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1 Introduction

The assumption that agents form rational (model-consistent) expectations is a standard fixture of most work

in modern macroeconomics. Though widespread, such reliance on the rational expectations hypothesis has

not gone unquestioned. For example, Frydman and Phelps (1983), Board (1994), and Arthur (1994) argue

that human rationality isboundedand thus the rational expectations assumption imposes extreme informa-

tional and computational requirements on agents (see also Sargent, 1993). In addition, other researchers

base their reservations on concerns about the observable characteristics of rational expectations equilibria.

For instance, De Long, Schleifer, Summers, and Waldman (1990) construct a model in which behavior

based on irrational noise trading helps explain a number of observed phenomena in financial markets, such

as the excess volatility of asset prices and the equity premium puzzle. Also in the finance literature, Roll

(1996) mentions incomplete (bounded) rationality as a possible explanation for the observation of large

trade volumes in debt markets. Whereas these reservations have led some economists to discard the rational

expectations hypothesis altogether, others have sought to reconsider it in the context of environments with

less demanding informational assumptions and more plausible observable implications. Lucas (1975) and

Townsend (1983) were among the first to take up this line of inquiry. Townsend, in particular, analyzed a

model where agents formheterogeneous expectationsbecause their forecasts are conditioned on different

subsets of the relevant data. He showed that, as agents attempt to “forecast the forecast of others,” the

economy converges to a rational expectations equilibrium.

More recently, the work of Haltiwanger and Waldman (1985, 1989) brought a new perspective to the

analysis of forecast heterogeneity. Rather than working withdynamicclassical models with no externalities

(the Lucas-Townsend approach), Haltiwanger and Waldman analyzed environments that allowed for strate-

gic complementarity.1 In addition, instead of focusing on agents with different access to thedata, they built

models where forecast heterogeneity arises because some agents may use more sophisticated forecasting

methods than others. Accordingly, while some may form model-consistent expectations, others rely less

on thestructureof the model and form expectations based on a simplerule-of-thumb. Unlike the Lucas-

Townsend tradition, the class of simple,staticmodels analyzed by Haltiwanger and Waldman gave rise to

environments where forecast heterogeneity did cast some doubt on the aggregate implications of the rational

expectations hypothesis. They showed that, with strategic complementarity, less sophisticated forecasters

may have a sizable effect on the evolution of aggregate output, effectively driving the economy away from

its pure rational expectations equilibrium.

1Cooper and John (1988) define strategic complementarity and discuss its implications for macroeconomics. For the purpose
of my paper, strategic complementarity involves a situation where an individual's output decision is increasing on the level of
aggregate output.
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In this paper I introduce and solve a model that brings together important issues stemming from both the

Lucas-Townsend and Haltiwanger-Waldman approaches to analyzing heterogeneous-expectations models.

Capturing the key insights of Haltiwanger and Waldman, my analysis allows for strategic complementarity

and heterogeneous forecasting rules. However, to bring the discussion more into the current stage of macroe-

conomic thought—which emphasizes dynamic rather than static frameworks—I extend the Haltiwanger-

Waldman analysis to a richer dynamic general equilibrium model, which I solve with a methodology that is

very close in spirit to Townsend's.

In choosing a specific dynamic modeling framework, I opted for the class of models in the real business

cycle tradition. The advantages of this choice are two-fold. First, the virtues and limitations of the RBC

framework are well understood by the profession. Thus, the results I obtain under forecast heterogeneity

and strategic complementarity can bedirectly andquantitativelycompared to those generated by standard

RBC models with homogeneous, rational expectations. Second, by introducing forecast heterogeneity into

the RBC framework, I am able to address a recurring theme in the literature: the weak internal propagation

mechanism that underlies many equilibrium business cycle models (King and Plosser, 1988).

The paper's main results and methodology can be summarized as follows. With a sufficiently strong

degree of strategic complementarity, I show that even if only a small subset of agents forecasts according to

a simple but reasonable rule of thumb, aggregate output exhibits more persistence than warranted by either (i)

the degree of serial correlation in the productivity shock process, or (ii) the share of rule-of-thumb forecasters

in the total population. More to the point, because agents engage in forecasting each others' forecasts,

rule-of-thumb forecasters have a quantitatively important impact on the serial correlation properties of the

business cycle. The results are obtained by calibrating all standard RBC parameters and then running a

battery of sensitivity tests on the forecast-heterogeneity and strategic-complementarity parameters. The

sensitivity tests highlight the role of strategic complementarity in the forecast-heterogeneity debate and

preciselyquantifythe qualitative claims made by Haltiwanger and Waldman and others.

2 The Model

Apart from the issues of heterogeneity, the model described here is very close to that of Baxter and King

(1991).
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2.1 Strategic Complementarity and the Production Function

Individual output is a function not only of inputs and a productivity shock, but also of an index of per

capita aggregate output. This index is a geometric average of the per capita output decisions of two types of

agents:2

Yt = Y �s
S;tY

(1��s)
R;t (1)

where�s is the proportion of total population represented by sophisticated forecasters (typeS agents), and

YS;t is the per capita output decision of these agents. TheR subscript denotes variables pertaining to the

rule-of-thumb forecasters.

An agent of typei faces the production function,

yi;t = exp(At)F (ki;t�1; ni;t)Y
�
t i = R;S (2)

whereyi;t denotes individual output, andki;t�1 andni;t correspond to capital and labor inputs. The shock

At is assumed to capture stochastic shifts in total factor productivity. It follows a first-order autoregression:

At = �At�1 + at (3)

wherej�j � 1, andfatg is a zero-mean, normally distributed white noise process with variance�2a.

F (:) is a Cobb-Douglas production function:

F (ki;t�1; ni;t) � k
�k
i;t�1n

�n
i;t

which is homogeneous of degree 1(�k + �n = 1).3 The� parameter in equation (2) embodies the comple-

mentarity assumption; it determines the extent to which individual output,yi;t, depends on aggregate output,

Yt. (0 � � < 1)

2Lucas (1972, 1973) uses this index instead of the conventional definition of aggregate output. This, as noted in Blanchard and
Fischer (1989), amounts to “defining aggregate output as the product of individual outputs, rather than their sum” (p. 358). (See
also Sargent 1987, p. 442). The use of such index simplifies tremendously the algebra, both here and in the referenced works.

