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1 Introduction

In recent vears. manv excitin
In recent vear v excitin
series. Advances have proceeded along a number of distinct paths. Some authors

have focused on adapting the familiar residual-based resampling approach of Efron

(1979) to finite-order ARMA models. More recently, the focus has shifted toward
residual based nonparametric methods such as the sieve bootstrap and the Cholesky
factor bootstrap, which treat the underlying population model as unknown. Other
researchers have explored resampling biocks of time series data. Stiii another ap-

proach has been to develop algorithms which operate in the frequency domain. The

advantage of this approach is that in the frequency domain there are iid variables
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they impose parametric structure on the data. Algorithms which make few paramet-
ric assumptions are relatively likely to encompass the true model. However, methods
which condition on a particular parametric model afford higher precision. We provide

evidence that suggests that for many applications in time series econometrics para-

algorithms is model selection. For lag order selection in autoregressive models, we
stress the advantages of the AIC compared to more parsimonious criteria as well
as the need to explicitly account for lag order uncertainty. Similar problems arise
in nonparametric resampling. In particular, we show that the block size plays an

important role in determining the success of the block

bootstrap; and we propose an

automatic data-based selection procedure. We also discuss the choice of bandwidth
selection criteria for frequency domain bootstraps.

Another concern in applied work is the presence of nonstationarities. We argue



that the asymptotic bootstrap theory for nonstationary data is more fully developed
for the parametric case. In particular, parametric resampling methods have recently
been shown to be valid, even for processes with some explosive roots (Datta (1995)).

Nevertheless, care must be taken in applying parametric bootstrap algorithms.
In particular, we emphasize the importance of accounting for small-sample bias in
autoregressive models. We also stress that in the time series context percentile-t

intervals may perform poorly and their use should be supported with Monte Carlo

evidence. In addition, standard percentile intervals may also require modifications.

inference i - stochastic regressor model. Qur discussion complements recent
work by Li and Maddala (1996). Section 2 reviews parametric and nonparametric
residual-based bootstrap algorithms. Section 3 discusses the block bootstrap. Section
4 presents bootstrap algorithms for the frequency domain. Section 5 focuses on the

treatment of nonstationary data. Section 6 contains a Monte Carlo study which

2 Residual Based Resam

|.»-c_ |
E o
o o]

Efron’s (1979) original bootstrap algorithm required resampling from data which are,

n population, independent and identically distributed. In the iid case, one can create

the data display heteroskedasticity or serial correlation, a randomly resampled set of
data will not preserve these properties, so that statistics calculated from the resampled
data (or from transformations of resampled data) will be inconsistent. Thus, the iid
bootstrap fails for time-dependent data. One way to reduce time dependent data to
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2.1 Parametric Methods

Early applications of the bootstrap algorithm to time-dependent data assumed that

N £ 1 r
Hows a stationary finite order autoregression of the form:

A(L)y: = (1)
where e; ~ iid with E(e¢) = 0 and E(e?) < co. Y = (y1, ..., yr)’ denotes the observed

le polynomial in the lag operator. For example, Efron and
Tibshirani (1986) and De Wet and van Wyk (1986) bootstrapped the AR(1) model.
Stine (1987) extended the analysis to the AR(p) model and Runkle (1987) to the
finite order VAR(p) model. The AR(p) model may be bootstrapped as follows:

1. Determine the order of the AR(p) process.

2. Estimate the parameters A(L).

3. Generate bootstrap innovations €; by resampling with replacement from
the empirical residuals & = A(L)y..

4. Generate a random draw for the vector of p initial observations
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. Generate pseudo-data: A(L)vf = g7 conditional on Yj.
6. Calculate the bootstrap parameter estimates: ( )
7. Repeat steps 3-6 many times and build up the empirical distribution of

interest.}

In practice, AR(p) models are almost always estimated by least-squares. If no
intercept 1s inciuded in the regression model, the residuals £ must be recentered

prior to resampling to ensure that their bootstrap population mean is zero. It is also

! For a discussion on choaos sing the

(1993).
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common to rescale the empirical residuals by a factor of [T — p/(T — p — d)]

1w
’* where

d denotes the number of estimated coefficients. The aim is to give the £} the desired
variance (see Stine (1987), Peters and Freedman (1984)).

- {_. UV 5218 mn 1 ) L Iy , i 1 1
15 o = (Y1,...,Yp) 1lIKEC all ODSErvallons I10r Y are stocnasuic.
While the effect of conditioning on a particular set of initial conditions is asymp-
totically negligible, it is not appropriate to condition on Yp in order to generate the
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bootstrap replicates. One way to randomize Yy is to set Yy = ['"1/3(3;

e7), where

I is the estimate of F(Y;Y;) defined by A(L) and Yz = (Yt, Y¢-1, -, Yt—p+1) (Liitkepohl

(1991) n. 498)
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because I' is noninvertible. Even for borderline stationary processes, there is a posi-
tive probability that some least-squares estimates will be explosive. A method which
does not require matrix inversion is to pick arbitrary values for Yy in the recursion

A(L) y? = &} and to discard the start-up transients for {y}. Alternatively, one could

build up the initial observations from the estimated moving average representation
Yy = A7'(L)e; as in Rayner (1990), but this requires the truncation of an infinite
sum. A third appreach which avoids the truncation of an infinite sum and does not

require start-up transients is to divide the observed data into T' — p + 1 overlapping
blocks of length p and randomly select one block with replacement for Y. This block
initialization has been used for example in Stine (1987).

ar

An alternative class of parametric models are stationary MA(q) modeis:

where B(L) denotes a la
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els are rarely bootstrapped in econometric practice, but it is straightforward to adapt
the bootstrap algorithm for AR(p) models to the present context. Simulation results
for the finite order stationary MA(1) model can be found in De Wet and van Wyk



(1986) and Bose (1990). Under further regularity conditions, Bose (1990) proves that
the bootstrap approximation of the parameter estimates in moving average models is
accurate to the order o(T*%). In contrast, the asymptotic normal approximation is
accurate only to the order O(T_Jz').

