
# **NASA** Ames Arc Jet Complex Overview

Chuck Smith, chief SPACE TECHNOLOGY DIVISION George Raiche, chief Scott Eddlemon, Deputy Chief Imelda Terrazas-Salinas, Lead Test Engineer John Balboni, Chief Engineer Jim Blount, Jacobs-Sierra Lobo Site Manager THERMOPHYSICS FACILITIES BRANCH

#### NASA Entry Vehicles/Missions Supported by Ames Arc Jets



# Rationale for Arc Jet Testing

• **R&D:** provide critical data for the research and development of thermal protection (TPS) materials













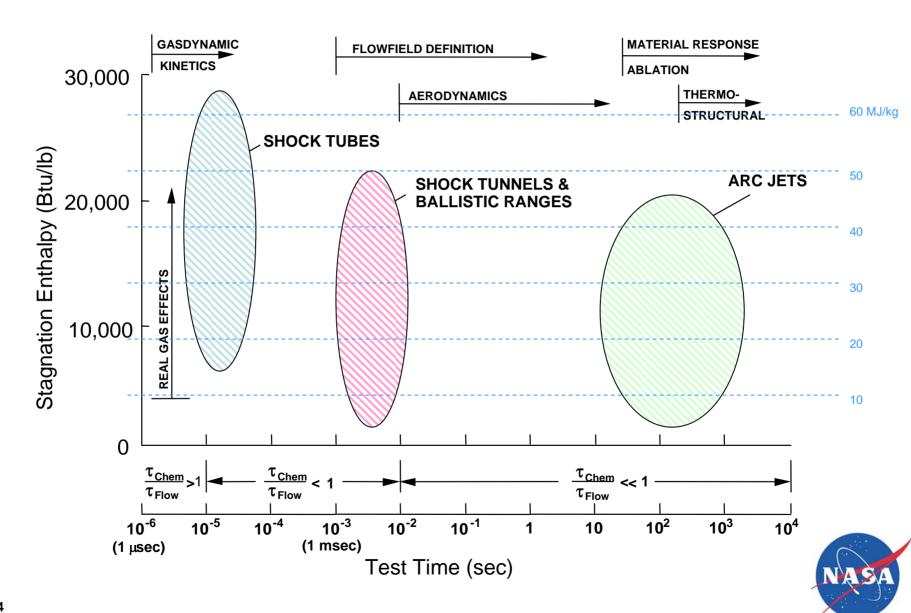
PAET

NASP

SHARP B1 & B2

X-33 FALCON/CAV

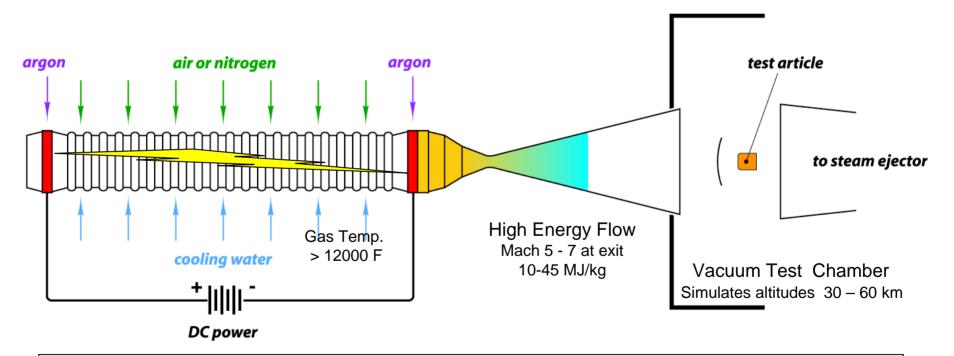



• Flight Qualification/Sustaining Engineering: qualify/certify TPS materials and processes for National Programs



- Orion
  PIONEER-VENUS MAGELLAN STARDUST PHOENIX
  Instrumentation: Develop surface and in-depth instruments and sensors
- **Space Ops:** Support TPS damage assessment and verification of repair techniques for crewed spacecraft

