Shiew-Mei Huang, ACCP, September 21, 2003

Conclusion

- It is critical to evaluate various extrinsic and intrinsic factors that affect the pharmacokinetics and -dynamics of drugs
- Quantitative tools are available and continue to be developed to evaluate exposureresponse relationship
- Improved understanding and development of various in vitro and in vivo tools can aid in assessment and management of drug risks