Chatterjee (1986) applies the bootstrap algorithm to general ARMA (p,q) models

of the form:

A(L)y. = B(L)es 3)

where ¢; and y; are defined as above. A(L), B(L) are invertible polynomials in the

lag operator, satisfying the assumption that together they imply var(y;) < oco. The

1. Determine the order of the ARMA( D,q) process.

2. Estimate the parameters: A(L), E(L)
3. Resample from: &, = B~Y(L)A(L)y; (after recentering the &; around zero).

4. Choose a large positive integer 7, set y; = 0 for t < —7 and generate iid

Avccrn for % Foe + m
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Generate pseudo-data: y; = A~Y(L)B(L)e} for t = —7, ..., T and retain the

-
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last T values of y;.
6. Calculate the bootstrap parameter estimates: A*(L), B*(L).

7. Repeat steps 3-6 many times and build up the empirical distribution of

2The parametric bootstrap may be robustified against possible serial correlation in &; by re-
sampling blocks of residuals using the block methods discussed in section 3 (e.g., Li and Maddala
(1993)), or by explicitly modeling the error term (e.g., Lamoureux and Lastrapes (1990)).



2.1.1 Generating Bootstrap-Data in VAR Models

Superficially, the bootstrap algorithm for VAR models is similar to the familiar al-
gorithm for the regression model with fixed regressors. However, in autoregressive
models the OLS estimates of the slope coefficients are systematically biased away

from their population values. As a result, the standard bootstrap algorithm used by

Runkle (19 7\ may he
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les. The size of the hias denends
ies. 1ne size oI tne Dlas depends

on the sample size, the persistence of the data generating process and whether a

was first observed by Kiviet (1984) in a linear regression model with lagged depen-
dent variables. Pope (1987) and Nicholls and Pope (1988) suggest bias-correcting the
slope coefficients ” prior to bootstrapping” in order to improve the bootstrap approx-
imation in the vector autoregressive model. They develop closed form expressions for

the asymptotic first-order bias of the slope coefficients in the VAR model without

Nicholls and Pope’s (1988) proposal. Kilian uses resampling to estimate the first-order

coefficient bias in the VAR model with and without deterministic time trends.
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Even if we bias-correct the autoregressive coefficients A(L) prior to resampling the

rap inference. This
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his bootstrap bias tends to undermine the coverage accuracy of

bootstrap confidence intervals for statistics that are functions of A(L), regardless of

the type of confidence interval used.

There is a widespread perception (e.g, Horowitz (1995), Li and Maddala (1996))
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ping asymptotically pivotal statistics. A statistic is said to be asymptotically pivotal
if its limiting distribution does not depend on any unknowns. Many statistics of in-
terest based on AR(p) and ARMA(p,q) models are asymptotically normal and can be

studeniized to make them asymptotically pivotal. Consider a statistic 0. Percentile-t

~
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bootstrap ire based on the bootstrap approximation (é
studentized statistic, (8 — 6)/SD(6) .

Unfortunately, in many time series models reliable measures of scale, SD(6*),
do not exist. In particular, the distribution of the slope coefficients in the VAR
model may
unity. Bias in A*(L) tends to move the estimate §*(A*(L)) away from its true value,
changing its variance. As a result, the percentiie-t bootstrap interval is unlikely
to perform well without a suitable bias correction prior to estimating the variance.

JEp £ e - - - =

For example, Kilian (1995) reports that the percentile-t interval for VAR impulse

resampling under the null (e.g., Zivot and Andrews (1992)) and/or using restricted
estimation techniques (e.g., Nankervis and Savin (1996)). Li and Maddala (1996)

provide an extensive discussion.

Unfortunately, for interval estimation there is no specific null to refer to. In
nrincinle. it is naossible to imnrave the small-esamnle nerfarmance of the nercentile_t
principle, it is possible to improve the small-sample performance of the percentile-t
interval with variance stabilizing transformations, but these transformations are not

generally known and have to be simulated. This adds another layer of bootstrapping
and makes the percentile-t method computationally burdensome (Efron and Tibshi-

rani (1993)). We conclude that the percentile-t method shouid not be used blindly

without supporting Monte Carlo evidence of its small-sample properties.



Why not directly bootstrap the unstudentized statistic of interest? As with the
percentile-t, the percentile interval requires the statistic to be unbiased and scale
invariant. This assumption is asymptotically valid for many statistics based on VAR
slope coeflicients, but it is not reasonable for their smali-sample distribution. As a
result, the percentile interval can be expected to perform poorly. The bias-corrected
(BC) percentile interval discussed in Efron and Tibshirani (1993) does not necessarily

remedy this problem either, because it ignores scale effects. Intuitively, shifting the

interval endpoints to account for median bias in a scalar distribution fails to account

nd changes in the variance of the statistic of interest. However, its adaptation
to time-dependent data has not been investigated. To date empirical evidence on

the coverage accuracy of the percentile and BC intervals is scant. Kilian (1995)

finds that these intervals perform erratically for VAR impulse response estimates.

He also explores an alternative approach to removing bias and scale effects prior to

]\r\nf‘efr‘cxnn;ho’
bootstrapping
2.1.3 Lag Order Uncertainty in Parametric Modeis

vimation to the true
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of an ARMA or AR model is thus a crucial issue. Chatterjee (1986), for example,
reports simulation results for ARMA(1,1), ARMA(2,0) and ARMA(0,2) models. He
compares bootstrap and asymptotic estimates of standard errors. Chatterjee regards
the bootstrap results as quite satisfactory, but observes that much of the attraction
of this method depends on selecting the right order. He notes that the bootstrap
performs poorly if the selected order is not correct.

Recent work by Kilian (1996a) offers some guidance on selecting the lag order.

