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1. Introduction
Dynamic first-order conditions, such as Euler equations, are useful abstractions in econometric

modeling to motivate distributed lag responses to unanticipated shocks. However, the assumption

that sectoral aggregates or entire economies may be viewed “as if” they are directed by a single,

omniscient representative agent, who is subjected to costs of adjusting actions, is an uncomfortable

metaphor for macroeconomics. This is especially so in dynamic analysis of aggregate prices

where not only the allocative role of prices is blurred by aggregation but significant direct costs of

adjusting prices are hard to identify.

The effect of transforming the “invisible hand” into the “representative agent” is to replace

system conditions for survival and inter-agent communication with the decision rules of a single,

optimizing agent. A standard rationale for single-agent modeling is that profit-maximizing agents

drive out all inferior strategies, and the dominant strategy is easily learned by all agents when

shared in a simple feedback format. Objections to this Darwinian assertion of the approximate

homogeneity of surviving strategies include everyday observations of heterogeneous behavior and

examples in biology of the “brittleness” of systems with over-specialized genetic traits.

An intriguing alternative modeling design is suggested by the “zero-intelligence” agents of

Becker (1962) and Gode and Sunder (1993) where local constraints, such as static or dynamic

budget constraints, can cause random micro behavior to produce rational system results, such as

downward-sloping aggregate demand schedules and efficient pricing in auction markets.

The analogous “smart system” conjecture explored in this paper is that parallel solution

implementations of optimization algorithms often require only local information for each parallel

processor, but the system solution is the same as that reached by a serial processor with global

information. Parallel Jacobi iterative solution of a linear equation system, such asBx � b = 0,

appears to be a powerful example of this conjecture because solution of a system of linearized

first-order conditions is the essential core of optimizations ranging from nonlinear searches of

likelihood functions to companion systems of multivariate Euler equations. In the case of Jacobi

solutions of the linear equation system, a number of accelerated methods exist for specialized

structures of theB matrix. The case whereB is nearly-decomposable into diagonal blocks is

notable because global inversion ofB is nearly achieved by independent inversions of the diagonal

blocks. Unfortunately, if the dimensions ofB are sizable, it is very hard to determine the best

near-block patterns inB.1

Producer pricing in a distributed production system is used to demonstrate the weak local

information requirements of Jacobi algorithms. The relative sparseness of the US input-output

system at the six-digit level of aggregation illustrates the contrast between aggregate information

1Notable exceptions are the patterns of banded matrices associated with boundary-value problems of dynamic
systems; vid. Stoer and Bulirsch (1980) and Fisher, Holly, and Hughes-Hallett (1986).
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and the industry-specific information that is required to maintain margins between revenues and

costs in each industry. Sensible rules-of-thumb, such as sharing information with direct suppliers

and customers, are shown to accelerate adjustment to equilibrium.

2. Producer Price Adjustments
Deep divisions exist in macroeconomics regarding the dynamic adjustments of prices. In

classical theories, markets are continuously cleared by flexible prices, including instantaneous

adjustments of nominal prices to agents' perceptions of monetary policy. In contrast, Keynesian

theories suggest non-auction prices are slow to adjust to equilibrium, and short-run clearing is

achieved by changes in transacted quantities.

These theories are more than of academic interest, in part, due to differing implications for

monetary policy. In classical models, inflation inertia is due only to anticipations of persistent

inflationary policies, and costs of policy disinflations are negligible. In archetypal Keynesian

models, announcement effects of policy are generally dominated by prolonged real effects of

interest rates and bank credit, and disinflations are initiated by reducing the growth of real activity.

A sufficient reason for the continuing existence of such disparate theories is that neither side

is able to fully account for several stylized facts regarding actual price dynamics and so each can

claim a measure of empirical relevance.

There are three major stylized facts about producer price dynamics that a general theory of

producer pricing must explain:2

� Prices of manufactured goods are sticky.As shown later, the mean lag response of US

manufacturing prices to unanticipated shocks is about nine months.

� Producer prices are adjusted infrequently.Although there are few systematic analyses of this

characteristic, available estimates suggest that a typical U.S. producer price may be altered no

more frequently than once a year.3

� Adjustments of producer prices in inflationary episodes can be large and rapid.In a study of

European hyperinflations after WWI, Sargent (1982) indicates that producer prices in Germany

increased on the order of107 in the twelve-month interval, June 1923 - June 1924.

Although there are a number of theories of sticky nominal price adjustments, ranging from

explicit costs of adjusting prices, Rotemberg (1982), to instrument uncertainty, Greenwald and

Stiglitz (1989), none appear capable of explaining the stylized facts listed above – where nominal

2Additional macro and micro stylized facts regarding prices may be found in Gordon (1981, 1990) and
Schmalensee (1989), respectively.

3In analyzing the Stigler-Kindahl data, Carlton (1986) reports an average adjustment frequency of about once a
year. Similarly, over half of the firms interviewed by Blinder (1991) indicated prices were not adjusted for a year or
longer. Of course, infrequent price adjustments may be sufficiently large so that staggered price changes at the micro
level may be consistent with prompt responses of aggregate price indexes, cf. Caplin and Spulbur (1987).
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prices are sometimes adjusted rapidly and at other times appear to be not well-connected to current

market conditions.

After a brief review of a generic adjustment cost model of producer pricing and empirical

estimates of selected characteristics of producer price adjustments, the remainder of this paper

pursues a very different interpretation of dynamic price movements. An alternative to explicit

adjustment costs is that sluggish price movements are due to lags in obtaining relevant information

in a distributed production system. The consequent adjustment lags are not easily categorized as

signal extraction or learning by a representative agent but are rather a result of system interactions

among heterogeneous agents using reasonable rules-of-thumb to set margins between costs and

revenues. Although the disaggregated pricing model is an extreme abstraction of information

processing by real producers, it provides at least a benchmark of dynamic consequences of using

affordable solution algorithms in a complex environment.

2.1 Models of the dynamic adjustment of manufacturing prices.

The pricing of a standardized product by an industry withs identical producers may be represented

by

p� = m+ c; (1)

wherep� denotes the log of the optimal or “target” price,m is the log markup by producers, andc

is the log of marginal cost. Ignoring strategic considerations, the markup is

m = log

0
@ 1

1� 1

s�

1
A ; (2)

where� is the price elasticity of demand, and (2) displays the monopoly and competitive solutions

as eithers! 1 or s!1.

Gross production is Cobb-Douglas in both purchased materials and rented services of primary

factors. Also, returns to scale are constant so that the log of marginal cost is proportional to the

weighted average of log input prices

c / �1p1 + � � �+ �mpm + (1�
X
i

�i)v;

where�i andpi are the cost share and log price of theith materials input, andv denotes the log

unit price of value-added by the producing industry.