3Including labor-augmenting technical change in the production function to allow for economic growth would have required
“detrending” the model before proceeding to the solution algorithm; the results would have been unchanged. As in King, Plosser,
and Rebelo (1988), detrending would involve nothing more than dividing all growing variables by the labor augmenting factor. For
the sake of brevity, we have chosen to start with a stationary model from the beginning.
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2.2 Evolution of the Capital Stock

Output not consumed constitutes gross investment,ii;t. With ki;t representing the capital stock at the end of

periodt and assuming that this stock depreciates at the rate�, 0 � � < 1,

ki;t = (1� �)ki;t�1 + ii;t (4)

2.3 Preferences

Preferences are homogeneous throughout the economy. The momentary utility function of a representative

agent is:

u(ci;t; li;t) = log(ci;t) + �l log(li;t) (5)

whereci;t denotes consumption, andli;t is leisure—expressed as a proportion of the unit time endowment.

3 Individual Behavior

The economy is populated by infinitely-lived, forward-looking agents who discount the future at the rate�

and maximize expected utility over an infinite horizon. As in Townsend (1983), we can think of individual

behavior as the outcome of two separate problems: dynamic optimization and inference.4 The solution

to the first problem yields the perfect-foresight equilibrium laws of motion of all choice variables, which

express the optimal values of these variables as a function of past, current, and future states of the economy.

By subsequently solving their inference problems, the agents convert these equilibrium laws of motion into

decision rules that express all choice variables as functions only of the observed states of the economy.

My assumption of heterogeneous expectations amounts to saying that agents rely on the same mecha-

nism to solve their dynamic optimization problem, but not their inference problem. In the next section I will

discuss how different agents tackle their inference problem, but first I will focus on the aspects of individual

behavior that are common to both types of agents.

4Invoking the separation or certainty-equivalence principle is common-place in standard real business cycle models with homo-
geneous, rational expectations (see, e.g., King et al., 1988).
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3.1 The Dynamic Optimization Problem

Grouping all agents according to the way they form expectations, I assume that each individual takes as given

both the group- and economy-wide levels of all relevant variables.5 In addition to equations (1) through (5),

the solution to the agents' dynamic optimization problem must satisfy the usual time and goods constraints,

li;t + ni;t � 1 (6)

ci;t + ii;t � yi;t (7)

and a symmetry condition that says that individuals who rely on the same forecasting mechanism must

behave identically. This last condition implies that the equilibrium quantities for a given typei agent are

equal to the respective per capita quantities for all agents of that type (yS;t = YS;t, nR;t = NR;t, etc). When

applied to the equilibrium levels of capital, labor, and output, the symmetry condition implies

Yi;t = �i(At;Ki;t�1; Ni;t; Yjt) � [exp(At)F (Ki;t�1; Ni;t)]
�iY

sj
jt (8)

where, fori = S;R, j 6= i, �i � 1=[1 � �(1� �j)] andsj � ��j�i

Euler Equations.Given equations (1) through (7), the agent's dynamic optimization problem reduces to

solving

max
1X
t=0

�t
n
u(ci;t; 1� ni;t) + �t[exp(At)F (:)Y

�
t � ci;t � ki;t + (1� �)ki;t�1]

o
(9)

subject to

ki;�1 andfAt; Ytg
1

t=0 given; andlimt!1 �t�tki;t = 0. 6

The derivation of the system of Euler equations that corresponds to (9) is straightforward. After impos-

ing the symmetry conditions on this system we obtain:7

uC(Ci;t; 1�Ni;t)� �i;t = 0 (10)

5Note that given that the solution to the dynamic optimization problem requires no forecasting, both agents behave identically
in so far as this problem is concerned. For completeness, I will retain, however, thei index throughout this subsection.

6The last equation is the transversality condition. Its finite horizon analog says that individuals would place no value in holding
capital after the end of the last period of the planning horizon.�t is the discounted Lagrange multiplier relevant for timet
(��t � �t�t is the undiscounted one)

7ui(:) [Fi(:)] corresponds to the first derivative of the utility [production] function with respect toi. Note, e.g., that the private
marginal product of labor can be written as:

exp(At)FN(ki;t�1; ni;t)Y
�
t = (1� �k)yi;t=ni;t
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uL(Ci;t; 1�Ni;t)� (1� �k)�i;t�i(At;Ki;t�1; Ni;t; Yjt)=Ni;t = 0 (11)

��i;t+1[�k�i(At+1;Ki;t; Ni;t+1; Yjt+1)=Ki;t + (1� �)] � �i;t = 0 (12)

�i(At;Ki;t�1; Ni;t; Yjt)�Ci;t �Ki;t + (1� �)Ki;t�1 = 0 (13)

which are the familiar optimality conditions also found in other equilibrium business cycle models (see, e.g.,

Baxter and King, 1991).

Equilibrium Laws of Motion. The perfect-foresight equilibrium paths of consumption, investment, and

labor effort are given by the solution to the system formed by equations (10) through (13). It is well known,

however, that there is no closed-form solution to this system so I will focus instead on an approximate

solution, obtainable by log-linearizing the system around its steady state.8 The resulting (approximate)

equilibrium laws of motion take the form

xi;t = �i;kK̂i;t�1 +�i;�
~�i;t +�i;eei;t; i; j = S;R, j 6= i (14)

wherexi;t � [N̂i;t; K̂i;t; Ĉi;t]
0, ei;t � [At; Ŷj;t]

0, and

~�i;t �
1X

h=0

��hi (Fi;1ei;t+h+1 + Fi;2ei;t+h) (15)

A “caret” over a symbol denotes that the variable is expressed in percentage deviations from the steady state

(e.g.,Ŷi;t � log(Yi;t= �Yi)). The matrices�i andFi, as well as the�i parameter, are all functions of various

steady-state properties of the model, such as the economy's capital-output ratio and the steady-state labor's

share of total income.9

Equation (14) corresponds to the solution to the agents' dynamic optimization problem, which abstracts

from stochastic considerations. To fully characterize individual behavior, I still need to explicitly address

the issues of uncertainty and expectational formation.

3.2 The Inference Problem

By solving their inference problem, agents convert the perfect-foresight equilibrium laws of motion just

derived into the decision rules that make up their behavior. In this subsection I describe those aspects of the

information structure that are common to both sophisticated and rule-of-thumb forecasters.