For the AR(p) model, the lag order selection criterion need not be consistent for



the lag order for the bootstrap algorithm to be asymptotically valid. However, it is
necessary that the probability of underestimating the true lag order is asymptotically
zero. Provided that the range of lag orders considered includes the true lag order, this

l-DaSG g oraer SCleCElOIl cuuerla 1n(31u0.1ng

the Akaike Information Criterion (AIC) are potentially valid criteria.®

fannn

Kilian {1996a) also points out that the consequences of bootstrapping an over-

parameterized VAR model may be very different from those of bootstrapping an

under-parameterized model. This suggests that lag order selection criteria such as the

Schwarz Information

L i i i

intervals for VAR impulse response estimates is much closer to nominal coverage for

TY
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the AIC than for more parsimonious criteria such as the SIC or the Hannan-Quinn
Criterion.

Once it is explicitly recognized that the lag order must be estimated, another ma-

jor difference between bootstrapping a

model becomes apparent. The standard bootstrap algorithm for AR(p) models con-

ditions on the lag order estimate as though it were the truel

order is estimated correctly, the standard algorithm ignores the sampling uncertainty
about the lag order estimate and may lead to misleading inferences. Masarotto (1990)
and Kilian (1996b) therefore propose a generalization of the bootstrap algorithm for
VAR(p) models which reflects the true sampling uncertainty of the lag order estimate.
This ”endogenous lag order” bootstrap algorithm does not condition on the initial lag

order estimate, but re-estimates the lag order in each bootstrap iteration. Extensions

of this idea to ARMA(p,q) models are straightforward.

2m i £on A vy
“1'ne asympuor,lc validity of the AIC for bootstrapping foliows from resuits in Paulsen and
Tjgstheim (1985) and Quinn (1988). Also see Potscher (1591, p. 179)
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2.1.4 Conditional Bootstrap Prediction

Applied researchers are often interested in the distribution of forecasts conditional on
the last p observations of the sample path. Bootstrapping the conditional distribution
requires the last p observations in each bootstrap sample to be identical to the last

p observations in the original data. The standard bootstrap algorithm for the AR(p)

of the last p bootstrap observations. To solve this problem, Thombs and Schucany

(1990) propose initializing the AR(p) with the last p observations and backcasting
the time series using the ’backward representation’:
-1
A( L )’l/t = Wt (4)
where the backward noise w; is the sequence defined by:
W, = ALY £, (5)
A(L)

If £ is normally distributed, one can use iid resampling of the backward residuals,

W, based on (4) to generate conditional bootstrap sample paths. However, this

Breidt, Davis, and Dunsmuir (1992, 1995) observe that the distribution and the
dependence structure of w; are complicated, but that the sequence can be simulated

if we rewrite 5 as:

where w; is an ARMA (p,p) process driven by the iid sequence ;. They propose the

followin ,.] rithm

11



1. Determine the lag order of the AR(p) process.

2. Estimate the parameters A(L) for the observed data {y:},t=1,...,T.
3. Compute &, = A(L)y; fort =p+1,...,T.

4. Generate a bootstrap realization w; of the backward noise w; via:

A(Lyw{ = A(LM)é;,

m ahaarvatiana Af +ha aaranla matlh xria
tl UIDTL VA ulullio Ul ullco Dalllylc Pabll via
* — _ —_—
Y = U t=T"T-1 .. T—-p+1 (7)
x 1 1y * * _
Y¢ = A(L )yt+wt t_T—paT—p—17 '71
ngino the secnence of oheervatinne far 1n* fraom coten 4
using the sequence of observations for w} from step 4.
6. Calculate the bootstrap estimates A*(L)
7. Repeat steps 4-6 many times and build up the conditional empirical distribution

of the h-step ahead forecasts §7.n.
McCullough (1994) finds that the conditional forecast distributions impiied by the
Thombs and Schucany (1990) procedure are very different from those implied by the

Breidt et al. procedure.

et al. procedure are not entirely correct. He proposes an exact bootstrap procedure
d

-
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(1995) point out, estimating the density in small samples may be problematic, and
the gains from using exact rather than approximate conditional sample paths appear

small.

12



2.1.5 Bootstrapping State Space Models

ARMA processes can also be cast in state-space form and consistently estimated us-
ing Kalman filter techniques (e.g., Harvey {1989)). Stoffer and Wali {(1991) propose a
bootstrap algorithm for linear state space models. They show that their algorithm de-

Iivers consistent bootstrap standard errors under some regularity conditions . Define

~~
(0.9]
N

. I » DY S
St+1 = ISt GLy + We

yo = Hs¢+ Dxe+ vy,

where y; 1s a q x 1 vector of observed data, s; is a p x 1 unobserved state vector and
T: is an r x 1 vector of exogenous variables. F,G, H, and D are coefficient matrices.
The innovations wy and v; are iid with zero mean and nonnegative definite covariance
matrices. E(vww:) = R, E(waw:) = Q, and E(wsvy) = 0. The model coefficients and
correlation structure are assumed to be uniquely parameterized by the vector 6.
The model (8) may

[
1T 111V 1iiy, o,

Seijt

denote the best linear predictor of s¢,1. Then the forecast errors are e; = ys— H 84, 1—

MNan —=22L ot __ ___1_*_ XV _ IT D 7l « D mo L at
Dy with covariance matrix Xy = [ Py¢—1/1 + R . The innovations form is:
Sty1t = Fsye1+ Goe+ FKes 9)

p _ 11‘ N ™ n
Yt = MS—1 + Tt + &y,

where K; = Py, 1H'S; i (the Kalman gain) and where Py;_; is the covariance matrix
Of St — 3t|t—1-

Let 6 denote the Gaussian ML estimate, and define the (p+q) x 1 vector & =

AT
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lbt—I-lit’ ytJ . 2LdC 1S 111 \U} alla evaluatilng at v results 1n:
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& = A&y 1+ Bz, + Ciée(0) (10)

[~ 1 M A1 (S 1/2 1
| £ 0] | | FRE0) |
wrhara A — n _
WI1ITLT /1 — N 9 1) — “ 3 1/2 .
[ A o D ()
Stoffer and Wall {(1991) devise the following bootstrap procedure:

v e
rr
1. Calculate § = arg maxy I-— > {lo |2:(0 )|+€f(0),2f1(0)51’(0)1l This

3. Generate pseudo-data, y;, by substituting e} for é; in equation (10),
holding fixed the exogenous variables x; and the initial conditions.