Now suppose the actual price is displaced from the target price, perhaps due to errors in

estimating current cost or demand elasticity, but a cost is incurred in adjusting price from its current

level. A tractable model of price dynamic adjustment is presented by Rotemberg (1982) where
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producers are assumed to minimize the discounted sum of the square of the distance between the

price and the moving target price and the cost of squared changes in the level of the price. The

required equation of motion for the price is the familiar second-order Euler equation

EtfA(L)A(BF )pt � A(1)A(B)p�
t
g = 0;

whereEtf:g denotes the expectation given information throught � 1; A(L) is a first-order

polynomial in the lag operatorL; A(L) = (1� �L); F is the lead operator; andB is a (quarterly)

discount factor.

To obtain a benchmark estimate of the mean adjustment lag of producer prices, letp denote the

log of the price of U.S. manufacturing goods. Producer prices are generally difference-stationary,

containing one unit root. This, in turn, permits two empirical simplifications. First, the target gap

or log distance between the current price and target price can be established by a cointegration

regression in the log levels

pt = �~xt + �t;

= p�
t
+ (pt � p�

t
);

where~xt is a vector of the arguments of the target price as defined above, including the prices

of non-manufacturing inputs, the wage rate, and trend rate of labor productivity. Note that the

cointegrating discrepancy is an estimate of the price “gap” or distance to the target price trend.

Also, using the fact that bothp andp� are I(1), the decision rule forp can be expressed in a

“rational” error-correction format as

�pt = �(1� �)(pt�1 � p�
t�1

) + St(�B;�p�); (3)

where the second term is a present-value effect of forecasts of future changes in the target path,

St(:) = (1� �)
1X
i=0

(�B)iEtf�p�
t+i
g:

Following Tinsley (1993), we use a two-step estimation procedure where forecasts of the target

path,p�, are provided by a VAR model in the arguments of~xt. Also, the quarterly discount factor

is set toB = 0:98, consistent with the annual postwar real return to equity of about 8 percent.

Given estimates of the discount factorB and of the VAR forecast model ofp�, the only remaining

unknown parameter in the decision rule(3) is the coefficient of the error-correction term,(1� �).

Estimates of the dynamic decision rule for the US manufacturing price using the sample span

1957Q1-1991Q4 are listed in table 1.
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Table 1: Estimated pricing rules for U.S. manufacturing.

Eqna pt�1 � p�
t�1

�pt�1 (pt�1 � p�
t�1

)+ R2 BG(12) Mean lagb

1 �0:10 0:40 0:00 ML = 10

(2:6)

2 �0:08 0:69 0:72 0:20 ML = 2:9

(3:4) (15:2)

3 �0:11 0:65 �0:04 0:73 0:17 ML� = 2:2

(2:5) (13:3) (0:7) ML+ = 7:8

at-ratios in parentheses.

bMean lag in quarters.

The first line of table 1 presents statistics of the error-correction decision rule that follows

from the simple two-root Euler equation. Considering it has only one free parameter,1 � �, the

R2 of this equation is respectable but the zerop-value of the Breusch-Godfrey statistic,BG(12),

indicates strong residual autocorrelations. Also, the estimate of a ten-quarter mean lag,ML, of

price responses to unanticipated shocks is implausibly long.

The second equation reported in table 1 uses an extension developed in Tinsley (1993) where

adjustment costs are generalized to include quadratic smoothing penalties not only of changes in

the current price but of changes in moving averages of the price, such as might be associated

with the survey findings noted earlier that some firms adjust every quarter but many adjust less

frequently. One result of this change in the specification of dynamic costs is that lags in the

dependent variable are added to the decision rule in (3). With this addition4, as shown for the

second equation, theR2 is much higher, thep-value of the BG statistic does not indicate residual

autocorrelation at standard significance levels, and the mean lag is now 2.9 quarters, or around nine

months.

4Alterations of the estimated decision rule are a bit more complicated: In the case of the second and third equations
in table 1, the underlying Euler equation is fourth-order and two characteristic roots are used to discount future changes
of the target price inSt(:). Another important empirical difference is that rational expectations restrictions imposed
by the VAR forecast model ofp� are rejected by the first decision rule in table 1, but not by the remaining decision
rules in the table. See additional discussion in Tinsley (1993).
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Finally, the third equation in table 1 exhibits another notable characteristic of postwar producer

prices. The term in the third column replaces the error-correction term (listed in the first

column) when the lagged price is above the lagged target price,pt�1 � p�
t�1

> 0. As indicated,

error-correction towards the target path is much smaller (and statistically insignificant from zero)

when the price is above the target. The result is a strong positive asymmetry in dynamic adjustment

of manufacturing prices, where positive corrections are faster than negative corrections. The mean

adjustment lag in raising prices to catch up to higher target prices,ML�, is about 2 quarters but

the mean lag in reducing prices to approach lower target prices,ML+, is nearly two years.

A finding of positive asymmetry in price adjustments helps reconcile two of the stylized

facts regarding prices noted earlier. In inflationary periods, producers are not reluctant to raise

nominal prices to cover rising nominal costs, as predicted by classical analyses. On the other hand,

resistance to downward adjustments of nominal prices is consistent with the Keynesian notion that

prices may get stuck temporarily at levels that are too high for market clearing, such as when output

contractions are a preferred response to cyclical reductions in demand.

Even in the case of symmetric price responses, the adjustment cost rationale of gradual price

adjustment seems to imply that the costs of price frictions exceed the costs of adjusting rates of

production. The aim in the remainder of this paper is to illustrate an alternative conjecture that the

gradual adjustments of producer prices may be due to transmission lags in information required

for formulation of equilibrium prices. We suggest also reasons why system adjustments may be

slower for price reductions than for price increases.

3. Price Adjustment as Message Passing in Distributed Production.
One drawback of macroeconomic analysis of pricing is that it ignores essential differences in

pricing within the stages of production. It was widely recognized in early empirical studies, such

as Mitchell (1913) and Means (1935), that prices tend to be less flexible as they advance from

basic commodity inputs to specialized final demand outputs. This section presents a pricing model

where the only dynamics are due to lags in the transmission of industry-specific information in a

large-scale input-output system.

3.1 Historical views of pricing in distributed production.

In his extensive study of five U.S. business cycles from 1890-1910, Mitchell (1913, p. 102) noted

that “the prices of raw materials respond more promptly and in larger measure to changes in

business conditions than do the prices of their products. Since the. . . partly manufactured products

pursue a course intermediate between their raw materials and finished goods, it seems that the more

manufacturing costs have been bestowed upon materials the steadier do their prices become.”

Table 2, drawn from Mitchell (1913, p. 101), contrasts average reductions during business
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contractions in prices of raw materials, intermediate materials, and final goods.

Table 2: Price declines in 1893-4 and 1907-8 contractions.

Raw Intermediate Finished

materials materials goods

Price fall (%) �12 �9 �5

More than twenty years later, essentially the same phenomenon was observed by Gardiner

Means (1935), who further illustrated that the extent of associated output contractions is inversely

associated with the degree of price responsiveness. Extracts from a table in Means (1935, p. 405)

are shown in table 3.

