Maintenance Therapy in Ovarian Cancer

PFS and OS as Endpoints of Therapeutic Clinical Trials

Robert F. Ozols, MD, PhD Fox Chase Cancer Center David R. Spriggs, MD Memorial Sloan-Kettering Cancer Center

Potential impact of maintenance therapy in ovarian cancer

Early-stage disease

- 20-25% of all patients diagnosed with FIGO stage I and II
- Essentially all patients will be in a clinical CR after surgery and chemotherapy
- 25% of these patients will relapse

Advanced-stage disease

- 75-80% of patients diagnosed with FIGO stage III and IV disease
- 75% of patients will achieve a clinical CR after cytoreductive surgery and carboplatin/paclitaxel therapy
- Approximately 75% of patients in a CR will relapse

• Overall

 60-65% of all patients with ovarian cancer could potentially benefit from an effective maintenance therapy

Maintenance vs. Consolidation

- Arbitrary definitions
 - Consolidation
 - Relatively short therapy, such as highdose chemotherapy with a transplant or intraperitoneal ³²P or whole abdominal radiation
 - Maintenance
 - Extended therapy for 6 or more months (with an arbitrary number of treatments) or continuous treatment until disease progression

Maintenance and Consolidation approaches in patients who respond to initial therapy

- Maintenance
 - Chemotherapy (IV or PO)
 - Biological agents
- Consolidation
 - Intraperitoneal ³²P or radioimmunoconjugates
 - Whole abdominal radiation
 - High-dose chemotherapy with transplant
 - Intraperitoneal chemotherapy

Randomized controlled trials of consolidation therapy in ovarian cancer

High-dose Chemotherapy	Randomization	Ν	Results
with PBSC	High-dose chemo vs.	110	94 pts. relapsed
(Cure et al., ASCO	conventional maintenance	(III-IV)	PFS = 12.2 mo. vs. 17.5
Abstract 22:450, 2004)			mo. (p=.22)
			OS = 56.6 mo. vs. 49.7
			mo. (p = .43)
Intraperitoneal ³² P	Patients with negative second-	202	131 pts. relapsed
(Varia et al., JCO 21:	look laparotomy 15 m Ci IP ³² P	(111)	RR recurrence=0.9
2149, 2003)	vs. observation		[0.68-1.19]
			5 yrs. survival 42% vs. 36%
			p = .27
			RR death = 0.85
			[0.62-1.16]
Intraperitoneal Yttrium-90	Patients with negative second-	447	202 pts. relapsed & 131 pts.
HMFG	look laparotomy:	(Ic-IV)	died (3.5 year f/u)
(Verheisen R et al., JCO 24:	25 mg ⁰ºY-mu HMFG1 +		RR recurrence = 0.90
571, 2006)	standard therapy vs.		p = .48
	standard therapy		RR death = 1.16
			p = .40

Intraperitoneal cisplatin as consolidation therapy

Randomization	Ν	Median F/U 8 yrs
pCR responses	153	52% progressed
at second-look		49% died
laparotomy		PFS RR=0.89
4 cycles IP cisplatin		(0.59-1.33)
(90 mg/m² q 3 wks)		OS RR = 0.82
vs. observation		(0.52-1.29)

Piccart MJ et al. Int J Gynecol Cancer 2003, 13 (suppl 2), 196-203

WAR Consolidation vs. Maintenance Chemotherapy

Whole

Abdominal

followed by

Radiotherapy second-look laparotomy

4 cycles CA

pCR: WAR vs. chemo* vs. observation

pPR: WAR vs. chemo*

*Chemo = 6 cycles

CA or epirubicin

172 pts. **(III)** In pCR group: 64/98 recurred WAR PFS significantly better (P = 0.034)Recurrence rate = 50% for WAR 71% for chemo 74% for control p = 0.027OS = p = 0.084In pPR group = no \triangle PFS