8The log-linear approximation method used here is described in detail in King et al. (1990).
9The derivation of (14) follows King et al. (1990) very closely.
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For each periodt, I assume that all agents follow a two-stage decision process.10 At the beginning of the

period, the first stage takes place: agents make their labor supply and capital accumulation decisions before

being able to observe the current value of the productivity shifter,At, or the current output decision of the

other agents in the economy. The factor-allocation decision rules take the form:

zi;t = �i;kK̂i;t�1 + �i;�E
(i)
h
~�i;t j 
t�1

i
+ �i;eE

(i) [ei;t j 
t�1] (16)

wherezi;t � [N̂i;t; K̂i;t]
0, and the�i parameters correspond to the appropriate elements of the�i matrices

from equation (14).
t�1 is the information set available at the beginning of periodt; it contains the whole

history of the economy up to periodt�1. E(i)[:j
t�1] denotes the expectation of a typei agent conditioned

on
t�1.

Once the factor-allocation decisions are made, production takes place and the agents move to the sec-

ond and last stage of their decision making process. Assuming that both sophisticated and rule-of-thumb

forecasters observe each others' output as soon as production takes place, each agent can use its knowl-

edge of the production function to deduce the current value of the productivity shifter (At). Therefore, the

consumption decision is based on a larger information set,
0;t � f
t�1; At; YS;t; YR;tg.

Equation (16) makes explicit two points advanced earlier in this paper. First, agents of different types

are informationally linked; to generate their own decision rules they must forecast the behavior of the other

agents in the economy—recall thatŶj;t is an element ofei;t. Second, equation (16) highlights the channel

through which agents' expectations affect their behavior. Accordingly, the different expectational rules

embedded inE(S) andE(R) can lead to potentially different responses to the same fundamental shocks.

4 Expectational Heterogeneity

As stated before, typeS agents are sophisticated forecasters; their forecasts are fully consistent with the

rational expectations hypothesis. Accordingly, they have full knowledge of the structure of the model,

including the expectational behavior of typeR agents. For any given variable t, their expectations can be

formally defined as

E(S)[ tj
t�1] = E[ tj
t�1] (17)

whereE[ tj
t�1] is the mathematical expectation of t conditioned on the true structure of theentiremodel

(Muth, 1961).

10Kydland and Prescott (1982) assume a similar information structure.
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4.1 Rule-of-Thumb Forecasting

TypeR agents are called rule-of-thumb forecasters because their expectations are based on a simple expec-

tational rule. In allowing for the existence of these agents, I am motivated by a number of considerations.

First, many researchers, especially those in the noise trading literature, have implicitly assumed frameworks

where agents are endowed with different expectational formation capabilities. For instance, De Long et al.

(1990) assume that some agents' misperceptions lead them to form incorrect expectations about the price

of risky assets, while others form model-consistent expectations. Second, a series of recent papers in the

macroeconomics literature has argued that even agents who are equally endowed with respect to their ex-

pectation formation capabilities could optimally adopt different expectational behaviors. According to this

view, if the implementation of rational expectations is costly, otherwise identical agents who face different

constraints and opportunities may choose different levels of sophistication when generating their forecasts.

For instance, Evans and Ramey (1992) and Sethi and Franke (1995) developed theoretical models that in-

clude explicit costs of forming rational expectations and show that equilibria with a mix of rational and

rule-of-thumb expectations are possible.11

Though partly motivated by both the noise-trading and costly-computation literatures, my analysis of

the business-cycle implications of forecast heterogeneity is also driven by a third question: whether or not

the general topic of bounded rationality matters for quantitative equilibrium business cycle analysis. Along

these lines, one can think of this paper as an attempt to quantitatively assess the robustness of the RBC

framework to a partial relaxation of the rational expectations hypothesis. Thus, while implicitly taking as

given the existence of agents who, in a statistical sense, make less-than-efficient forecasts, my goal is to use

the tools of the RBC literature to assess their potential impact on aggregate dynamics and to determine what

features of the real world, if any, are missed by exclusively considering models with homogeneous, rational

expectations.12

4.2 A Forecasting Rule for TypeR Agents

Three criteria guided the specification of an illustrative forecasting rule for typeR agents. First, to capture

the concerns of the costly-implementation literature, the rule must be simple to implement. Second, the

forecasting rule should generate “reasonable” forecasts, i.e., it should be consistent with simple, well-known

characteristics of the economy. Finally, the expectational scheme assumed for typeR agents must not be

at odds with their ability to solve their dynamic optimization problem. In other words, when solving their
11For tractability, however, Evans and Ramey and Sethi and Franke had to assume a higher level of abstraction than the one

assumed here, making their models not as suitable for exercises in quantitative analysis.
12Kydland and Prescott (1996) and King (1995) discuss the use of RBC models in quantitative analysis.
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dynamic optimization and inference problems, typeR agents must rely on a single, consistent pool of

information about the behavior of the economy.

We saw in equation (16) that a typei agent must forecast current and future movements in total fac-

tor productivity (At) and the per capita output of the other agents in the economy (Ŷj;t). For illustrative

purposes, suppose that typeR agents assume an autoregressive forecasting model for these variables:

E(R)[At+hj
t�1] = �h+1At�1 (18)

E(R)[ŶS;t+hj
t�1] = �h+1ŶS;t�1 (19)

To see how the above forecasting structure fares with the three criteria listed above, note the following.

First, especially for� close or equal to�, the forecasting model in equation (18) is not only “simple,

reasonable, and consistent with their ability to solve their dynamic optimization problem,” but also, for

� = �, perfectly rational. Second, turning to equation (19), it is obvious that it corresponds to a less-than-

perfect approximation to the true process governing the evolution ofŶS;t. However, despite its simplicity, it

captures a well-known feature of traditional RBC models: the fact that output persistence is tightly linked to

the degree of serial correlation in the productivity shock series (King and Plosser, 1988). Thus, rather than

taking the time and resources to compute a fully model-consistent forecast forŶS;t, a practice that would

considerably complicate the solution to the model, typeR agents use the simple rule given by (19). Finally,

note that the ability of typeR agents to solve their dynamic optimization problem with the same of level

of sophistication as typeS agents is not inconsistent with the relatively unsophisticated methods they use

in solving their inference problem. The solution to the dynamic optimization problem requires structural

information only about one'sownconstraints and opportunities; by assumption, both types of agents use this

information. However, to solve their inference problem in a way consistent with the rational expectations

hypothesis, individuals also need complete structural information on the constraints and opportunities facing

theotheragents in the economy; by assumption, typeS agents have this information, typeR agents do not.