Table 3: Drop in prices and production, 1929-1933.

Agricultural Textile Iron & Agricultural

commodities Oil products steel machinery

Price fall (%) �63 �56 �45 �20 �6

Output fall (%) �6 �20 �30 �83 �80

Among subsequent analyses of the increasing “downstream” inflexibility of manufacturing

prices, many interpretations reduce to one of two explanations advanced by Mitchell and Means.

First, as noted in the quotation above, Mitchell suggested that rigid costs in the successive

value-added stages of manufacturing, especially of labor, may account for much of the reduced

price responsiveness. Wage rigidity, especially downward inflexibility, is also discussed by Pigou

(1927), Keynes (1936), and such postwar interpretations as Tobin (1972). To gloss over a large

empirical literature, the stylized fact appears to be that real wages appear to be slightly procyclical

and price margins over unit costs are countercyclical. In other words, available evidence suggests

that manufacturing prices are somewhat less cyclically responsive than unit costs of production or

wages.

Second, in addition to the unsurprising implication that downward sloping demand schedules

imply that reductions in demand may be partially offset by price reductions, Means (1935) indicted



8

the noncompetitive structure of many manufacturing industries. An extensive literature has

explored the relationship of producer price margins to various measures of industry market power,

such as the Herfindahl concentration index. In contrast to Means' thesis, models of strategic pricing

by oligopolies, such as Green and Porter (1984) and Rotemberg and Saloner (1986), suggest that

high concentration may lead to episodes of sharply moving prices as individual oligopolists are

induced, at various stages of the business cycle, to defect from implicit collusive agreements to

maintain a common price.

Although many empirical studies indicate that price margins are higher in highly concentrated

markets, evidence is inconclusive on the responsiveness of producer prices to changes in demand,

Domowitz, Hubbard, and Peterson (1987). Interesting exceptions are Qualls (1979) and Eckard

(1982), who suggest concentrated industries may respondfasterdue to better market information

and inter-firm communications—an interpretation consistent with the costly communications

model explored in this paper.

3.2 A parallel Jacobi model of price adjustment.

By contrast with standard adjustment cost interpretations of sticky producer pricing, the conjecture

explored here is that the demand and cost information relevant to each producer is not

instantaneously accessible and is transmitted through specific directed links between transacting

agents. In the case of the downstream flow of input materials costs, it is not implausible that

producers in each stage of production respond to received ripples in input prices with at least a

one-cycle lag.

The industry-to-industry transmission of current cost information is described by Gordon

(1990, p. 1150-1), “the typical firm has no idea of the identity of its full set of suppliers when

all the indirect links within the input-output table are considered. Because the informational

problem of trying to anticipate the effect of a currently perceived nominal demand change on

the weighted-average cost of all these suppliers is difficult to formulate and probably impossible

to solve, . . . the sensible firm waits by the mailbox for news of cost increases and then . . . passes

them on as price increases.”5

A simple description of this “waiting by the mailbox” transmission of cost increases is

a one-cycle lagged version of the open-Leontief pricing system adapted for Cobb-Douglas

production

pt = A0pt�1 + vt; (4)

wherept denotes then� 1 vector of log prices of outputs produced inn industries;A is then� n

5Differences between the price lag responses of individual producers and of aggregate price indexes are discussed
in Gordon (1981, 1990) and Blanchard (1987).
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Leontief input-output matrix, andvt is ann� 1 forcing vector. Consistent with the basic model in

section2, each industry forcing termvi is the sum of the log of the industry markupmi and the log

of unit labor costs,wi � �i, wherewi is the industry log wage rate and�i is log labor productivity.

Theith column ofA contains the cost shares of purchased material inputs; using earlier notation,

A0

:;i
= [�1;i; : : : ; �n;i].6

Of course, the dynamics of this simple staggered pricing system are equivalent to parallel

Jacobi solutions of a linear system. Given a fixed unit cost impulsev�, the desired price response

is

p� = [I � A0]�v�

= [I + A0 + A02 + A03 + : : :]v�

= p1 + (p2 � p1) + (p3 � p1) + : : :

The iteration expansion on the third line has two implications for successive price adjustments.

First, the “error-correction” adjustment rates of this system are determined by the characteristic

roots ofA. That is, the reduction of distances between the current price and the target price vectors

is7

pt � p� = A0(pt�1 � p�): (5)

Second, each stage of successive price revisions adjusts for the change in costs of preceding

stages of production. That is,p1 adjusts for the initial change in unit value-added costs in each

industry. After these costs are passed on to the next downstream stage of processing,p2 � p1

denotes the adjustment in each industry to the consequent change in costs of direct suppliers —

that is, the possiblen suppliers of inputs to each industry represented by the columns ofA. The

next round of revisions,p3 � p2, incorporates responses to changes in the costs of the suppliers of

the direct suppliers, i.e. then2 suppliers once-removed. The next revision,p4 � p3, accounts for

price adjustments due to changes in the costs of the possiblen3 suppliers twice-removed, and so

on.

6Because the pricing system is open, the sum of nonzero elements in each column of A is nonnegative and less
than unity; consequently,[I � A0] is strictly diagonally dominant, invertible, and its spectral radius is less than one,
vid. Horn and Johnson (1985).

7Here, we focus on alternative interpretations of the error-correction adjustment term in the optimal decision rule
(3) of the “representative” manufacturing system. The additional forward-looking term in equation (3) is only required
if there are perceived adjustment lags. Although we suspect that the effect of this second term is not difficult to replicate
after the form of system lags is established, perhaps through multi-period pricing contracts in vertical agreements, this
refinement is not explored in this paper.
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3.3 An empirical input-output example.

To provide concrete illustrations of the timing of information flows under different communication

structures among industries, a 356-industry input-output system is constructed from the US

Department of Commerce (1991) industry use and make tables for 1982.

Also, to obtain data-based estimates of discrepancies between actual pricesp and target prices

p�, monthly target prices for industries are estimated using a procedure similar to that outlined

earlier.8

Cointegration regressions are used to construct estimates of the trend or target level of

value-added costs in theith industry,v�
i;t

,

pi;t �
X
j

aj;ipj;t = b0;j + b1;iwi;t + b2;it+ ei;t

= v�
i;t
� ~v�

i;t
:

where the second line indicates that the residual,ei;t, is an estimate of the discrepancy between

the target unit cost of value-added and the construction implied by current prices. Denoting~v�
t

as

then � 1 vector of deviations in value-added price for the 356 industries, estimates of the target

deviations in industry producer prices is provided by

~p�
t
= [I � A0]�~v�

t
: (6)

A convenient estimate of the average size of the log gaps in value-added and final prices

is provided by the sample means of the absolute values,j~v�j and j~p�j. Averaged over all 356

industries, the mean absolute values of the value-added and producer price gaps are 0.022 and

0.025, respectively.