4. Calculate bootstrap parameter estimates, 6*.

5. Repeat steps 2-4 many times and build up the empirical distribution of

interest,

2.2 Nonparametric Methods

The bootstrap algorithms discussed above assume that the true model is a finite order

ARMA process with iid innovations. However, these models are at best viewed as
approximations. A broader class of models are linear autoregressions of infinite order.

If the true model is not finite-ordered, the asymptotic justification of the bootstrap
\ nmd T mnion - A Tl /1009Y 2o oo T
) alu l\lclbb aina rranke \.LUUL} 15 110 1OIIECL

valid. We will discuss two bootstrap algorithms designed for this class of processes:

the sieve bootstrap and the Cholesky factor bootstrap.

14



2.2.1 The Sieve Bootstrap

Biihlmann (1995, 1996a) considers a class of linear, infinite dimensional process which
can be approximated by a sequence of finite-dimensional autoregressive approxima-
tions of order p(T) where p(T) — oo and p(T) = o(T) as T — oco. He argues

that the standard OLS bootstrap for the AR(p) model may be given a nonparamet-

[ Y
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of the data. Under the more restrictive assumption of exponential decay, Paparoditis
(1996) proved that this bootstrap procedure delivers an asymptotically valid boot-

strap approximation for the autoregressive coefficients and for the moving

o

werage
representation of the VAR(p) model. Similar procedures have also been proposed
in Swanepoel and Van Wyk (1986), Pa
(1992). In related work, Bickel and Bithlmann (1996) propose a smoothed sieve boot-
strap for nonlinear, nonregular statistics. Their proposal involves resampling from
the smoothed distribution of the empirical residuals of the approximating autoregres-

civra = : s T NI | F . . B s :
sive model. Biihlmann (1996b) studies the sieve bootstrap for autoregressive models

including a deterministic time trend.

2.2.2 The Cholesky Factor Bootstrap

as a device for nonparametric estimation, Diebold, Ohanian and Berkowitz (1995)
formulate a bootstrap algorithm which does not require conditioning on any partic-

ular parametric model of the VARMA type. The context is the vector covariance

stationary MA(co). Any finite realization of length T thus has representation:

15



Y = Pe, (11)

where P is r'T x 1T and € is r'T x 1. The nonparametric bootstrap proceeds as follows:
1. Consistently estimate Cov(Y)=X, by applying a suitable truncation
lag rule.
2. Take the Cholesky decomposition: PP’= 3.
3. Resample from the normal distribution: £* ~ N(0,%).
4. Generate pseudo-data: y* = Pe*.
5. Calculate bootstrap statistics: 6( y*).

6. Repeat steps 3-5 many times and build up the empirical distribution of

Alternatively, in step 3 the residuals may be resampled without imposing Gaus-

e L aV otV At acl.ut o £ A D—1
ing ITOm thné empirical distribution ol € =

)y

A VA Y IR | ~
I, allel rescaling vne ¢
so that they have a variance of 1.
L N 1 Iy s 29 1 i1 . 11 K] ™ . 1
This "Cholesky factor” algorithm is a model-free method for generating pseudo-
data focusing on the second moment properties of the observed data. Note that the

ARMA ((p,q) parametric bootstrap generates pseudo-data from:

* -1 A *
Yy, = A (L)B(L)e;. (12)
The Choleskv factor bootstran renlaces the narametric estimates AU TNR(T) with =
1he Lholesky Tac P replaces the p netric estimates A "(L)5(L) with a

T
y: =Z Pt,jé";. (13)
7=1

In order to consistently estimate P , the number of autocovariances being estimated
must grow with (but slower than) the sample size. This can be achieved by down-

weighting the off-diagonal elements of 3. Selecting a particular sequence of weights

16



amounts to choosing a bandwidth. This choice will, of course, affect the performance
of the bootstrap. Severe downweighting induces bias, while too little downweighting
reduces efficiency. Thus, in place of the lag order selection problem in parametric
models, the nonparametric Cholesky factor bootstrap requires a bandwidth choice.
Data-based bandwidth selection procedures for consistent covariance matrix estima-
tion may be found, for example, in Andrews (1991), Andrews and Monahan (1992)

or Newey and West (1994).

3 Resampling Blocks of Data

The bootstrap algorithms discussed in section 2 all transform stationary time series

data in a way that gives rise to iid residuals. These residuals may then be resam-

may provide somewhat higher bootstrap estimation efficiency than non-overlapping
blocks, although the available evidence indicates that the efficiency gain is small (e.g.,
Hall, Horowitz and Jing (1995)).

Given a set of observations, y¢, ¢ = 1,...,7, define b = T — k + 1 blocks of
data x; = (ys,...,Yrrx—1) of length k. Kiinsch (1989) and Liu and Singh (1992)
independently propose resampling with replacement from the blocks (z1,zo, ..., Zp)

to form pseudo-data, (z7, z3, ..., z]) of length T' = Ik . The statistic of interest is then

calculated for each of many sets of pseudo-data. The distribution of the bootstrap

increases with sample size.
Under some conditions on the mixing coefficients of the data process, Kiinsch

(1989) proves that the block bootstrap provides a valid approximation to the unknown

17



the optimal block size tends to increase with the persistence of the time series as
measured by the dominant root. Third, figure 1 suggests that the performance of the
moving blocks bootstrap tends to be fairly stable in the neighborhood of the optimal
block size. This suggests that even a fairly coarse grid for & will provide valuable
information.

Other work on block selection includes Hall, Horowitz and Jing (1995) and Bithlmann

and Kiinsch (1996) . Hall et al. propose an iterative empirical procedure for deter-

mining the optimal block size. Starting with an initial guess for k, they first determine

| PO . B -kl . - T T3

1611gu11 m< 1. TUSH‘lg
asymptotic expressions for the optimal block length, the result for the subseries is re-
calibrated, so that it applies to the original full sample size. This procedure may then
be iterated until convergence is achieved. However, an important issue not discussed

in Hall et al. is the selection of the tuning parameter, m.