Sorbe B, Int J Gynecol Cancer 2003, 13 (suppl 2), 192

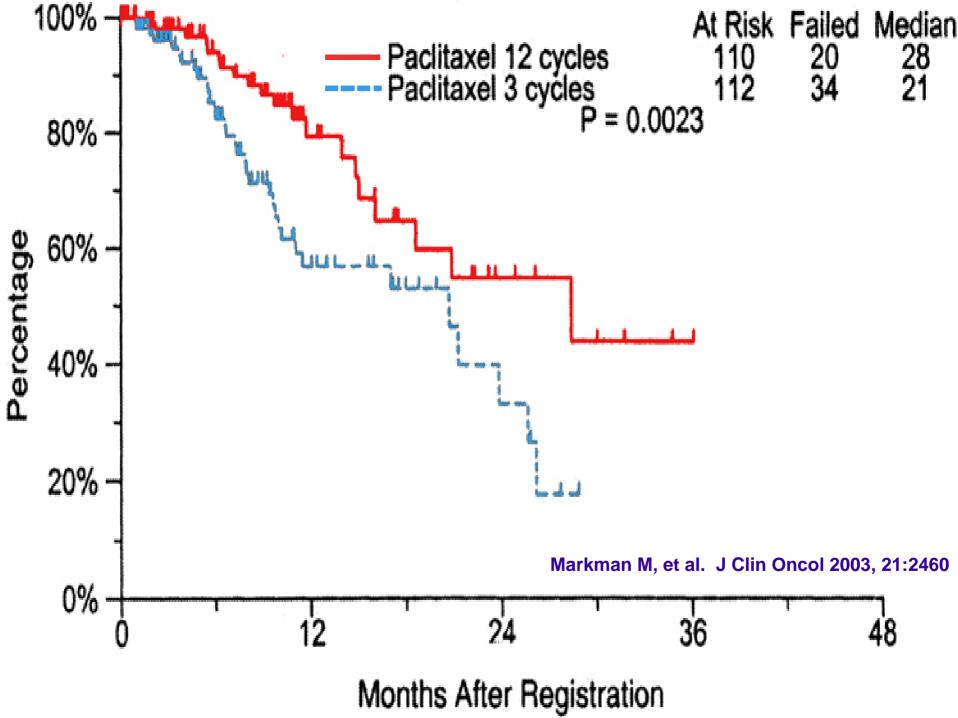
Randomized trials of extended initial chemotherapy*

Study	Randomization	Ν	Results
Hakes ¹	5 vs. 10 cycles of PAC	78	No sig ∆
		(IIc-IV)	
Bertelsen ²	6 vs. 12 cycles of PAC	202	No sig ∆ in response or survival
Lambert ³	5 vs. 8 cycles of either cisplatin or carboplatin		No sig ∆ in PFS or OS
*Not designed as classic maintenance trials			

¹ Hakes TB et al. Gynecol Oncol 1992, 45:284-289

² Bertelsen K et al. Gynecol Oncol 1993, 49:30-36

³ Lambert HE et al. Ann Oncol 1997, 8:327-333


RCT of IV chemotherapy [topotecan or epirubicin] as maintenance in ovarian cancer

Study	Randomization	Ν	Results
Scarfone ¹	pCR after SLL	16 <u>2</u>	OS: no sig ∆
	Epirubicin vs. observation	(III-IV)	
Pfisterer ²	6 cycles paclitaxel + carboplatin:	1308	PFS: No sig ∆
	randomized to no further Rx or	(IIb-IV)	OS: No sig ∆
	4 cycles topotecan (1.25 mg/m ² IV		
	d1-5)		
De Placido ³	6 cycles paclitaxel + carboplatin:	273	PFS: No sig ∆
	pCR + CCR: randomized to no	(III-IV)	18.2 mo (topo)
	further Rx or 4 cycles topotecan		vs. 28.4 mo (control)
			RR = 1.18 [.86-1.63]
¹ Scarfone G et	al. Proc Am Soc Clin Oncol 2002, 21:204 (a	bstr 812)	
² Pfisterer J et a	nl. Proc Am Soc Clin Oncol 2005, 23:456s (a	bstr LBA50	07)
³ De Placido S e	et al. J Clin Oncol 2004, 22:2635-2642		

