NASA: National Aeronautics and Space Administration

NASA Earth Observatory

Climate and Earth’s Energy Budget

by Rebecca Lindsey January 14, 2008

The Earth’s climate is a solar powered system. Globally, over the course of the year, the Earth system—land surfaces, oceans, and atmosphere—absorbs an average of about 240 watts of solar power per square meter (one watt is one joule of energy every second). The absorbed sunlight drives photosynthesis, fuels evaporation, melts snow and ice, and warms the Earth system.

The setting sun, photographed from the International Space Station.

Solar power drives Earth’s climate. Energy from the Sun heats the surface, warms the atmosphere, and powers the ocean currents. (Astronaut photograph ISS015-E-10469, courtesy NASA/JSC Gateway to Astronaut Photography of Earth.)

The Sun doesn’t heat the Earth evenly. Because the Earth is a sphere, the Sun heats equatorial regions more than polar regions. The atmosphere and ocean work non-stop to even out solar heating imbalances through evaporation of surface water, convection, rainfall, winds, and ocean circulation. This coupled atmosphere and ocean circulation is known as Earth’s heat engine.

The climate’s heat engine must not only redistribute solar heat from the equator toward the poles, but also from the Earth’s surface and lower atmosphere back to space. Otherwise, Earth would endlessly heat up. Earth’s temperature doesn’t infinitely rise because the surface and the atmosphere are simultaneously radiating heat to space. This net flow of energy into and out of the Earth system is Earth’s energy budget.

Diagram of incoming energy from sunlight.Diagram of energy leaving the Earth as heat.
The energy that Earth receives from sunlight is balanced by an equal amount of energy radiating into space. The energy escapes in the form of thermal infrared radiation: like the energy you feel radiating from a heat lamp. (NASA illustrations by Robert Simmon.)

When the flow of incoming solar energy is balanced by an equal flow of heat to space, Earth is in radiative equilibrium, and global temperature is relatively stable. Anything that increases or decreases the amount of incoming or outgoing energy disturbs Earth’s radiative equilibrium; global temperatures rise or fall in response.

Print this Entire Article Print this Entire Article