L2
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4 Resampling in the Frequency Domain

A different approach to bootstrapping time series data is to resample in the frequency
domain. This research is motivated by noting that, even for non-iid data, there are

Jh R, PR ool Lo
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domain which can be exploited for bootstrapping.
The algorithms considered in this section require the data to be covariance stationary
or appropriately detrended prior to bootstrapping.

Ramos (1984) makes use of the fact that taking the discrete Fourier transform of

22



the covariance stationary data gives rise to iid normal variables. Specifically,

T 1

1 F S §
N o evnli ) — alio) L Bl s (14)
Y Xpst) AWy ) +— Wy \i4)

T

where a{w;) and b(w;) are known as the Fourier coefficients. For any finite number

of frequencies;

Ramos makes use of the asymptotic independence in the following algorithm:

1. Consistently estimate the spectral density function (s.d.f).

b

X [ &7 \ / AN
a (wj) = yVJWj)Zalwj)

b (wi) = fw)a(w)

with za(w) iid N(0,1/2), zs(w) 1id N(0,1/2)
3. Calculate pseudo-data by taking the inverse Fourier transform
T-1
y; = la*(w;) cos(wjt) + b*(w;) sin(w;t)]
=0

4. Calculate the statistic of interest from the pseudo-data.

ot

. Repeat many times and build up the empiricai distribution of
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the validity of the block bootstrap for m-dependent data. Bithlmann (1994) proves the

asymptotic validity of the block bootstrap for statistics given by smooth functionals

of sample means of vector valued observations. Related results can be found in Naik-

Nimbalkar and Rajarshi (1994). In related work, Lahiri (1995) proposes a modified
f heavv-t

black baotstrap procedure for normalized sums of

VVVVVVVVVVVVVV i Lot L

ail dependent variables.
While these results establish asymptotic validity, Lahiri (1991, 1992), Gotze and
Kiinsch (1993), and Davison and Hall (1993) prove that the block bootstrap is second
order correct for a wide class of studentized statistics based on sample means in
his bootstrap algorithm corrects for the second
order term in the Edgeworth expansion which the asymptotic approximation cannot.
However, the asymptotic refinements cannot in general be obtained by applying the
usual formula for the test statistic to the block-bootstrap data. In fact, without

suitable modifications, the rate of convergence by Kiinsch’s method may be worse

1. Resample blocks of data (z},x3,...,2]) from the original blocks (z1, 2, ..., Zs).

2. Define a function T'(z]) on each block, such that the statistic of interest T
=gl .
can be written, T=7 % T(x}).
=1
2 Naline Lloaks of cbatictioe B — (M % T4 e TP SN
J LJTILIIC DlvLhADd UL suauldulun, U] _ \1 \J/Z}’ pa \J/z+1}, 3 4 \J./,L_{_m}) .

e o TR ANy a7 my,ox N

L (Ty), L\ Lo} s LT pp))

5. Calculate the bootstrap statistic T*==; S‘ T(x}).

i=1

Politis and Romano (1992a) motivate this ’blocks of blocks’ bootstrap in part by
showing that Kiinsch’s (1989) ariginal block bootstrap fails in the case of spectral
density estimators. The ’blocks of blocks’ bootstrap, in contrast, delivers a consistent
haootatran digtrihition Relatad warle can ha farimd 3w Dalitic and Do oo {10091\
MUVUULOLLAP WIDuLIV U LIVLL ALCIAUTU WULNQ LaAll VT 1UULIU 111 1 ULILID dllu IWwWillallv \J.UULU},
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Politis, Romano and Lai (1992), and Biithlmann and Kiinsch (1995).

Kiinsch and Carlstein (1990) and Carlstein et al. (1995) observe that pseudo-data
generated by concatenating resampled blocks of data will not preserve the dependence
structure of the original data near biock ’endpoints’. They propose linking the blocks
in a way designed to deliver a more natural transition from one hlock to the next.

Even if the true data process is stationary, a particular draw of pseudo-data may

not be. Politis and Romano (1994) propose the ’stationary bootstrap’ which guaran-

tees stationary pseudo-data. However, their method requires the choice of additional

F11mm1m e araaadars
LUIIIINE paraiiieivers.

Usually, theoretical work on the moving block bootstrap assumes short-range de-
pendence; that is, the observations are assumed to satisfy some form of mixing condi-
tions with a rapidly decaying mixing coeflicient. Lahiri (1993) relaxes this assumption
and investigates the behavior of the moving biock booststrap when the data exhibit

long-range denendence.
o o X

3.1 How to Select the Block Size

Moving blocks bootstrap algorithms require the researcher to choose a block size. Li
and Maddala (1996) discuss several rules for block size selection based on specific
models or on asymptotic mean-squared error (MSE) considerations. In this section,

we propose a data-based procedure for choosing the block size in finite samples.

are few blocks and pseudo-data will tend to look alike. As a result, the average ac-
curacy of the moving blocks bootstrap also will decline. This suggests that there
exists an optimal block size k which maximizes accuracy. The proposed procedure

automatically selects this block size for a given series and statistic of interest, regard-
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less of the sample size, persistence or lag structure of the underlying process. We will
effectively use the bootstrap as an aid in block size selection. Consider a stationary
series {y;} of length T"

1. Approximate the underiying MA(oo) process by a parametric ARMA(p, q)
odel.

or AR(p) m
2. Generate many Monte Carlo trials of length T from this fitted model.

3. For each Monte Carlo trial generate moving blocks bootstrap data {y;} for
alternative block sizes k.

4. Calculate the s
5. Select the block size k which on average produces the most accurate test
statistic, point estimate, or confidence interval across Monte Carlo triais.

6. Use that block size k to apply the fully nonparametric moving blocks

algorithm to the original data {y:}.

(
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Pope (1990) we obtain

Y = 0.3814 4 1.2514 3,1 — 0.2902 y;_o + &4, o? = 0.6105

Our statistic of interest is the response of the earnings-price ratio to a one-standard
deviation shock. We will trace out this impulse response function for 16 quarters
after the initial shock.