Thus, agents solve their dynamic optimization and inference problems in a way that is fully consistent with

the information assumed to be in their information sets.

4.3 Hierarchical Forecasting Structure

In several aspects, the expectational assumptions made so far are similar to Townsend's (1983) description

of a hierarchical informational structure. Sophisticated forecasters are placed higher in the hierarchy; in

addition to the information that enables them to solve their dynamic optimization problem, they also know
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the precise nature of the dynamic optimizationand inference problems being solved by the rule-of-thumb

agents. Thus, their forecasts incorporatestructural information about thewhole economy. In contrast,

the structural information embodied in the forecasting behavior of the rule-of-thumb forecasters isself-

contained; they use information about theirown constraints and opportunity sets, but not those of typeS

agents.13

5 Decision Rules under Heterogeneous Expectations

Given the hierarchical information structure, the model can be solved sequentially in two steps. Starting at

the bottom of the forecast hierarchy, I first derive the decision rules of typeR agents and then use the results

to compute the much more complicated decision rules of the sophisticated forecasters.14

5.1 Rule-of-Thumb Agents

The factor-allocation decision rules of typeR agents, can be written as

zR;t = �R;kK̂R;t�1 + �R;AAt�1 + �R;Y ŶS;t�1 (20)

which is obtained by replacing the expectations formulae—equations (18) and (19)—into the perfect-foresight

equilibrium law of motion ofzR;t—equation (16).15 Given the factor-allocation decisions, production and

consumption take place.

13In the illustrative case analyzed by Townsend, all agents use the same information about the structure of the economy. However,
they have different access to the data; certain agents only had observations on their own local markets, while others observed a larger
dataset. The difference between Townsend's assumptions and mine is relatively straightforward. While Townsend focused on agents
whose forecasts were conditioned on different subsets of the data, I examine agents whose expectations are more or less structurally
based depending on whether or not they form sophisticated forecasts.

14Note that this sequential scheme is valid for any hierarchical forecasting structure, regardless of the specific forecasting rules
used by typeR agents. Also note that a hierarchical forecasting structure eliminates concerns about the “infinite regress problem”
(Townsend, 1983).

15The coefficients of equation (20) are defined as follows:

�R;A � �R;x=(1� �
�1
b �)(F

(1)

R;1�+ F
(1)

R;2)�+ �
(1)

R;e�

�R;Y � �R;x=(1� �
�1
b �)(F

(2)

R;1�+ F
(2)

R;2)�+ �
(2)

R;e�

whereF (m)

R;1 denotes themth element ofFR;1, and all other parameters come directly from (16).
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5.2 Sophisticated Agents

Like the rule-of-thumb forecasters, typeS agents make their labor, investment, and consumption decisions

in two states and subject to the same information sets,
t�1 and
0;t. Thus, their factor-allocation decisions

are made before they can observe either the output decision of the rule-of-thumb agents or the current

state of productivity. However, to form expectations aboutYR;t, typeS agents look not only at their own

dynamic optimization problem, but also at the forecasting and decision rules adopted by typeR agents. This

information is subsumed in equations (14), (15), (18) through (20), and (3), which can be grouped together

to form a two-sided matrix difference equation,

H�1Xt+1 +H0Xt +H1Xt�1 = �t (21)

where theHi are square coefficient matrices,Xt �
h
x0S;t

~�S;t x0R;t ŶS;t ŶR;t At

i
0

and �t is a

vector of zeros everywhere, except for the row corresponding toAt, which containsat.

The first-stage inference problem of typeS agents entails solving (21) forXt and computing expec-

tations subject to
t�1. To solve this problem I use the generalized saddle-path algorithm described in

Anderson and Moore (1985). The algorithm maps equation (21) into its stable VAR representation:16

Xt = � Xt�1 + S �t (23)

where� andS are functions of theHi matrices.

Given (23), thej-step ahead forecast ofYR;t, made at timet based on timet� 1 information, is

E(S)[ŶR;t+j j
t�1] = {��j+1Xt�1 (24)

where{� is the vector that selects the row of�j+1Xt�1 that corresponds tôYR;t. By plugging the above

expression—along with the corresponding prediction formula for the productivity shock (�j+1At�1)—into

(16), I obtain the labor supply and capital accumulation decision rules of typeS agents. Given these de-

cisions, production takes place;̂YS;t, ŶR;t, andAt become observable; and the consumption decision is

implemented.

16The first step in the Anderson-Moore algorithm is to find a transformation of (21) such that a companion matrix representation
exists:

Vt+1 = G Vt (22)

with Vt defined as[X 0

t�1; X
0

t]
0 The stability conditions of the transformed system are combined with the original “untransformed”

system to generate equation (23).
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5.3 Aggregation

The previous subsections described how different types of agents go about solving their respective utility

maximization problems. Our ultimate interest, however, lies on the analysis of the dynamics of the economy

as a whole. As it turns out, the evolution of aggregate variables can be easily derived from the individual

decision rules computed above—see equation (1). Moreover, it can also be shown that movements in these

variables obey a state-space form that has the following general representation:

Pt = A Pt�1 +Bvt (25)

Zt = Q Pt (26)

wherePt andZt are vectors of individual and aggregate variables, respectively, andA,B, andQ are appro-

priately defined matrices.17

6 Quantitative Business-Cycle Analysis

The main question asked in this paper is whether the introduction of bounded rationality affects the dynamic

properties of a real-business-cycle economy. In particular, given the forecasting rule of typeR agents, my

goal is to gauge how the�R and� parameters affect the cyclical properties ofZt. To answer this question I

run what Kydland and Prescott (1996) call acomputational experiment—see also King (1995). The previous

sections implemented the initial steps in the experiment: (i) posing the question that the experiment will

address; (ii) constructing the theoretical model where the analysis will be carried out, and (iii) solving the

model to compute its equilibrium properties. The final steps involve calibrating the model to allow for

meaningful quantitative analysis and running the experiment itself.

6.1 Model Calibration

With the exception of the forecast-heterogeneity and complementarity parameters,[�R; �; �], all model

parameters are calibrated as in King et al. (1988). The first panel of table 1 shows this basic parameterization.