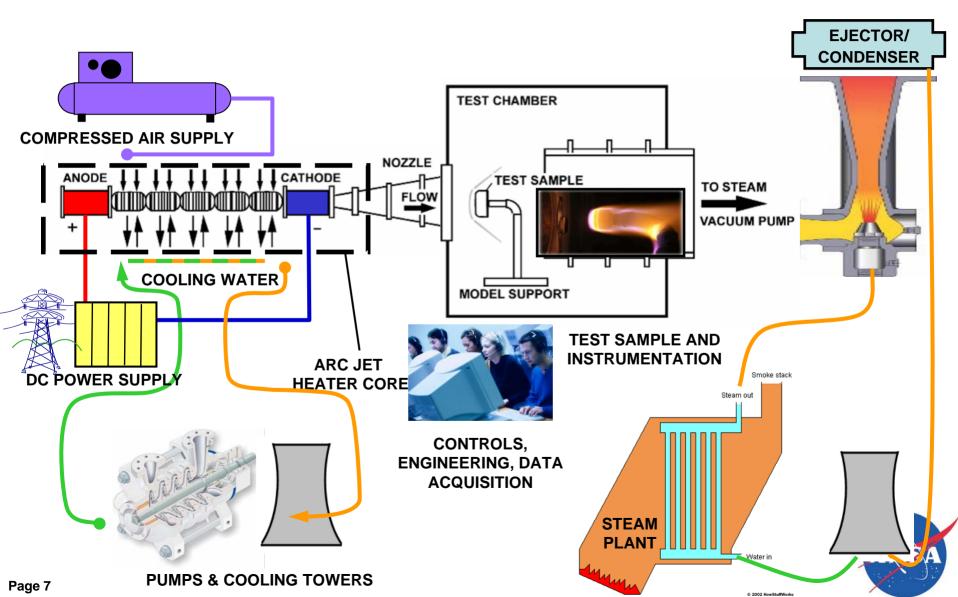



# Stagnation Enthalpy and Flow Duration Domains for Hypervelocity Simulation Facilities



| THERMAL PROTECTION SYSTEMS<br>Test Facility Type vs.<br>Capability | Heat Flux | Convective-<br>Radiative<br>Coupling | Gas Chemical<br>Physics | Pressure | Aerodynamic<br>Shear | Mass Transfer | Test Time |
|--------------------------------------------------------------------|-----------|--------------------------------------|-------------------------|----------|----------------------|---------------|-----------|
| Arc Jets                                                           | F         |                                      | F                       | F        | р                    | F             | F         |
| Combustion Facilities                                              | р         |                                      | р                       | р        | р                    | F             | F         |
| Radiant Lamps                                                      | F         |                                      |                         |          |                      |               | F         |
| Laser                                                              | F         |                                      |                         |          |                      |               | F         |
| Torch                                                              | р         |                                      | р                       |          |                      |               | F         |
| Furnace                                                            |           |                                      | р                       |          |                      |               | F         |
| KEY  F  Full Capability  P  Partial Capability                     |           |                                      |                         |          |                      |               |           |

Objective: Simulate entry heating in a ground-test facility


Goal: Verify a thermal protection material/system design before flight; support continuing engineering during operations



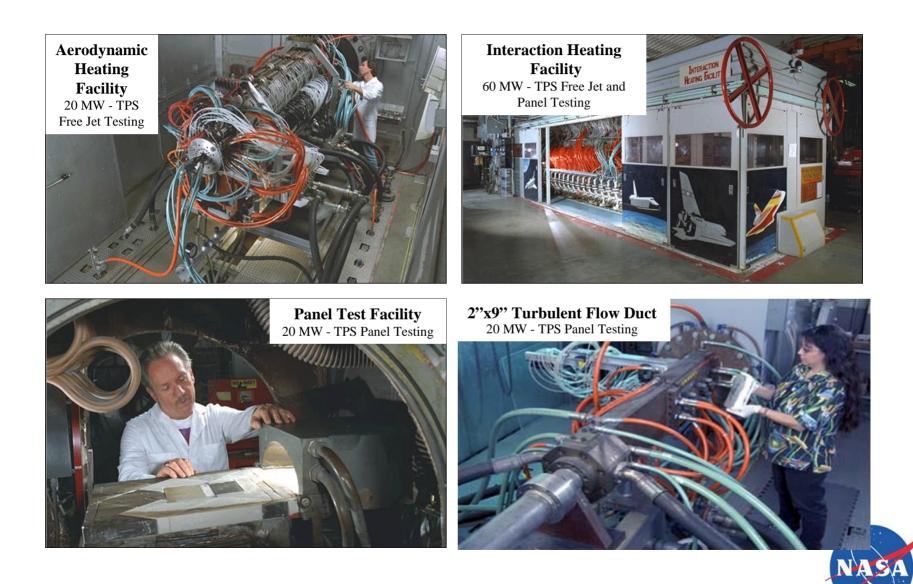
Method: Heat a test gas (air) to plasma temperatures by an electric arc, then accelerate into a vacuum chamber and onto a stationary test article