GOG 178: Patients in clinical CR randomized to maintenance paclitaxel for 3 or 12 cycles

	Maintenance Paclitaxel		
	12 cycles	3 cycles	
Patients	120	107	
Recurrences	20	34	
Progression-free Survival	28 mo	21 mo	
Significance	p < 0.0028		

Markman M, et al. J Clin Oncol 2003, 21:2460

Biological maintenance therapy

Study	Randomization	N	Results
Hall ¹	INF α 2a vs. no Rx	300	PFS: RR 0.96 (.75-1.22)
	following chemotherapy		OS: RR 1.06 (.82-1.38)
Alberts ²	pCR at SLL:	70	PFS: No sig ∆
	IP IFN α-26 vs.		OS: No sig ∆
	observation		
Berek ³	CCR: Oregovomab vs.	145	PFS: 13.3 vs. 10.3
Delev.	placebo	140	p = .71
Hirte ⁴	6-9 cycles of paclitaxel +	243	No sig ∆
	platinum: at least a PR		PFS or OS
	with <2 cm disease:		
placebo vs. BAY12-9566 (MMPI)			
¹ Hall GD et al. Br J Cancer, 2004, 91:621-626			
² Alberts DS et al. Gynecol Oncol 2006, 100:133-138			
³ Berek JS, et al. J Clin Oncol 2004, 22:3507-3516			
⁴ Hirte HW et al. Proc Am Soc Clin Oncol 2001, 20:211a (abstr 843)			

Conclusions regarding Consolidation or Maintenance

- Neither maintenance nor consolidation has been shown to improve survival
- One trial of WAR and one trial of IV paclitaxel demonstrated improvement in PFS
- Toxicity of WAR and paclitaxel substantial

Consensus Statement of GCIG OCCC 2004

- What are the recommended primary endpoints for future phase II and randomized phase III clinical trials in ovarian cancer?
- The recommended primary endpoints for future clinical trials in ovarian cancer are:

Maintenance following first-line: OS¹

10/13 vote

¹ Minority vote: In certain situations, PFS can also be considered a primary endpoint in maintenance trials following first-line therapy

du Bois A et al. Ann Oncol 2005, 16 (suppl 8): viii7-viii12

"Certain situations?"

- Nontoxic therapy
- Biological therapy that will not affect subsequent chemotherapy
- Clinically significant improvement in PFS

Reasons for PFS as an endpoint in maintenance therapy

- Clinical benefit of PFS
 Relapse linked with death
 Delay further therapy
- Treatment effect not confounded by second- and third-line treatments
- Faster evaluation of new treatments

Reasons why PFS is not recommended endpoint in maintenance therapy

- Toxicity of maintenance therapy
 Quality of life
- May make treatment at clinical progression more difficult
- Approximately 50% of patients have macroscopic/microscopic disease detectable only by SLL
 - Not "maintaining" a CR but treating residual disease

Current ongoing RCT of maintenance therapy

Agent Under Study	Trial	Endpoints
Oregovomab	Two placebo-controlled trials of 177 pts., each with 2:1 randomization	TTR = 1° obj QoL, immune response Safety - 2° obj Pts. will be followed for survival
Bevacizumab	GOG 3-arm trial: 2000 pts: 3 yr accrual - chemo (Carbo/Pac) + placebo maintenance vs. chemo + bevacizumab + placebo maintenance vs. chemo + bevacizumab maintenance	OS = 1° obj (increase median OS from 30-39 months – Death rate \downarrow by 23%) PFS = 2° obj (accelerated approval will be sought on basis of 30% improvement in PFS [4 mo])
Paclitaxel-polyglutamate polymer	GOG 3-arm trial: paclitaxel vs. new agent vs. observation 1,550 eligible pts. with 3.1 years for accrual plus 2 years for survival	OS = primary endpoint (12 mo) PFS = secondary endpoint Safety and QoL endpoints