The parameters shown in the second panel are discussed below.

Strategic complementarity parameter.The calibration of the strategic complementarity parameter (�) is

17Equation (25) contains the expressions describing the decision rules of both types of agents. For instance, the rows ofA and
B that correspond tozR;t are set according to equation (20). Equation (26) maps individual variables into aggregate ones using
expressions similar to equation (1), expressed in percentage deviations from steady-state values.
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guided by the empirical work of Baxter and King (1991), Caballero and Lyons (1992), and Cooper and

Haltiwanger (1993).

Baxter and King (1991) estimated� using aggregate data by running instrumental-variable regressions

of output growth on input growth. In principle, their estimation approach is very straightforward: choose an

appropriate instrument set and run the usual first- and second-stage regressions. In practice, however, Baxter

and King expressed concern about the lack of precision of their estimation results: of the three instrument

sets they experimented with, neither generated a first-stageR2 higher than 0.08, and the resulting estimated

values of� ranged from 0.1 to 0.45. For their final simulation results, however, Baxter and King set�

at 0.23, about the mid-point of their range of estimates and in line with the early estimates obtained by

Caballero and Lyons (1989). However, based on the more recent work of Caballero and Lyons (1992) and

Cooper and Haltiwanger (1993), there is some reason to believe that this number might be higher, perhaps

even above the upper end of the Baxter-King estimates.

Caballero and Lyons (1992) found evidence of a strong reduced-form relationship between disaggre-

gated (two-digit) productivity and aggregate activity. They offered two possible explanations for this finding.

First, they posited that the estimated external effects are simply the result of true externalities, an assumption

that is consistent with the model discussed by Baxter and King and in this paper (equation (2)). Based on the

true-externalities specification, Caballero and Lyons estimated� to be in the 0.32-to-0.49 range, depending

on the set of instruments and on how energy-price effects are modeled. Their second explanation for the

estimated external effects allows for the possibility that unobservable variations in effort, and not just true

externalities, might also be behind the measured “external effects.” If confirmed, this second explanation

would imply that the estimates obtained under the true-externalities specification are potentially biased up-

wards. Here their results are mixed: though they did find some evidence for unobserved effort variation, the

coefficient on one of their effort proxies, while statistically significant, actually came in with the wrong sign

across all of their estimated equations.

Using industry and aggregate manufacturing data, Cooper and Haltiwanger (1993) reported even larger

values for their own estimates of�. Moreover, their estimates remained large even after accounting for

potential biases associated with measurement error. In fact, the Cooper-Haltiwanger estimates for certain

manufacturing sectors were so large that they would violate the saddle-path stability conditions of the model

presented in this paper. Therefore, rather than using any of their estimates, I take the Cooper-Haltiwanger

results as evidence favoring the higher range of estimates obtained by Caballero and Lyons (1992).

An obvious conclusion of this brief overview of the empirical strategic complementarity literature is that

it is hard to pin down with confidence what the true value of� actually is. For the purposes of this paper,

rather than defending any particular parameterization of�, I run my experiments over the full of estimates
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reported above. Thus, my range of values will include Baxter and King's (1991) Caballero and Lyons's

(1992) lower bonds—0.10 and 0.32, respectively—as well as their estimated upper bounds, 0.45 and 0.49.

My goal is to trace the consequences of these different estimated values of� for the aggregate implications

of expectational heterogeneity.

Serial correlation and volatility of technology shocks.Two parameters that do not affect the steady-state

properties of the model, but play a crucial role in aggregate fluctuations, are the innovation variance and

the autoregressive coefficient of̂At, (�2a and�). To calibrate�2a, I simply set it to a value that makes the

model's output variance equal to its empirical counterpart—this value is shown in the second panel of table

1.18 Nevertheless, it is important to note that, as long as my focus rests on the propagation mechanism, my

results are invariant to the particular parameterization of�2a.

The parameterization of� is designed to highlight a recurring weakness of the standard RBC model

with homogeneous expectations: the lack of a quantitatively important internal propagation mechanism. As

is well known, in order to be able to mimic the degree of serial correlation in the data, most RBC models

require near-unit root processes forAt, effectively implying that persistence is exogenously imposed on

the system, rather than explained by it. To isolate the role of expectational heterogeneity in the persistent

generation process, I start by setting� at 0.5, about half the usual parameterization adopted in other RBC

models—later in this paper I will experiment of other values of�.19

Expectational parameters.If there were some precision concerns surrounding the available estimates of the

strategic complementarity parameter, we are hard pressed to findanyestimates, however imprecise, for the

expectational parameters of the model (�R and�).20 Thus, rather than trying to defend any particular values

for these parameters, I will treat�R and� as semi-free parameters and experiment with a wide range of

values for each of them.21 Therefore, the focus of my analysis is not to determine just how much and what

type of rule-of-thumb forecasting is out there. My emphasis is on assessing the quantitative implications

of different degrees of rule-of-thumb forecasting. Accordingly, I view my results as a mapping from the

magnitudes of the�, �R and� parameters to the properties of the artificial time series generated by the

18It is customary to assess the validity of RBC models according to its ability to capture the observed amplitude of aggregate
fluctuations (King, 1995 Kydland and Prescott, 1991). Obviously, this is not the approach taken in this paper since, by construction,
I obtain a ratio of model and empirical output variances that is equal to one.

19Prescott (1986) and Plosser (1989) have argued that the near-unit root assumption on the technological shock process is jus-
tified by estimated autocorrelations of Solow residuals. However, the assumption that Solow residuals actually capture shifts in
technology is not universally accepted (see, e.g., Hall, 1987).

20A natural strategy to parameterize� is to set it equal to�, an approach I take in several of the cases analyzed below.
21Kydland and Prescott (1982) adopted a similar approach to deal with the difficulty in obtaining estimates of the time non-

separability parameter of the utility function (King, 1995).
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model. The rest of this section provides a sensitivity analysis that reflects this mapping.22

6.2 Expectational Heterogeneity and the Propagation Mechanism

In analyzing the aggregate implications of heterogeneous expectations, I primarily focus on how the exis-

tence of less sophisticated forecasters affects the propagation mechanism of the economy. Towards the end

of this section I discuss the implications of forecast heterogeneity for other selected moments of the data.