We generate 1,000 Monte Carlo trials from this model to evaluate the probability



84,96, 108,120,136,144} using Kiinsch’s (1989) algorithm. For each bootstrap repli-
cation, we resample the data conditional on k, fit an AR(p*) model to {y;} based on
the AIC lag order estimate, and construct the implied impulse response function for
up to 16 quarters after the initial shock. Then we build up the empirical distribu-
tions of the im
confidence intervals for each time horizon. The probability content of these intervals
is evaluated across the 1,000 Monte Carlo trials.

Rather than compare the coverage accuracy of the intervals for each block size
by visual inspection of the coverage plots across the time horizon z = 0,...,16, we
construct a simple statistical summary measure. Assuming a quadratic loss function
and equal weights for all time horizons of the impuise response function, we average
the squared deviations from nominal coverage across the time horizon and tabulate

them as a function of the block size. Then the optimal block size is:

. I' 1 16 '|
k= argmin |— Y (coverage(k,i) — 0.9)°
ko |17 = |

Figure 1 plots the mean squared deviations from nominal coverage as a function of
k. As expected the curve follows a U-shape. The global minimum is at k = 48
(quarters).

This result is of interest for several reasons. First, it shows that the performance
of the moving blocks bootstrap can be highly sensitive to the choice of the block
size. Second, figure 1 indicates that appropriate block sizes are much larger than
some illustrative examples in the literature would suggest. For example, Efron and

hlaelr o3 £fUandE for hantatranmnin e alama roaffRaia
4 1u01111. ani L L J AllU J 1Vl DuUuULdULL ayl}llls T SlUpT LuTilILICLL

Tibshirani (1993) consid
\ JJU/ L
in an AR(1) model with T' = 48. For the same model, Kiinsch (1989) considers k = 4
£ . 3.4 1 C1 W Iy ol 10N N 1 : a: i 11 i i 111 1 .
for a data set of length 7' = 120. Our procedure indicates that the optimal block size
for macroeconomic time series may be up to 12 times higher than the values sometimes

considered for similar models in the literature. Additional examples suggest that
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interest.

Despite the frequency domain setting, this algorithm is a generic method for

A

generating pseudo-data. Ramos {(1984) and

1 1

tine (1985) also discuss a version of this

2

method which does not impose normality.

Ramos (1988) provides a general and thorough treatment of frequency domain

U P . L T S r <
of the periodogram: &, = [&{w)ly(w)d{w). Ramos therefore proposes the following
procedure:

“1 N1 o LW : I : £
1. UDtaln a consistent estimate ]U.U)

2. Generate pseudo-data y; from the Gaussian distribution described by f(w).

v o\

Since a Gaussian distribution is completely characterized by its s.d.f. (ignoring

N(n f‘\ mav he e
V=g s ~

/ A 7 ~ \
as N(0, f(w) ). How can we draw from data from N(O, f (w))7 Ramos
suggests: Take the first, say, m terms in the Fourier series expansion of

f (W): 71, .-, Ym- These are the first m covariances of the process, with which the

covariance matrix may then be constructed. In Ramos’ notation,

™M

= Top(71,...,Ym). Pseudo-data is then drawn from N(0,%).
3. Calculate by = [ 6{w) iy (w)d{w).
4. Repeat many times and build up the empirical distribution of

interest.
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Ramos’ main result is that under some regularity conditions, including normality,

/T, —0;

vV <

—~~
p—t
-~

g

that is, the bootstrap principle holds.

Note that in both the Ramos (1988) and Gaussian Cholesky factor procedures,

a consistently estimated spectral density function.

tor procedure generates consistent estimates 3 in the time domain by setting 3=

Top()‘g’:/g, ceey )\T—l’:/T—l) where TO'“(‘) i
from a single row of covariances, and where \; are decreasing weights. One can show
that, if the A\, form a Bartlett window, the Cholesky factor procedure is equivalent to
inverting the s.d.f estimated with a Fejer spectral window in Ramos’ procedure.

An algorithm explicitly designed to bootstrap the spectral density function itseif
is given in Franke and Hardle (1992). They make use of the same asymptotic rela-

tionships as Ramos (1984), but in a different way. Equations (15) immediately imply

that,
[ alw) \2 v bl \ 2
[vVa—2L | 4 [voa—L | 42 (18)
\ Jiw) \ iw)/
and so
2
o5 (a() +0()") =5 (19)
But from the definition of Fourier coefficients, equation (19) implies that
2 jw) b (20)
fw) ”

where [{w) is the periodogram. Equation 20 holds approximately in finite samples.

Thus, Franke and Hardle (1992) suggest the following bootstrap algorithm:
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1. Compute the periodogram, I (w), and consistently estimate the s.d. f., f (w).

2a. Resample from * = x3/2 or

ution: £* = 42 where the number

3

2b. Resample from the empirical distri

of estimated residuals equals the number of frequencies.
3. Calculate the bootstra J
4. Calculate bootstrap spectral density estimates: f*(w) =¥ k(w)I*(w), by
smoothing the periodogram ordinates.

5. Repeat steps 2-4 many times and build up empirical distribution of

interest.

Franke and Hardle (1992) prove the consistency of the bootstrap distribution of

the pivoted s.d.f. They also report the resuits of a simulation study for an AR(5)

model at five discrete frequencies. They find that the bootstrap performs favorably

ct+

relative to the asymptotics in capturing the finite sample skewness of the distribution

ure. Equation 20 is, in fact, a special case of the more general

(see, for example, Brillinger (1981)). I,,(w) is the r x r periodogram matrix and

Fyy(w) is the r x r spectral density matrix of an r-dimensional vector random variable,

~r m

Y:. The asymptotic distribution is complex Wishart. A multivariate version of the

<
g
=h

bootstrap is implemented

L —= Y 1 i

F 2 (W) Iy (w) F V2 (w) =2 did WEQL, IL).