Hereafter, because we will often discuss responses to price changes, unless otherwise indicated,

it will be notationally convenient to drop the absolute value “jj” and gap “~v” notation and simply

usep andv to denotej~p�j andj~v�j.

Under this notational convention, the industry mean lag responses by parallel Jacobi(PJ)

iterations to an initial cost discrepancy,v, are

ML(PJ) = [I + 2A0 + 3A02 + 4A03 + : : :]v=[I � A0]�v

= [I � A0]�[I � A0]�v=[I � A0]�v;

8Although some prices were available for the full postwar period, a common sample of the 356 industry producer
prices was available only for the 1986.01 - 1994.02 span. Consequently, “cointegration” regressions discussed below
are only suggestive of what might be obtained for a longer sample.
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where “/” denotes element-by-element division of the numerator and denominator vectors. Using

the empirical estimates ofv, the average industry mean lag is 1.93 iteration cycles.

The first two lines in table 4 compare empirical estimates of industry price mean lags (in

months) and parallel Jacobi mean lags (in iteration cycles) for approximately the same industry

groupings used by Means (1935).

Table 4: Characteristics of representative production stages.

Agricultural Textile Iron & steel

commodities Oil products forgings Machinery

MLa 5.3 6.2 6.9 7.9 11.3

ML(PJ)b 1.4 1.0 2.0 2.0 1.9

Materials input

share (%) 38 6 58 41 37

Average number

of suppliersc 48 34 52 68 93

aMean lag in months.

bMean lag in iteration cycles.

cBased on industry direct suppliers with input shares greater than 0.0001 .

Although the correspondence is not exact, both mean lag estimates suggest a tendency for

slower adjustment speeds of prices in succeeding stages of production. The third line suggests

that this is not merely due to the amount of purchased materials used in production. Except for

extractive industries, the average share of output due to purchased materials from other industries

in this input-output system is about 40%. As shown in the fourth line of the table, a more

appropriate indicator of mean lags in price adjustment appears to be the complexity of production

and coordination of inter-firm communications, as measured here by the average number of

industry direct suppliers.

Of course, there is no obvious way to translate iteration cycles into calendar time. Nevertheless,

if we assume surveys are correct in suggesting that the average firm adjusts its price about once

a year, then a mean lag estimate of 1.9 cycles would translate to a calendar mean lag of about

23 months, considerably longer than the average mean lag of about 9 months indicated earlier for

historical manufacturing prices.
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Obviously, there can be many overstatements of inter-industry information lags in the stylized

parallel Jacobi example. For example, firms may be aware of key pressures on the prices of inputs

purchased from their direct suppliers. To obtain a crude decomposition of the cycles of information

embedded in the mean lag estimate, note that an approximate linear decomposition is

ML(PJ) = [I + 2A0 + 3A02 + 4A03 + : : :][I � A0]�v=[I � A0]�v (7)

' [I + 2A0 + 3A02 + 4A03 + : : :][p=p]

� ~1 + 2ML(2) + 3ML(3) + : : :

where~1 is a356� 1 unit vector.

We would not expect the simple model of parallel Jacobi iterations to provide good predictions

of cross-industry variations in mean lag adjustments. Thus, it is not surprising that the correlation

between industry estimates of historical mean lags,ML, and the corresponding parallel Jacobi

mean lag measures,ML(PJ), is only .10. A more revealing insight into the timing of

inter-industry flows is obtained by regressing the 356 industry estimates of historical mean lags,

ML, on the parallel Jacobi mean lags,ML(PJ), and initial terms of the approximate expansion

in equation (7).

Table 5: Regression of industry mean lags, ML, on iteration

mean lags, ML(PJ), and iteration stages.

ML(PJ) ML(2) ML(3) ML(4) R2

16.8 �32:7 0.12

(6.7) (6.4)

29.0 �24:7 �55:4 0.20

(9.4) (4.9) (6.1)

27.5 �21:1 �66:2 24.1 0.20

(8.1) (3.6) (5.1) (1.1)

Using the parallel Jacobi mean lag estimates,ML(PJ), as a benchmark, the negative contributions

of initial iteration responses suggest that historical mean lags are somewhat faster in response to

the average information contained in the initial rounds of information transmission in the chain

of production. However, this faster information transmission does not seem to penetrate much
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deeper than early receipt of information on the input costs of direct suppliers, as summarized in

theML(3) terms.

Thus, it appears that a more realistic model of empirical price adjustment lags should allow for

industry differences in speeds of processing information relative to the fixed lags depicted in the

simple parallel Jacobi solution. The remainder of this section discusses three modifications of the

parallel Jacobi solution that may be sources of different speeds of price adjustments by individual

industries.

3.4 Acceleration through communication groups.

The input-output system highlights only the structure of disaggregated production of

heterogeneous commodities and does not address the varying degrees of inter-industry information

that may be available through alternative organization of corporate control. For example, in

contrast to the parallel Jacobi model of isolated industries at each stage of production, all relevant

production stages might be controlled by the management of a single vertical monopoly. In this

case, it would seem unlikely that relevant information on altered costs in any phase of production

would not be rapidly disseminated to all plants controlled by the vertical organization.

As reviewed by Perry (1989), there are also many forms of vertical “quasi-integration” ranging

from production contracts, leasing agreements, and marketing franchises to equity investments, all

of which are aimed at obtaining some of the information and control benefits of vertical integration.

Even at the level of least intrusion on corporate control, trade organizations provide a forum for

collecting and sharing information on recent trends in demand and costs of purchased materials.

We assume that information on current shocks in various horizontal and vertical stages of

production is effectively processed within the relevant group of industries before submitting

revised prices to the general round of inter-industry price communications defined by the global

parallel Jacobi iteration. That is, industries organized into communication groups use all available

intra-group information prior to submitting revised prices.

From the perspective of them industries in a given communication group, the global production

system is divided into member and non-member groupings:

p1;t = A11p1;t + A12p2;t�1 + v1

p2;t = A21p1;t�1 + A22p2;t�1 + v2

whereAi;j denotes partitions of then�n input-output matrix,A0; p1 ism�1; andp2 is (n�m)�1.

The first equation describes the response by them member industries in thep1 communication

group to current information within the group. The second equation is a conjecture regarding

adjustment of then�m prices inp2 of the non-member industries. For the moment, we assume this
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equation is inaccessible to members of thep1 communication group because the elements ofA21,

A22, andv2 are not known to these industries. Under this information structure, communications

within them-industry group lead to ap1 adjustment in the current iteration of

p1;t = [I � A11]
�[A12p2;t�1 + v1]: (8)

which makes more effective use of available information inp2;t�1 andv1 than does the parallel

Jacobi solution, so the mean lags of price adjustments in thep1 group will be reduced.