Model without external returns.I start by examining an economy without strategic complementarity (� =

0). Figure 1 shows the autocorrelation function of aggregate output under alternative values of the expec-

tational parameters. In particular, the figure summarizes the results of a computational experiment that

explores different degrees of typeR agents' misperception about the persistence of technological shocks—

for � = 0:5, � is allowed to vary from 0.01 to 0.95—and for different shares of typeR agents in the total

population—�R varies from 0 to 0.9.

Two main results are evident in figure 1. First, except for the case where the beliefs of typeR agents are

wildly at odds with reality (� = :01), their impact on the autocorrelation function of output is very small,

even if we allow these agents to make up the vast majority of the population (�R = 0.9). Second, though

quantitatively small, the particular expectational model used by typeR agents has a noteworthy property:

these agents' misperceptions about the persistence of the technological shock are reflected in the actual serial

correlation pattern of output. Whenever they expect the shocks to be more [less] persistent than warranted

by the data generating process, aggregate output ends up slightly more [less] persistent than otherwise.

On the whole, however, the inclusion of unsophisticated forecasters in the RBC model without comple-

mentarity produced quantitatively insignificant results. With� set to zero, small deviations from the rational

expectations assumption produce only small deviations from the standard RBC results, shown as the dotted

lines in figure 1. Moreover, for the case where typeR agents know the correct value of�—� = �, not shown

in figure 1—the behavior of aggregate output is virtually unaffected by the presence of typeR agents.

Expectational Heterogeneity under Strategic Complementarity.Figure 2 summarizes the results of a compu-

tational experiment identical to the one described above, except that now I set the strategic complementarity

parameter at 0.49, the upper end of the range of values discussed in the previous section. The plots in this

figure stand in stark contrast to the ones in figure 1. According to figure 2, even if only a minority of agents

forecasts according to the rule of thumb, the serial correlation properties of aggregate output may be af-

fected in a quantitatively important way. For instance, as shown in the lower-left panel of figure 2, if the

22I am grateful to an anonymous referee for suggesting this course of inquiry.
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rule-of-thumb agents over-estimate the persistence of the technological shock by only two decimal points (�

= 0.70,� = 0.50), aggregate output becomes more persistent than in the case of purely rational expectations.

Moreover, the impact of forecast-heterogeneity remains sizable even when the unsophisticated forecasters

represent as little as 30 percent of the total population. Thus, unlike the case of no strategic complementar-

ity, when external returns are high even small deviations from the rational expectations hypothesis can lead

to sizable deviations from standard RBC results.

Some might question the different parameterizations of� in figure 2. In particular, given the simple data

generating process forAt, one might want to see the effects of eliminating typeR agents' misperception

about�. The results of this experiment are shown in figure 3, where I allow the rule-of-thumb forecasters to

correctly infer the degree of serial correlation in the technology shock (� = �). As shown, even without any

misperceptions about the nature of the technological shock process, typeR agents still have a significant ef-

fect on the serial correlation of aggregate output; deviations of output from its trend become more persistent

than in the case with no rule-of-thumb forecasting (shown as the dotted line in figure 3).

Figures 2 and 3 highlight an important feature of the model. Note that, for given� and�, the effect of

rule-of-thumb forecasting on the persistence of aggregate output doesnotgenerally monotonically increases

with �R. For instance, as shown in the two lower panels of figure 2, output actually becomeslesspersistent

as the share of rule-of-thumb forecasters in the populationincreasesfrom 0.60 to 0.90. This finding has

important implications for the study of the macroeconomic effects of expectational heterogeneity. What it

says is that persistence is not simply being exogenously generated as a result of the introduction of type

R agents. Undoubtedly, even in isolation, these agents do affect the serial correlation properties of output

(see figure 1); however, in addition to this exogenous factor, there is also an endogenous component of

the type of expectations-induced propagation mechanism featured in this paper. As we saw before, strategic

complementarity strengthens the informational links between the two types of agents, which in turn leads the

sophisticated forecasters to respond to the perceived behavior of the rule-of-thumb forecasters. Accordingly,

output persistence is affected not just by the ad hoc introduction of typeR agents, but by theinteractions

among agents operating under different expectational assumptions. Now, as we allow the share of rule-

of-thumb forecasters to increase further, we dampen the extent of interactions between the two types of

agents—obviously, there less of the sophisticated forecasters to interact with. This explains why the relative

effect of rule-of-thumb forecasting actually decreases at higher values of�R.

So far I have reported on the effects of rule-of-thumb forecasting under what might be called two polar

assumptions about the magnitude of the strategic complementarity parameter: the zero-lower bound featured

in most RBC models and 0.49, at the high end of the estimates discussed in the previous section. A question

of interest is what happens at intermediate values of�. Accordingly, figure 4 shows the autocorrelation
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function of aggregate output under four different parameterizations of strategic complementarity. These

alternative values of�, [0.10, 0.32, 0.45, 0.49], correspond to the range of estimates obtained by Baxter and

King (1991) and Caballero and Lyons (1992), but do not include the higher estimates reported by Cooper

and Haltiwanger (1993). As shown in this figure, the impact of the type of expectational heterogeneity

examined in this paper is still quite sizable for� = 0:45, but the results are clearly not as dramatic for the

two lower values of the external returns parameter� = 0:10 and� = :32. Figure 4 highlights the fact that

more precise estimates of the actual degree of strategic complementarity are crucial for a more definitive

assessment of the aggregate (quantitative) implications of forecast heterogeneity.

6.3 Model Evaluation

It is customary in the RBC literature to use the data to calibrate all parameters of the model and then compare

its time series properties with selected moments of the data. This approach cannot be fully implemented in

the model presented here because of the two semi-free parameters discussed above (�R and�) and the

uncertainty surrounding the magnitude of the strategic complementarity parameter (�).23 Nevertheless, it

would be useful to verify whether some plausible parameterization of the heterogeneous-expectation RBC

model with strategic complementarity can make it roughly consistent with the data.