#### Arc Jet Facility Components

EACH ARC JET LEG IS SUPPORTED BY COMMON FACILITY INFRASTRUCTURE



#### Arc Jet Facility Overview


Power supply: 150 MW/100 MW continuous Steam Vacuum System: 10 lbs/sec, 0.1 psi Steam Generator: 250 000 lbs/hr Approximately 1.5 mi pipe/ductwork **150 MW Power Supply** Not pictured: •Arc heater coolant circulation: 12 500 gpm •High pressure air storage; 1.2M CF Independent 20 MW power supply Control and isolation systems **Pollution Control** LEAF/75 **Ejector-Condenser System** GPF/100 **TFD/20 AHF/20 IHF/60 PTF/20 Steam Generator SVS** Cooling

#### FOUR ACTIVE TEST LEGS; ONE SET OF SHARED UTILITIES

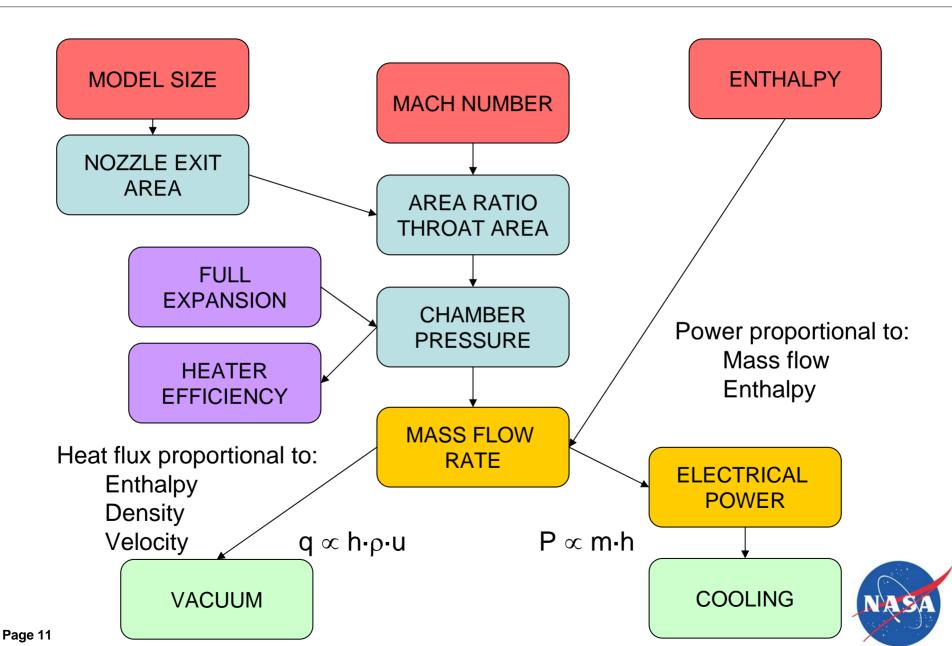
Page 8



#### Ames Arc Jet Legs



#### Ames Arc Jet FOMs


| Facility                     | Gas                   | Input<br>Power<br>(MW) | Type of<br>Test<br>Article                 | Nozzle Exit<br>(inches)                                 | Mach<br>Number | Bulk<br>Enthalpy<br>(Btu/lb <sub>m</sub> ) | Surface<br>Pressure<br>(atm)       | Convective<br>Heating<br>Rates*<br>(Btu/ft <sup>2</sup> -sec) |
|------------------------------|-----------------------|------------------------|--------------------------------------------|---------------------------------------------------------|----------------|--------------------------------------------|------------------------------------|---------------------------------------------------------------|
| AHF                          | Air<br>N <sub>2</sub> | 20                     | Stagnation<br>Point,<br>Inclined           | Conical<br>12, 18, 24, 30,<br>36 ∅                      | 4-12           | 500 to<br>14,000                           | 0.005 to<br>0.125,<br>0.001        | 20 to 225,<br>0.05 to 22                                      |
| AHF/Huels                    | Air<br>N <sub>2</sub> | 20                     | Stagnation<br>Point,<br>Inclined           | Conical<br>12, 18, 24, 30,<br>36 ∅                      | 4-12           | 1,500 to<br>4,500 0.02 to 0.3              |                                    | 20 to 225                                                     |
| IHF                          | Air                   | 60                     | Stagnation<br>Point,<br>Inclined,<br>Panel | Conical<br>6,13,21,30,41 ∅<br>Semi-elliptical<br>8 x 32 | < 7.5<br>5.5   | 3,000 to<br>20,000                         | 0.010 to 1.2,<br>0.0001 to<br>0.02 | 50 to 1500,<br>0.5 to 45                                      |