Of course, contrary to the uninformed view of them member industries of thep1 group, there

may be one or more information groups among then � m non-member industries controlling

p2. Indeed, if all groups are separable (A12 = A21 = 0), then full price adjustments to the

news inv1 andv2 could be completed in a single block-Jacobi iteration, with an associated mean

lag of one iteration. Note also that intra-group communications can lead to system acceleration

spillovers because responses to information within thep1 group that might have taken several

iterations to reach non-member industries will now be disclosed by transmitting the accelerated

price adjustments in the current system iteration cycle,p1;t.

The solution in equation (8) also suggests a rough estimate of the cost of communications

among them industries within thep1 communication group. Inversion of them � m matrix

I � A11 can be approximated by the familiar expansionI + A11 + A2

11
+ A3

11
+ : : :. Each

matrix multiplication requiresm2 message transmissions, andO(logm) terms are required in the

expansion approximation of the inversion.9 Assuming the costs of intra-group communications

are shared equally, each industry's share of intra-group communication costs is approximately

mO(logm).

3.5 Additional acceleration by feedback conjectures.

Given convex communication cost pressures to contain the size of the communication group, it is

likely that some group members are aware of important suppliers who are not members. In turn,

other group industries may be suppliers of these excluded suppliers. By pooling this information,

group members can approximate the roundtrip effects of current changes in thep1 prices on the

prices of external industries who are expected to subsequently alter input prices to members of the

p1 group.

However, to remain consistent with our original assertion that industries have very limited

knowledge outside explicit communication groups, we assume the industries who controlp1

have only an aggregated view of industries in the externalp2 group. Under this restriction, the

9See J´aJá (1992), p. 409, whereO(r) denotes that there exist positive constantsk andr0, such that for allr > r0

the number of expansion terms is bounded bykr.
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conjectured feedback response to a current iteration change inp1 prices is

A12g
�g[I � A22]

�A21(p1;t � p1;t�1);

whereg is ak � (n �m) aggregation matrix withk � (n �m).10 A later section will illustrate

the case where the external non-member group is aggregated to a single industry, reducingg to a

1� (n�m) aggregation vector.

3.6 Retardation of industry adjustments through non-transmissions.

Although the focus of this paper is primarily on organization of inter-industry communications that

can accelerate simple parallel Jacobi transmissions, we should note there is a long list of conditions

that may slow the adjustment of producer prices.

Stale quotes may be a problem in large communication groups if the transmission chain of

required messaging within the group is lengthy. Although we largely neglect the role of horizontal

firms within an industry, there may be strategic reasons for firms to slow communications of key

information or to transmit misinformation.

If price transmissions are costly, it seems likely that firms may decide to internalize small

discrepancies from target prices and transmit only sizable changes in prices. Under this

interpretation, “menu costs” of posting price changes may be a source of stale quotations.11

There are likely to be asymmetric differences in responses to downstream flows of cost changes

and reverse flows of information on changes in final demand. Downstream flows of actual cost

changes are visible commitments by suppliers to changes in input prices. Receiving firms have an

incentive to pass on higher costs of intermediate materials because to not do so risks lower profits

or even bankruptcy.

Reverse transmissions of responses to changes in final demand are more problematic and

depend on the competitive structure of the stream of producing industries. Remember that the

effective value-added component,v, at each production stage contains both the marginal cost of

the value-added in that industry,c, and the industry markup,m, which is a decreasing function of

the perceived price elasticity of demand,�. Although changes in demand can alter both marginal

cost and demand elasticities, often the former is relatively flat and invariant to moderate changes

10By contrast, if all elements inA0 partitions associated with thep2 group were known to industries in thep1
group, any “aggregation” conjecture should fully preserve this information,g�g = In�m. Use of conjectural
aggregation within communication blocks and global Jacobi iterations of the full system is similar to the recursive
aggregate/disaggregate algorithms discussed in Vakhutinsky, Dudkin, and Ryvkin (1979) and Tsai, Huang, and Lu
(1994).

11As explored by Tsiddon (1993) and Ball and Mankiw (1992), the combination of menu costs and positive trends
in target prices can induce positive pricing asymmetries.
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in the level of output. The elasticity of demand may be a more likely source of countercyclical

movements that induce pro-cyclical adjustments of target prices.

In the case of a nominal demand shift, an industry's share of final demand could be maintained

if all prices in the chain of production move proportionately. In inflationary periods, independent

industries at each stage of production may increase prices with alacrity since the consequence of

moving before suppliers is temporary profits due to higher margins over costs. However, in the

case of price reductions, a failure to coordinate significant price reductions with suppliers can be

severe illiquidity or bankruptcy. Thus, downstream firms may be “stuck” for some time with lower

sales until lower cost agreements are struck with upstream suppliers.

It is especially likely that independent upstream suppliers, who are not bound by vertical

agreements, may be relatively insensitive to movements in final demand elasticity. The elasticity

of derived demand for the industry producing, say, theith materials input is�i = �i� + (1� �i)�,

where�i is the cost share of theith input,� is the price elasticity of final demand, and� is the factor

elasticity of substitution in production (� = 1 in Cobb-Douglas production), Waterson (1982).

Substitution in production is prominent in this expression because a consequence of a stand-alone

input price increase is to shift the composition of final demand towards less expensive inputs. Thus,

if the contribution of the supplying industry to final product,�i, is small then the derived demand

elasticity of the upstream producer is likely to be insensitive to moderate variations in the elasticity

of final demand,�.

Thus, apart from explicit coordination arrangements such as vertical mergers, it seems likely

that backward or upstream effects of shifts in final demand are likely to be smaller and have slower

transmission rates than forward or downstream flows of rising costs. Also, it appears that less

inter-industry coordination is required to pass along incurred cost increases than desired price

reductions.

4. Searching for Block Patterns in a Large-Scale System
Consider the pricing system described in equation (4),

pt = A0pt�1 + vt;

whereA is the input-output (I/O) matrix,v is a forcing vector, andp is the industry price vector. We

consider the effects of industries coalescing into groups in order to share information; each industry

belongs to exactly one group. A group, or block, of industries is represented by a subset of the

rows ofA0. The industries in a group solve their I/O subsystem to get new prices at timet, using

current price information from other industries within the group, and laggedt�1 price information

from industries outside the group. Each communication group is solved simultaneously, and then



17

the process is repeated until the entire price array converges.

This solution process can be thought of as modeling the exchange of cost and demand

information among firms and their customers and suppliers. The goal of firms is to be able to

adjust to the optimal price,p�, as fast as possible. We measure the speed of convergence by the

mean iteration lag, defined in the first line of equation (7), to estimate how quickly prices converge

to the optimal price in response to external shocks.