Table 2-A, extracted from King et al. (1988), summarizes the selected moments of the U.S. data that the

model will try to match. The corresponding model moments are shown in table 2-B. The results reported in

this table are obtained by assuming a relatively high degree of complementarity (� = 0.49), while potentially

allowing for only a limited role for bounded rationality (�R = 0.30). To highlight the internal propagation

mechanism coming from heterogeneous expectations under strategic complementarity, I arbitrarily set the

persistence parameter (�) at 0.70, lower than what a standard RBC model would require to capture the serial

correlation observed in the data. Assuming no misperceptions from the part of typeR agents (� = �), the

model replicates well the serial correlation of the data, especially for consumption and output. The observed

relative volatilities of output, consumption, and investment are also largely captured by the model, though

consumption and investment are a bit too volatile and hours do not vary as much as in the data.24

To compare the internal propagation of the model with the standard RBC framework, table 2-C shows

the same selected moments shown in table 2-B, but now the complementarity and expectational parameters

are all set to zero. As expected, without strong serial correlation in the shocks, the standard RBC model fails

23Though one could argue that� could be set to�, we are still left with very imprecise measures of� and no measures at all for
�R.

24Again, these results are only suggestive since the semi-free parameters can not be calibrated with an acceptable degree of
confidence.

17



to capture the serial correlation that characterizes observed business cycles.

7 Interactions Between Sophisticated and Rule-of-Thumb Agents

In a statistical (mean-squared-error) sense, the forecasts formed by rule-of-thumb forecasters are less ef-

ficient than the model-consistent expectations of the sophisticated forecasters. When motivating this dif-

ference, I appealed to, among other things, the issues raised in the computation literature, whereby some

agents might face a trade-off between forecast efficiency and computational costs. The goal of this section

is to informally check whether this reliance on statistically suboptimal forecasts translates into significant

behavioral differences between sophisticated and rule-of-thumb forecasters. If these differences are large,

either the (unspecified) computational costs are large or the rule-of-thumb forecasters are inherently irra-

tional. On the other hand, if the behavior of typeR agents resembles that of typeS agents, then even small

computational costs could implicitly justify the existence of “rational” rule-of-thumb forecasting. In other

words, small differences would suggest that the rule-of-thumb forecasters behave like near-rational agents

(Akerlof and Yellen, 1985a, 1985b). The analysis performed in this section issuggestive, however, and only

looks at the resulting behavior of each type of agent; neither the costs of becoming a sophisticated forecaster

nor the potential utility loss from forecasting with rules-of-thumb are modeled explicitly.

The left-hand-side panel of figure 5 plots the simulated output paths for representative sophisticated

and rule-of-thumb agents.25 As shown in this panel, despite significant differences in the way they form

expectations, sophisticated and rule-of-thumb forecasts behave in an almost identical manner. In particular,

as sophisticated agents anticipate and react to the imperfections embedded in the forecasting schemes of

typeR agents, they effectively end up mimicking their actions. In the presence of complementarities, it

pays to produce more [less] whenever aggregate output is higher [lower], even if the rise [decline] in output

is largely due to the suboptimal forecasts of typeR agents (and not warranted by true fundamentals). The

left-hand-side panel of figure 5 shows that even in their investment decisions, which correspond to much

more volatile series, the actions of sophisticated and rule-of-thumb agents are remarkably similar.

Taken together, the plots shown in figure 5 suggest that the potential utility losses from being a rule-of-

thumb forecaster are likely small, implying that this course of action might well constitute a near-rational

strategy. Moreover, this figure reinforces a notion introduced earlier in this paper. The aggregate effects

of rule-of-thumb forecasters cannot be solely explained by simply looking at their actions in isolation; a

much more interesting and important factor lies in the endogenous response that their actions elicit from the

sophisticated forecasters. As noted in the previous section, it was primarily this endogenous response that

25The parameter settings are the same used in table 2-B (� = � = 0:70, � = 0:50, �R = 0:30).
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accounted for the stronger persistence found in the heterogeneous expectations model.

8 Summary and Concluding Remarks

The paper introduced expectational heterogeneity in a dynamic general equilibrium model of strategic com-

plementarity. I found strong quantitative effects at the aggregate level from allowing even a minority of

agents to form expectations according to a sensible rule of thumb. Namely, when combined with strategic

complementarity, forecast heterogeneity can strengthen the internal propagation mechanism of the model.26

As sophisticated agents try to forecast the forecasts (and actions) of others, they effectively end up rein-

forcing the perceptions of less sophisticated forecasters,even if these are not entirely consistent with the

structure of the economy. By definition, strategic complementarity raises the individual reward for produc-

ing more whenever aggregate output is higher. Intuitively, the representative sophisticated agent ultimately

cares about aggregate state of the economy; this agent will produce more whenever it foresees gains in ag-

gregate output, regardless of whether or not these gains are coming from the unsophisticated forecasts of the

rule-of-thumb agents.

The above findings are quantitatively relevant only if the degree of strategic complementarity is suffi-

ciently high (in the upper half of the range of estimates obtained in the empirical strategic complementarity

literature).27 Nevertheless, the sensitivity of the results to the strategic complementarity parameterization

should not be a basis for concluding that expectational heterogeneity does not matter for macroeconomic

analysis. First, there is still much uncertainty surrounding the empirical measures of the degree of comple-

mentarity: for instance, many of the (sectoral) estimates obtained by Cooper and Haltiwanger (1993) would

place� well above the range of values analyzed in this paper. Second, this paper can be interpreted as a

relatively conservative approach to the issue of bounded rationality: after all, the rule-of-thumb forecast-

ers depicted herein are still highly sophisticated individuals. In particular, they are smart enough to solve

their dynamic optimization problem optimally and sufficiently well informed to know the exact nature of

the stochastic process governing the evolution of the technology shocks and observe the contemporaneous

actions of all the agents in the economy.28 Given how much the typeR agents are allowed to know, one

might even be surprised as to the extent to which such a small limitation in their behavior mattered as much

26This confirms the qualitative findings of Haltiwanger and Waldman (1989) and Oh and Waldman (1994).
27For low degrees of strategic complementarity, forecast heterogeneity mattered only when the beliefs of rule-of-thumb forecast-

ers are wildly at odds with the data generating process of the exogenous productivity shock, a case most economists would find less
interesting.

28Krusell and Smith (1996) analyze an artificial economy where agents are allowed to adopt simple savings rules of thumb
instead of basing their savings behavior on the solution of a standard dynamic optimization problems. They show that the aggregate
time series properties of the rule-of-thumb economy are substantially different from those of a traditional artificial economy.
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as it did foranydegree of strategic complementarity.