| PTF                          | Air                   | 20                     | Panel                                      | Semielliptical<br>4 x 17                                | 5.5            | 3,000 to<br>15,000                         | 0.0006 to<br>0.05                  | 0.5 to 30                                                     |
| Turbulent Flow<br>Duct (2x9) | Air<br>N <sub>2</sub> | 12                     | Panel                                      | 2 x 9                                                   | 3.5            | 1,300 to<br>4,000                          | 0.02 to 0.15                       | 2 to 60                                                       |

Arc Jet capabilities at Ames Research Center (US customary units)

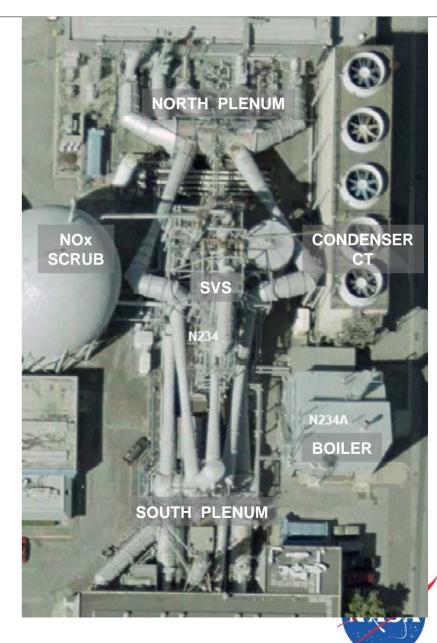
\*Heating rate is a cold wall, fully catalytic value on a 4-inch diameter hemisphere.



#### **Overview of Arc Jet Design Considerations**



# **DC Power Supplies**




- Direct grid connection, 138 kV
- Two continuous DC rectifier power supplies 20 MW and 150 MW
- Typical output: 2.4 kA @ 6 kV (20 MW) 6 kA @ 7.2 kV (60 MW)
- Interlocked access and distribution switching allows single facility control/operation from multiple control stations/test bays
- 150 MW supply: three transformers, five operational rectifier modules
- Dedicated on-site support staff; widely respected experts
- Transformers are "original" equipment (mid-1970s)
- Recent CofF upgrades to rectifiers and expanded control monitoring



# Steam Vacuum System

- Vacuum for the Arc Jet complex is created by a five stage steam ejector pumping system Flow rates at plenums: 100 µHg @ 0.5 lb/sec; 5000 µHg @ 10 lb/s
- Steam Generator (Boiler)
  - Babcox and Wilcox M-type naval boiler recovered from USS Helena (CA-75; C. 1945; fabricated 1943)
  - Converted from diesel to natural gas burners at Ames
  - Ejection system: 5-stage steam jet system, 11 ejectors
  - 253,000 lb/hr capacity, 634 psig max, typically throttled to 300 psi
  - Annual inspection by National Board / CA State Inspector
- Pollution Control System scrubs effluents from Arc Jet exhaust prior to atmospheric release; compliant with all local regulations