The 356-industry example that we consider is highly abstracted from the dimensions of a

problem faced by an actual firm. A firm in the auto industry, for example, may have a chain

of production involving thousands of suppliers. However, even in our 356-industry example, the

computational problem of finding optimal communication groups is a daunting one, from the

perspective of either an individual firm or a central planner. The scope of the possible search

space is enormous; the number of different groups that an individual industry might join is

2355, an unimaginably large number. The related feedback vertex set problem was shown to be

NP-complete by Karp (1972); see also Garey and Johnson (1979).12

Note that the fastest convergence will occur when each industry has the recent price information

on every other industry — i.e., when the entire356�356 matrix is solved as a single block. In real

life, however, there is a cost associated with gathering current information that mitigates against

this sort of arrangement. Consequently, we define a cost function that charges industries for the

information they gain through communication with members of their own group. The cost is

related to the computational complexity of solving the subsystem defined by the group. The cost

per group member increases with the size of the group; thus, very large groups are not attractive

since the cost of communication exceeds the benefits to be gained.

4.1 Estimating the cost of communication.

We derive an estimate of communication cost that is calibrated in system iteration or “cycle” units

as follows. In a standard parallel Jacobian iteration, the column vector of industry mean lags is

computed as

ml =
(I + 2A0 + 3(A0)2 + 4(A0)3 + 5(A0)4 + : : :) v

(I � A0)�v
:

Note that the first time this criterion addresses the cost of contacting unknown suppliers (i.e.,

industries that are upstream in the flow of production, but are not direct suppliers) is in the third

term,
3(A0)2v

(I � A0)�v
;

12A problem that is NP-complete has been proved to be equivalent in difficulty to a large number of other problems
widely regarded by computer scientists to have no polynomial-time solution algorithm, and thus to be intractable for
large problem instances.
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which is proportional to the relative price adjustment due to changes in the costs of the suppliers

of direct suppliers. Suppose each industry hask suppliers; then each industry must contact (in the

worst case)k2 suppliers in order to learn about these costs one period before they filter through the

costs of the direct suppliers.

We assume that industries want to minimize mean lag responses. By contacting allk2 of their

suppliers' suppliers, they could reduce their mean lag to

mla =
(I + 2(A0 + (A0)2) + 4(A0)3 + 5(A0)4 + : : :) v

(I � A0)�v
:

This results in a reduction in the mean lag of

ml �mla =
(A0)2v

(I � A0)�v
:

In the case of parallel Jacobian responses, the average value ofml is 1.9294 cycles and the average

of (ml �mla) is 0.1675 cycles. The average number of suppliers per industry is around 25; thus

an estimate of the mean lag reduction per supplier contact isc = mean(ml �mla)=(25 � 25) =

0:000268. Under the assumption of parallel Jacobi responses, this is a lower bound estimate of

the cost of a contact with an individual supplier, in the sense that the perceived cost of contact

must have exceeded the reduction in the mean lag that could have been obtained by contacting the

additional suppliers.

As described in section3, each industry's share of the number of communications required

to solve anm-industry group is aboutm2 logm. The logarithmic factor is an estimate of the

number of terms required in the expansion of the inversion; our experience with matrices of this

size suggests that3 logm is a more appropriate approximation. Consequently, our estimate of the

communication costs associated with a group ofm industries is3cm2 logm (wherec = 0:000268

as derived above); the per-industry share of this cost is thus3cm logm. This cost is added to

the average mean lag to determine the total performance measure of a partition of industries into

groups. Obviously, the smaller the resulting number, the better.

4.2 Computing environment.

The computations described in this paper were run on Sun workstations in a Unix environment.

The application programs were written in C++, using the SPARCOMPILER C++ 3.0 compiler from

SunPro. Extensive use was made of the MatClass C++ matrix libraries, written by Birchenhall

(1993). While these libraries were reliable and simplified the programming a great deal, their

performance was at times somewhat slow. Consequently, portions of the code that were to be

executed many times were written as iterated scalar operations, rather than as matrix operations
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using MatClass library functions. The code was written in a style that combines elements of

the object-oriented and procedural paradigms. Industries, groups of industries, and collections of

groups were each encapsulated as C++ classes.

Note that the “parallel” Jacobian iterations were actually performed sequentially, though

independently so as to simulate parallel computation. Since we were not measuring performance

by elapsed time and running times were (usually) not excessive, there was little need to actually

run them in parallel. Exceptions to the latter were the genetic algorithms, discussed later, which

were particularly computation-intensive. Future work may implement a parallel version of this

code, using the PVM libraries written by Geist et al. (1993).

4.3 Forming groups by rules-of-thumb.

We first consider several simple algorithms for forming groups. Each is a rule-of-thumb for

clustering into communication groups which requires only local information on the part of

individual industries. These include such basic ideas as industries joining groups that contain their

largest suppliers or customers, as well as forming random groups; the latter is included primarily

as a baseline. The algorithms we have studied are as follows:

k-Largest-suppliers Each industry's group merges with the groups containing itsk largest

suppliers.

k-Largest-customers Each industry's group merges with the groups containing itsk largest

customers.

Suppliers-over-f Each industry's group merges with all groups that contain an industry that

supplies at least the fractionf of its inputs.

Customers-over-f Each industry's group merges with all groups that contain an industry that

purchases at least the fractionf of its outputs.

Random-p Groups are formed randomly. In particular, with probabilityp each industry forms

a new group. With probability1 � p it joins an existing group, with the particular group

selected equiprobably from all existing groups.

The table below shows some statistics on the collections of groups generated by these

algorithms, as well as the performance of the collections as measured by their mean lags and

communication costs.
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Table 6: Performances of alternative communication groupings.

Algorithm Number Largest Average Average

used for of group mean lag communication

forming groups groups size (AML) cost (ACC) AML + ACC

Random-0.2 78 168 1.6239 0.3307 1.9546

Random-0.4 158 59 1.9050 0.0356 1.9407

Random-0.6 215 21 1.9151 0.0052 1.9203

1-Largest-customer 160 20 1.6739 0.0085 1.6824

2-Largest-customers 24 324 1.1171 1.3706 2.4876

1-Largest-supplier 52 74 1.4514 0.1069 1.5583

2-Largest-suppliers 1 356 1.0000 1.6816 2.6816

Customers-over-0.075 155 174 1.3372 0.3534 1.6905

Customers-over-0.10 207 21 1.5193 0.0392 1.5585

Customers-over-0.125 236 25 1.5775 0.0104 1.5879

Suppliers-over-0.075 135 194 1.2990 0.4484 1.7474

Suppliers-over-0.10 195 83 1.4830 0.0738 1.5568

Suppliers-over-0.125 224 29 1.5529 0.0159 1.5688

Using the mean lag adjusted for the costs of inter-industry communication, randomly-formed

groups of industries result in a performance measure of about 1.92–1.96 cycles, with performance

varying little according to the size and number of groups. This is similar to the value of 1.93

cycles obtained when each industry comprises its own group; i.e., when the entire matrix is solved

by a single parallel Jacobian algorithm.13

Thus, there appears to be no benefit to forming groups at random. At the other end of the

spectrum, all 356 industries are placed into a single group when the 2-Largest-suppliers algorithm

is run. The average mean lag then takes on its best possible value, which is one iteration

cycle. However, the cost of communication among such a large number of industries pushes the

performance measure up to 2.68 cycles – the worst among all algorithms tested.