In addition to analyzing the effects of heterogeneous expectations in the RBC framework, the model de-

veloped in this paper was designed to encompass aspects of two different approaches to analyzing macroe-

conomic models of expectational heterogeneity. The Lucas-Townsend approach is centered on dynamic,

classical models of incomplete information: agents have only a limited access to the data and form rational

expectations accordingly (Lucas, 1975; Townsend, 1983). The result is a rational expectations equilibrium

with heterogeneous expectations. The Haltiwanger and Waldman (1989) approach was developed in the

context of simple, static models of strategic complementarity: although potentially sharing an equal ac-

cess to the data, agents differ in the extent to which their expectations are based on the structure of the

model (model-consistent vs. rule-of-thumb). The result is a heterogeneous-expectations economy whose

equilibrium characteristics are, at least in a qualitative sense, fundamentally different from a pure rational

expectations economy. By bringing the issues raised by Haltiwanger and Waldman to bear onto a methodol-

ogy and modeling environment that are closer in spirit to the work of Lucas and Townsend, I found that the

differences in the results arrived by the two lines of inquiry are more a matter of degree than of substance.

To be precise, whether or not the properties of the heterogeneous-expectations economy are consistent with

those of a pure rational expectations economy is largely a function of the degree of strategic complemen-

tarity displayed by the economy. With strong enough complementarity, the findings of Haltiwanger and

Waldman prevail; without it, they lack quantitative relevancy. In the end, the debate is likely to be settled

empirically as we develop a better understanding of the nature and extent of strategic complementarity in

the macroeconomy. For now, the available range of estimates of the strategic complementarity parameter is

still too wide to allow us to quantify with precision the aggregate effects of expectational heterogeneity.
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Table 1 — Parameter Values and Definitions

Parameter Definition

A. Standard RBC Parametersa

�n = 0:58 long-run share of labor income

� = 0:025 quarterly rate of depreciation
�N = 0:20 steady-state hours (proportion of time spent working)

� = 0:988 utility discount rate

� AR(1) coefficient of technology shockb

�2a variance of technology innovationc (at)

B. Complementarity and Expectational Parameters

� strategic complementarity parameterd

� perceived value of� (typeR agents)e

�R proportion of typeR (rule-of-thumb) agents

in total populatione

aSource: King, Plosser, and Rebelo (1988), unless otherwise noted.
bSet according to the experiment being run. See text and figures.
cCalibrated so that the model mimics the observed variance of output
dCalibrated according to the range of values estimated by Baxter and King (1991), Caballero and Lyons (1992),

and Cooper and Haltiwanger (1993). (see text, tables, and figures)
eSemi-free parameter. A sensitivity analysis was run over a wide range of parameter values. (see text, tables,

and figures)
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Table 2 — Comparing Selected Momentsa

Series Std Dev Rat. SD auto(1) auto(2) auto(3)

A. U.S. Postwar Quarterly Datab

Output 5.62 1.00 .96 .91 .85

Consumption 3.86 0.69 .98 .95 .93

Investment 7.61 1.35 .93 .78 .62

Hours 2.97 0.52 .94 .85 .74

B. Model with S.C. and Heterogeneous Expectationsc

Output 5.62 1.00 .97 .91 .86

Consumption 4.73 0.84 .96 .95 .95

Investment 10.96 1.95 .85 .68 .54

Hours 1.89 0.34 .81 .59 .42

Prdvty Shock 0.53 0.09 .70 .49 .34

C. Standard RBC Modeld

Output 5.62 1.00 .85 .63 .47

Consumption 4.46 0.79 .16 .21 .25

Investment 16.24 2.89 .67 .44 .29

Hours 3.19 0.57 .66 .43 .26

Prdvty Shock 3.85 0.69 .70 .49 .34

aThe first column of numbers shows the standard deviation of each series; the second column shows ratios of

standard deviations of each series with output. Columns 3 through 4 show first, second, and third autocorrelation

coefficients.
bSource: King, Plosser, and Rebelo (1988).
c�R = 0:30, � = 0:50, � = � = 0:70. All other parameters calibrated as shown in Table 1, panel A.
d�R = 0:00, � = 0:00, � = 0:70. All other parameters calibrated as shown in Table 1, panel A.
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Figure 1
Model without Strategic Complementarity (� = 0)

-Effect of alternative expectational assumptions on the autocorrelation of aggregate output*
(� = :50)
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* For different values of � and �R, the figures show the autocorrelation function of aggregate output. Each expectational

assumption is defined by a [�,�R] pair. � is the perceived value of� (the AR(1) coefficient of the technology shock).�R is the

proportion of rule-of-thumb forecasters in the population. All other parameters are set as in table 1.
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Figure 2
Model with Strategic Complementarity (� = 0:49)

-Effect of alternative expectational assumptions on the autocorrelation of aggregate output*
(� = 0:50)
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* For different values of � and �R, the figures show the autocorrelation function of aggregate output. Each expectational

assumption is defined by a [�,�R] pair. � is the perceived value of� (the AR(1) coefficient of the technology shock).�R is the

proportion of rule-of-thumb forecasters in the population. All other parameters are set as in table 1.
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Figure 3
Model with Strategic Complementarity, but no misperceptions

about the persistence of the technology shock*
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* For different values of �R, the figure shows the autocorrelation function of aggregate output.

Parameters not mentioned here are set according to table 1, which also defines all parameters.
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Figure 4
The aggregate effects of Expectational Heterogeneity*

(� = 0:70, � = 0:50)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

 

lags

       
       
       
       

φ=.10

θR=0

θR=.3

θR=.6

θR=.9

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

 

lags

       
       
       
       

φ=.32

θR=0

θR=.3

θR=.6

θR=.9

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

 

lags

       
       
       
       

φ=0.45

θR=0

θR=.3
θR=.6

θR=.9

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

 

lags

       
       
       
       

φ=0.49

θR=0

θR=.3
θR=.6

θR=.9

* The figure shows the autocorrelation function of aggregate output. Parameters not mentioned here are set according

to table 1, which also defines all parameters.
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Figure 5
Comparing the behavior of Sophisticated and Rule-of-Thumb agents
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* The charts show the output and investment decisions of representative sophisticated and rule-of-thumb agents.

The parameterization is the same described for table 2b. (� = � = 0:70, � = 0:49, �R = 0:30)
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