Thus, step 2 above is replaced with
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2a. Resample from the empirical distribution: * ~ F_' 1/2(w)1”(w\F‘ 1/Z(u)‘)
or 2b. from the parametric distribution: ¢* ~ W£(1, I,).
The fre ency do

the statistics they are designed to bootstrap. Whereas some algorithms are specifi-
7 ing the s.d.f. or linear function f th
are omnibus procedures for generating pseudo-data. A common feature is that they
generally require a consistent estimate of the s.d.f. and thus a bandwidth choice.
However, the effect of the bandwidth choice on the performance of the bootstrap
remains an open question. For trequency domain bootstraps which require the cal-
culation of the entire spectral density function (rat
frequency zero), the data-based bandwidth selection procedures of section 2 are not
appropriate. Automatic bandwidth selection procedures for the entire s.d.f. have

been suggested, for example, by Beltrad and Bloomfield (1987).
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conditions, the Kiinsch procedure is second-order correct even for the sample mean
of nonstationary data. It is not known to what extent his results generalize to other

statistics. For the parametric AR( 1) model, Basawa, Mallik, McCormick, Reeves, and
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this result arises because of the discontinuity of the asymptotic distribution at the
unit circle and generalizes to all exact unit root VAR models estimated in levels.

If the model is known to contain an exact unit root, resampling remains valid if
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we impose that unit root in estimation. In particular, in the absence of cointegration,
autoregressive [(1) processes can be estimated in first differences and the coefficients
converted to the level representation. Similarly, nonparametric methods continue to
be valid if resampling is based on first-differenced data. While nonparametric boot-
easily deal with

(S Sute i

(1) n
I e
to show that nonparametric resampling preserves cointegration relationships in the
data. In fact, cointegration itself may be viewed as a parametric notion. Thus, if the
data are known to be cointegrated, parametric methods are preferable. For exam-

7 N s At _ i 1 XTA D 11 1 r 11 ATT
ple, if the true process were a cointegrated VAR, one would resample from the ML
estimate of a vector error correction model. Since the innovations in that model are
identical to the innovations in the level autoregression, the usual bootstrap algorithm

is valid. Kilian (1995) reports that in many cases the bootstrap algorithm is quite

accurate for vector error correction models, provided the cointegration rank is known.

However, the estimation of a linear time trend or the presence of addition

problems involved in bootstrapping the cointegration relationship itself.

In applied work the existence of a unit root or cointegration is rarely known with
certainty. For some econometric questions, this is not a problem. For example, if
we are interested in approximating the finite sample distribution of a test statistic
under the null hypothesis of a unit root,
root in estimation. However, not all inference problems involve a unit root null
hypothesis.
null. Rather, the user faces the choice between ignoring the possible presence of
unit roots or relying on the result of pre-tests with low power. One would like to
think that the level bootstrap still provides a satisfactory approximation for roots

arbitrarily close to unity. However, there is littie evidence to support that view. For

example, the accuracy of the bootstrap approximation for the level a utoregression
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can be expected to deteriorate, as the persistence of the process rises (Bose (1988)).
Simulation evidence in De Wet and van Wyk (1986) for the AR(1) coefficient seems to
confirm that conjecture. We conjecture that this result is largely due to small-sample
bias, and that, in light of the arguments in sections 2.1.1. and 2.1.2, the accuracy of

the bootstrap could be substantially improved by appropriate bias corrections.

What if the roots of the process are explosive? There are no known results for
nonparametric bootstrap methods involving explosive roots, but, interestingly, the

parametric bootstrap can be shown to be theoretically valid for such models. Ba-

the explosive AR(1) model with finite error variance. Datta (1995) shows that the
limit of the bootstrap distribution in the AR(p) model converges to that of the OLS
slope coefficient estimate in probability without any additional moment restrictions.
In particular, Datta proves that the bootstrap approximation as measured by the

Kolmogoroff distance goes to zero almost surely provided

/)
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offers an asymptotically valid approximation even in the partially explosive AR(p)
model (when the characteristic polynomial admits roots both inside and outside the

unit circle). Datta assumes that for some k, 1 < k < p, exactly k roots of the char-

acteristic polynomial lie inside and the remaining s = p — k roots lie outside the unit

circle. Note that for & = p the meodel is staticnary and

®
5

sive. Exact unit roots are ruled out by assumption. For the OLS estimator, Datta
proves that the error in bootstrap approximation (measured in sup norm) converges
to zero almost surely. His proof subsumes the stationary case, strengthening Kreiss

and Franke’s (1992) resuit about convergence in probability. Ignoring the possibility

of purely explosive AR(p) models, Datta’s result suggests that, at least asymptoti-
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cally, the standard bootstrap is valid for processes with roots arbitrarily close to unity,
both inside and outside the unit circle. It thus strengthens the case for bootstrapping

level autoregressions.

8 A Monte Carlo Comparison of Bootstrap
N 4+1. T
1lvieuvIiioud

The various bootstrap algorithms of the previous sections differ in how much para-
metric structure they impose in estimation. For example, Cholesky factor, frequency

domain and block bootstrap procedures are completely n
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with, parsimony is essential and thus parametric models may be the only reasonable
choice. To verify this conjecture, we compare the accuracy of the parametric AR (p)
bootstrap, the Cholesky factor bootstrap, the Ramos (1984) frequency domain boot-
strap, and the moving blocks bootstrap algorithm of Kiinsch (1989) by Monte Carlo
simulation.

We consider confidence intervals for the responses of the T-bill rate to a one-

standard deviation shock over the subsequent 16 quarters. We believe that this ex-

ample is of broad interest to applied users. Impulse responses play an important role

in macroeconometrics. Further, they share many statistical properties with muiti-step
ahead forecasts.