The best results are achieved by the 1-Largest-supplier, Suppliers-over-0.10, and

Customers-over-0.10 algorithms. When the thresholds for the latter two are increased to 0.125,

13We optimistically suggest that perhaps the fact that a variety of random group collections result in performances
similar to each other, and to the case where all groups have size one, indicates that our performance measure is
well-calibrated.
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they continue to perform well. Note that the number of groups generated by these algorithms

varies widely. Although the performances of the 1-Largest-supplier and Customers-over-0.10

algorithms are nearly identical, the number of groups formed by the latter is 207, while the number

formed by the former is only 52. Along the same lines, compare the results for Random-0.6 and

Customers-over-0.10. The number of groups generated by these algorithms, as well as the size

of the largest group, are quite similar. However, note the difference in the average mean lags —

1.92 for the random algorithm versus 1.52 for the threshold algorithm. This sizable difference

graphically illustrates the increased efficiency of a collection of groups formed by a reasonable

rule-of-thumb, as compared to the performance of random groupings with a comparable degree of

clustering.

Although the input-output matrix,A, is relatively sparse, the groupings in the table also indicate

that all elements or industries are eventually connected through a transmission chain of common

inputs or customers. Note that the 2-Largest-suppliers algorithm clusters all 356 industries into

a single group. That is, there is no proper subset of industries such that for each industry in the

subset, the subset contains its two largest suppliers. The 2-Largest-customers algorithm places

324 of the 356 industries into a single group, and extending this to the 3-Largest-customers

algorithm results in one 356-industry group. We also note that connectivity is somewhat greater

in the upstream direction, i.e. in the direction of suppliers. For example, the 1-Largest-supplier

algorithm results in fewer groups — as well as a larger dominant group — than does the

1-Largest-customer algorithm. The same is true of the 2-Largest-suppliers algorithm when

compared with 2-Largest-customers, and each of Suppliers-over-0.075/0.10/0.125 when compared

with their customer-based counterparts.14

If we assume, as suggested earlier, that a representative interval between price adjustments is

on the order of a year, then the difference between a value of about 1.9 (as might be obtained

from either random groups or the absence of any groups at all) and a value of about 1.5 (as results

from the best of the rules-of-thumb we tested) may correspond to a difference in average price

adjustment frequency of around five months. Thus, the way in which firms in different industries

share information may significantly affect the speed with which they update their prices in response

to external shocks.

14This asymmetry may contribute to asymmetric price movements discussed earlier such as greater responsiveness
to upstream input costs than to changes in downstream final demands.
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5. Variations
This section explores how the performances of communication groups may alter under different

informational assumptions. First, we consider the effect of industries taking into account the

effects of their own price adjustments, not just on other members of their group, but also on the

aggregation of all industries outside their communication group. Next, we investigate what effect

occasional communications failures — both within and between groups — have on the speed of

price adjustments.

5.1 An aggregated view of the rest of the world.

In our basic model, industries exchange current price information with members of their own

group until they have solved the corresponding subblock of the I/O pricing system. During this

communication period, they use the previous period's price information from all non-member

industries outside the group. Thus, intra-group price iterations are performed only on rows of

A0 that correspond to members of the group. Members of a group do not attempt to solve rows

of the A0 matrix that correspond to industries in other groups, such as would be required to

anticipate the effects of member price changes on non-member industries and, in turn, the effects

of non-member induced price changes back on the production costs of members. This exclusion

restriction seems reasonable because calculation of non-member feedback effects would require

that member industries have detailed knowledge of the current cost structure of the complete US

manufacturing sector.

However, we do not dismiss the possibility that member industries form approximate estimates

of the effects of member price changes on non-member industries. To illustrate, we introduce a

variation of the original model where industries use a simplified, aggregated view of the “rest of

the world” (i.e., industries outside of their group) in setting prices.

Let n be the total number of industries, andm be the number of industries in a groupG.

Without loss of generality, we reorder the rows ofA0 such that the rows corresponding to them

industries in groupG come first, and partitionA0 as follows:15

A0 =

2
4 A11 A12

A21 A22

3
5 ;

whereA11 is m �m, A12 is m� (n�m), A21 is (n �m) �m, andA22 is (n �m) � (n�m).

15Note that the partitions indicated are those ofA0, the transpose ofA.
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The I/O system can then be partitioned as

2
4 p1

p2

3
5 =

2
4 A11 A12

A21 A22

3
5
2
4 p1

p2

3
5 +

2
4 v1

v2

3
5 ; (9)

wherep1 andv1 arem�1 andp2 andv2 are(n�m)�1. The input rows forp1 contain within-group

relations (A11) and input weights due top2 prices (A12). BothA11 andA12 are known to industries

in G. However, we assume that industries inG know only the sums of columns inA21, where

these totals are the ratios of input shipments from industries inG to the production by non-G (p2)

industries. By contrast, we assume industries inG know nothing useful aboutA22;16 the particular

default used here to represent this lack of information is that industries in the G group assumeA22

is zero.

Under these information assumptions, at each parallel Jacobian iteration, prices in groupG are

solved by

p1(t) = A11p1(t) + A12p2(t� 1) + v1 +B(p1(t)� p1(t� 1))

wherep1(t) is iterated to a solution butp2 is held at its last known (t � 1) value. B is the

feedback adjustment which accelerates any change inp1 from its last known value by “rationally”

anticipating the eventual response ofp2 to the revision inp1. The solution forB obtained by

substitution from equation9 is

B = A12(I � A22)
�A21;

which is now approximated by member industries as

A12g
�gA21;

whereg is the1 � (n � m) aggregation vector�0=(n � m); g� = �; and � is the(n � m) � 1

unit column vector. That is,g is simply a row-averaging operator, andg� is a column-summing

operator. Thus, member industries approximate the(n � m) non-member industries as a single

external “industry”.

Table 7 illustrates the effect of incorporating this restrictive aggregated view of the outside

world on the performance of three of the algorithms described in section4. Each shows only a

modest improvement.17

16Inputs purchased from other industries do not sum to one because of inputs in the forcing vector,v, such as labor.

17Although we do not pursue the effects of nonzero conjectures regardingA22, note that guesses about row sums of
A22 are equivalent to overrelaxation acceleration of the feedback conjecture,B.
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Table 7: Effects of conjectured nonmember feedbacks.

Algorithm Number Largest Average Average

used for of group mean lag communication

forming groups groups size (AML) cost (ACC) AML + ACC

Random-0.6 215 21 1.9151 0.0052 1.9203

w/ rest-of-world aggregation 1.9047 0.0052 1.9099

1-Largest-customer 160 20 1.6739 0.0085 1.6824

w/ rest-of-world aggregation 1.6623 0.0085 1.6708

1-Largest-supplier 52 74 1.4514 0.1069 1.5583

w/ rest-of-world aggregation 1.4325 0.1069 1.5394

5.2 Effects of imperfect communication.

In experiments thus far, we have assumed that communication between industries is always

reliable and noiseless. We now relax that assumption, and specify that the communication of

price information is stochastic. A new price will be communicated from one industry to another

only with a fixed probability; if the price is not communicated, then the prospective recipient of

the information will use its most recent available value instead. Thus, the recipient is never fed

incorrect price information, merely outdated price information (with a nonzero probability).