#### **ARC Arc Jet Facility Statistics**

| FY04               |     |                |     |                                 |            |                   |      |        |
|--------------------|-----|----------------|-----|---------------------------------|------------|-------------------|------|--------|
| CHARGED SHIFT DAYS |     | DAYS POSSIBLE  |     | SCHD/STBY/RUN DAYS              | UN         | SCH AVAILABILITY  |      | STARTS |
|                    |     |                |     | AVAILABLE                       | DO         | WN                |      |        |
| 2X9                | 0   | 2X9            | 217 | 2X9                             | 217        | 0 2X9             | 1.00 |        |
| AHF                | 67  | AHF            | 218 | AHF                             | 207        | 11 AHF            | 0.95 |        |
| IHF                | 118 | IHF            | 220 | IHF                             | 207        | 13 IHF            | 0.94 |        |
| PTF                | 10  | PTF            | 215 | PTF                             | 215        | 0 PTF             | 1.00 |        |
| TOTAL TO DATE:     | 195 | TOTAL TO DATE: | 882 | TOTAL TO DATE:                  | 858        | 24 TOTAL TO DATE: | 0.97 | 310    |
| FY05               |     |                |     |                                 |            |                   |      |        |
| CHARGED SHIFT DAYS |     | DAYS POSSIBLE  |     | SCHD/STBY/RUN DAYS              | UN         | SCH AVAILABILITY  |      | STARTS |
| 1                  |     |                |     | AVAILABLE                       | DO         | WN                |      |        |
| 2X9                | 0   | 2X9            | 227 | 2X9                             | 192        | 0 2X9             | 1.00 |        |
| AHF                | 126 | AHF            | 227 | AHF                             | 213        | 14 AHF            | 0.94 |        |
| IHF                | 143 | IHF            | 230 | IHF                             | 202        | 21 IHF            | 0.91 |        |
| PTF                | 1   | PTF            | 227 | PTF                             | 227        | 0 PTF             | 1.00 |        |
| TOTAL TO DATE:     | 270 | TOTAL TO DATE: | 911 | TOTAL TO DATE:                  | 834        | 35 TOTAL TO DATE: | 0.96 | 453    |
| FY06               |     |                |     |                                 |            |                   |      | Ì      |
| CHARGED SHIFT DAYS |     | DAYS POSSIBLE  |     | SCHD/STBY/RUN DAYS<br>AVAILABLE | UN:<br>DO' |                   |      | STARTS |
| 2X9                | 8   | 2X9            | 62  | 2X9                             | 27         | 0 2X9             | 1.00 |        |
| AHE                | 35  | AHE            | 215 | AHF                             | 201        | 0 2/3<br>0 AHF    | 1.00 |        |
| IHE                | 114 | IHE            | 215 | IHE                             | 145        | 39 IHF            | 0.79 |        |
| PTF                | 26  | PTF            | 197 | PTF                             | 185        | 12 PTF            | 0.79 |        |
| TOTAL TO DATE:     | 183 | TOTAL TO DATE: | 684 | TOTAL TO DATE:                  | 558        | 51 TOTAL TO DATE: | 0.94 | 331    |
| FY07               |     |                |     |                                 |            |                   |      | •      |
| OD                 |     | DAYS POSSIBLE  |     | SCHD/STBY/RUN DAYS              |            |                   |      | STARTS |
| CD .               |     | DATSFOSSIBLE   |     | AVAILABLE                       | DO         |                   |      | STARTS |
| 2X9                | 19  | 2X9            | 225 | 2X9                             | 158        | 8 2X9             | 0.95 |        |
| AHF                | 96  | AHE            | 225 | AHF                             | 206        | 14 AHF            | 0.94 |        |
| IHE                | 96  | IHE            | 225 | IHF                             | 113        | 46 IHF            | 0.71 |        |
| PTF                | 37  | PTF            | 225 | PTF                             | 181        | 8 PTF             | 0.96 |        |
| TOTAL TO DATE:     | 248 | TOTAL TO DATE: | 900 | TOTAL TO DATE:                  | 658        | 76 TOTAL TO DATE: | 0.90 | 429    |
|                    |     |                |     |                                 |            |                   |      |        |

|           | Starts/ year | Models/<br>year | Injections/<br>year | Average<br>OD/yr | Models/ OD | Insertions/<br>OD |
|-----------|--------------|-----------------|---------------------|------------------|------------|-------------------|
| AHF       | 120          | 161             | 440                 | 81               | 1.98       | 5.43              |
| IHF       | 230          | 224             | 414                 | 117              | 1.9        | 3.51              |
| AHF + IHF | 350          | 385             | 858                 | 198              |            |                   |
| All legs  | 391          |                 |                     | 224              |            |                   |