In the Monte Carlo experiment, we consider three sample sizes, corresponding
to 20 and 40 years worth of quarterly data and 40 years worth of monthly data:

1" = 80,160,480. Our data generating process is based on quarterly U.S. T-bill data
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(CitiBase code: FYGMS3) for 1971.4-1993.4. The AIC suggests an ARMA(24) data

generating process:

=it
WI1tL

~2 _n 5)
1u€——u 5

;;;

An important concern in this study is model selection. The AR(p) estimate un-
derlying the parametric bootstrap is based on the minimum of the AIC for 1 < p < 8.
For the Cholesky factor bootstrap, we use the automatic bandwidth selection proce-
dure of Andrews (1991). For computational reasons, the bandwidth is not permitted

to exceed three quarters of the sample size. We use the alg,

Bloomfield (1987) for the Ramos (1984) bootstrap. For the moving blocks bootstrap

For each bootstrap replication {y; } we use the AIC to estimate the lag order {p*},
fit an AR({p*}), and calculate the statistic of interest. The confidence intervals are
based on the 0.05 and 0.95 percentile interval endpoints of the empirical distribution
of the impuise response coefficient estimates.

Figures 2-4 plot the effective coverage rates of the nominal 90 percent intervals for
each method and sample size. For the sample sizes considered the parametric AR(p)

bootstrap (labeled AR) interval clearly dominates the other three bootstrap intervals.
The Cholesky factor (CHOL), the Kiinsch (1989) block bootstrap (BLOCK) and the

iFor computational reasons we determine the optimal block size a priori based on the AR(p)
approximation of the actuai data. The AIC suggests an AR(6) model for the 'T‘ Biil rate data. We

nnnnnnnnnn roefBaiant acts +ho fgrs
}Jla.c-\,ulxout thc autul 551 €3581ve CoeuicCieriv thuuahtzb ubulg but: UAPL Ubbluub u1 I UlJt} \LUVU) \JUllulblUlldl

on this DGP, we find k = 36 for T = 80 and k € {12,24,36,48,60,72}, k = 60 for T = 160 and

ke 11") ‘)A ‘26 AR ﬁﬂ 72.84 968} and k=120 for T' = 480 and k € Iszn 1201680 200 240 2801

L&, &2, 2, 20, VU, 14, 0%, J0y, all & A...‘, L 2OV a1 X LAV AUV, LUV LTV SOV .
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and are generally unreliable. However, the Cholesky bootstrap performs somewhat
better than the moving blocks bootstrap. The extremely poor performance of the
Ramos bootstrap may in part reflect the bandwidth selection criterion emploved. Tt

also suggests that the Ramos procedure may not be consistent for our statistic of

interest

With the exception of the Ramos bootstrap, coverage accuracy tends to improve
with sample size. However, in absolute terms none of the methods can be considered

adequate. Even the AR(p) bootstrap interval consistently falls short of nominal

- Y B R 1
with the arguments we presented in

section 2. Further improvements in coverage accuracy are likely to require interval

calibration (Breidt et al. (1995)) or some form of bias correction in the statistic of
interest (e.g., Rudebusch (1993), Andrews and Chen (1994)). To illustrate this point,
we added results for the same AR(p) bootstrap with additional bias corrections (AR-
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impose parametric structure on the data. In highly parsimonious models, parame-
ters are estimated with many degrees of freedom. Bootstrap estimates, in turn, are

comparatively accurate. However, parsimony is also likely to increase the ”distance”

PRI Ld PR I O I I | el h M : M p¥ad h 1.1
weell uile litled ald une vrue Imodel. vondalrtloning on a misspeciited model may

et r
cause the misspecification to be propagated (and possibly magnified) through resam-
pling. We provided some preliminary Monte Carlo evidence that for typical sample

sizes faced by macroeconomists, parsimony is essential and thus parametric models

may be the only reasonable choice. However, care must be exercised to overcome the

32



drawbacks of bootstrapping parametric models in small samples. In particular, we
stressed the choice of lag order selection criteria, the treatment of lag order uncer-
tainty, and the need for bias corrections in small samples.

We also showed that the accuracy of the moving block bootstrap can be highly

procedure

sensitive to the choice of block size. We proposed an automatic data-based
for selecting the block size. We successfully applied this procedure to several economic
time series and determined that for macroeconomic time series the optimal block sizes
tend to be much larger than those sometimes used in the literature.

While ou
strap methods may perform poorly in small samples, results for other statistics and
ng processes would be useful. In particular, the use of an ARMA data
generating process may have biased the results in favor of parametric bootstraps.
Additional research is needed to determine whether nonparametric aigorithms enjoy

special advantages for data generating processes that are not encompassed

of much use in small and moderately large samples.

In particular, the comparatively poor performance of the Cholesky factor, the
block bootstrap and the frequency domain bootstrap for the sample sizes considered
is surprising. A partial explanation could be the slow rate of convergence of non-
ethods, but it would be

parametric m remature to discard these m

n
e = r

Diebold, Ohanian and Berkowitz (1995) present Monte Carlo evidence which suggests
that the Cholesky bootstrap delivers far better coverage for spectral density estimates
than the asymptotic approximation. The Ramos bootstrap does not appear suitable
nates. More theoretical work is needed to establish a class

of statistics for which this algorithm may be used.
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More research is needed to clarify how the choice of the bandwidth affects the
performance of these algorithms. We conjecture that their performance could be
improved by refining the bandwidth selection process. In this paper, we used the

Andrews (1991) and the Beltrad and Bloomfield (1987) automatic bandwidth selec-
t

o
D

. would be of interest to systematically compare the performance of

¢
!
{
»
b
¥
(
3
;
L
[}

frequency domain methods to other data-based bandwidth selection criteria (e.g.,
Andrews and Monahan (1992), Newey and West (1994)) or parametric devices for

estimating the spectral density. For example, den Haan and Levin (1996) report that

based estimates. In addition, bootstrapping the bandwith selection process is likely
to improve small-sample performance.
Similarly, the performance of the Kiinsch (1989) moving block bootstrap left much

to be desired. In the future, it would be valuable to study more sophisticated block
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Figure 1
Selecting the Optimal Blocksize by Minimizing

Mean Squared Deviations from Nominai Coverage
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Figure 2
Effective Coverage of Nominal 90 %

Bootstrap Confidence intervais for Impuise Responses
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Figure 3
Effective Cover of Nominal 90 %
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Figure 4
Effective Coverage of Nominal 90 %

Bootstrap Confidence Intervals for Impuise Responses
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