Probabilistic communication represents several circumstances. First it reflects the effects of

occasional “stale quotes”, i.e., industries being forced to use outdated price estimates because of

delays in transmitting price information. This could be due to imperfections in the mechanism for

transmitting information, or due to “freeriders” in the group, hoping to take advantage of other

industries' information disclosures, while not revealing their own. In a rough way, probabilistic

communication may reflect also the effect of “menu costs”. By this, we mean the phenomenon that

industries may feel that the fixed expense of adjusting their prices exceeds the value to be gained

by doing so. Refraining from small adjustments causes inaccurate price signals to be transmitted,

and may impair the efficiency of the entire system. In our model there are no thresholds, but adding

the element of randomization may suggest the general effect of industries failing to consistently

transmit current price information.

We first consider the case when communicationwithin groups is imperfect. Table 8 shows

results on three of the algorithms from section4 when each intragroup communication fails with

probability 0.10 and 0.20. All price information communicated between industries in different

groups is transmitted accurately, though with a one period lag as before.
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Table 8: Imperfect communicationswithin groups.

Algorithm Number Largest Average Average

used for of group mean lag communication

forming groups groups size (AML) cost (ACC) AML + ACC

Random-0.6 215 21 1.9151 0.0052 1.9203

90% reliabilitya 2.0418 0.0052 2.0470

80% reliabilitya 2.2193 0.0052 2.2245

1-Largest-customer 160 20 1.6739 0.0085 1.6824

90% reliabilitya 1.7104 0.0085 1.7189

80% reliabilitya 1.7664 0.0085 1.7749

1-Largest-supplier 52 74 1.4514 0.1069 1.5583

90% reliabilitya 1.4607 0.1069 1.5676

80% reliabilitya 1.4749 0.1069 1.5817

aCommunication reliability within groups.

The performance degradations of stochasticintra-group communications are small (below

7%) in every case except when random groups communicate with a 20% failure rate. Note that

groups formed randomly suffer more from faulty intragroup communications than groups based

on customer/supplier relationships. In the latter case, there is more interconnectivity among firms

in the group and, thus, more opportunity for information missing due to transmission failures to

be supplied from another source within the communication group.

Now, consider the reverse case of stochasticinter-groupcommunications, introducing 10% and

20% error rates for transmissions between groups and restoring perfect communications within

groups. The effects on the three algorithms appear in table 9.
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Table 9: Imperfect communicationsbetweengroups.

Algorithm Number Largest Average Average

used for of group mean lag communication

forming groups groups size (AML) cost (ACC) AML + ACC

Random-0.6 215 21 1.9151 0.0052 1.9203

90% reliabilitya 2.0931 0.0052 2.0982

80% reliabilitya 2.4469 0.0052 2.4520

1-Largest-customer 160 20 1.6739 0.0085 1.6824

90% reliabilitya 1.8247 0.0085 1.8332

80% reliabilitya 2.0227 0.0085 2.0312

1-Largest-supplier 52 74 1.4514 0.1069 1.5583

90% reliabilitya 1.5770 0.1069 1.6838

80% reliabilitya 1.7479 0.1069 1.8548

aCommunication reliability between groups.

Imperfect communications between groups is much more disruptive than faulty intragroup

communications. At a 10% failure rate, the performance degrades by 9% for each of the

original three algorithms; when the rate is increased to 20%, the performance is at least 20%

worse than the case of perfect communications for all three of the algorithms. The reason that

flawed communication among different groups is more problematic is probably that there are

fewer opportunities for communicating prices between industries in different groups. Thus if

an out-of-date price is transmitted, a longer period of time elapses before it will be updated.

Consequently, more computations are performed using the inaccurate price information, and

convergence to the optimal prices is delayed for longer intervals.

5.3 Genetic algorithms.

We also explored the use of genetic algorithms to find effective industry communication groups.

A genetic algorithmis a randomized search procedure in which the goal is to “evolve” good

algorithms through a process analogous to natural selection. Apopulationof strings is maintained;

each string represents a set of parameters that defines a particular algorithm. The genetic algorithm

seeks to improve the performance of the strings in its population through successive generations.

In each generation, the strings in the population are evaluated as to their performance on the
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problem at hand. Some of these strings are then selected randomly according to a probability

distribution that weights good performers more heavily. The selected strings are then “bred” to

form the next generation. “Breeding” is achieved by pairing off strings and having them exchange

selected attributes; random mutations are also added to diversify the population. The resulting

strings comprise the next generation. Genetic algorithms have been applied in a wide range of

fields, including biology, operations research, integrated circuit design, and artificial intelligence.

For an introduction to genetic algorithms see, for example, Goldberg (1989).

Due to the limited success we have thus far achieved using genetic algorithms, discussion will

be brief. In order to apply genetic algorithms to the problem of finding good industry groupings,

we designed a string encoding to represent a collection of groups. Each string is an array of 356

integers, where theith element of the array is the name of the group to which industryi belongs. A

pair of strings is “bred” by randomly choosing a positionp between 1 and 356. Each group is then

split atp, and the pre-p group fragments from the first string are spliced onto the post-p fragments

from the second string, and vice-versa. Operations of this type are typically known ascrossovers

in the genetic algorithms literature.18

Strings are also mutated by randomly splitting groups, and by randomly crossing over pairs of

groups within a single string, by a process similar to that described above for pairs of strings. The

probability of each of these operations being carried out is controlled by parameters supplied to

the algorithm. We conducted tests of from 500 to 2500 generations, with population sizes varying

from 20 to 40.

Unfortunately, results thus far with genetic algorithms have not been very promising. The

best performing string produced by such an algorithm has achieved a performance measure of

only about 1.77. While this is clearly better than randomly-selected groups, it does not approach

the results of the better rule-of-thumb algorithms described earlier. The reason for this is almost

certainly that we have not incorporated any domain knowledge into the genetic algorithm; it is

essentially a random search. Since the search space of possible groupings is so huge, as noted

earlier, algorithms that are not guided by heuristics that take into account the input-output structure

of theA matrix are unlikely to be successful.

18Note that this type of operation is very sensitive to the ordering of the information contained in the string, since
adjacent string bits will almost never be separated, while bits far apart on the string will frequently be split up by
crossovers. Thus, best results are likely to be achieved when the string can be encoded so that related attributes are
positioned close together. We tried to achieve this by ordering the industries along the string so that an industry is
close to its customers and suppliers, somewhat further from its suppliers' suppliers and its customers' customers, and
quite distant from those industries with which it has virtually no contact. Unfortunately, our results improved very
little even after this reordering.
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