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Abstract: Several authors have recently investigated the predictability of exchange rates by

fitting a sequence of long-horizon error-correction regressions.  We show that in small to

medium samples such a procedure gives rise to spurious evidence of predictive power. A

simulation study demonstrates that even when using this technique on two independent series,

estimates and diagnostic statistics suggest a high degree of predictability of the dependent

variable. We apply a simple modification of the long-horizon regression due to Jegadeesh

(1991), which may provide more accurate inference for researchers interested in comparing

short and long-run predictability of U.S. dollar exchange rates.
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1.  Introduction

The importance to applied economists of having statistical tools which can reliably test

for the presence of long-run predictability in time series data can hardly be overstated. One

such technique has gained prominence in recent years because of its apparent success in

uncovering long-run relationships in international financial data. In particular, the approach

commonly referred to as long-horizon regressions has been applied to the well known

problem of predicting exchange rate movements by Mark (1995), Chinn and Meese (1995)

and Bauer (1995). Earlier applications of this methodology include the study of equity return

predictability (e.g., Fama and French (1988) and Campbell and Shiller (1988)).

In this comment, we explore the conjecture that much of the evidence of long-run

exchange rate predictability may be an artifact of the statistical technique. We show that, for

two independent time series, long-horizon regression are 'close' to spurious regressions. As a

result, the finding of increasingly strong relationships at long horizons may not be evidence of

an economic relationship. 

We conduct several simulation experiments in which we generate two independent

time series, one modeled after quarterly exchange rates and the other after the monetary

fundamental as in Mark (1995) and Chinn and Meese (1995). The results confirm that several

diagnostic statistics, such as t-statistics and , are increasingly biased away from zero for

longer horizons of interest, casting doubt on the reliability of previous findings. Further, we

show that application of an alternative regression procedure due to Jegadeesh (1991) yields

inference at odds with the view that exchange rates are predictable at longer horizons.

The remainder of this comment proceeds as follows. In section 2, we describe long-

horizon regressions as commonly applied to monetary models of exchange rate dynamics. In

section 3, we describe the results of the Monte Carlo experiments. Section 4 introduces a

modification of the standard long-horizon regression due to Jegadeesh (1991). Section 5

presents the estimation results using four leading dollar exchange rates. Section 6 concludes.



-3-

(1)

(2)

2.  Long-Horizon Regressions

The long-horizon regression approach entails estimating k individual equations,

where  and  are observed data,  is the  difference operator and  and  are the

parameters to be estimated.  If the �s, the associated t-statistics and the regression �s are

found to increase with k, the researcher takes this as evidence that  can predict long-run

changes in  better than short-run movements.

In the context of monetary models of exchange rate dynamics, Mark (1995) proposes

estimation of:

where = , with  and  denoting the log of M1 and of real GDP and

asterisks representing foreign quantities.

This error-correction representation is motivated, on the one hand, by a large body of

evidence which suggests that exchange rates and fundamentals may contain unit roots 

(e.g., Diebold (1988), Meese and Rose (1991)).  Equation (2), at the same time, reflects a

widely held view that exchange rates cannot move independently of macroeconomic

fundamentals over long time horizons.

In the following discussion, we indicate various difficulties that may be associated

with inference from equation (2), especially in presence of small samples and large k�s.

First, specification (2) requires that the nominal exchange rate and the fundamental 

(ªequilibriumº exchange rate) cointegrate, i.e., there exists a linear combination of these series

which is stationary. Further, specification (2) requires that  and  cointegrate with

cointegrating vector equal to [1 -1].  

However, existing literature suggests very little evidence of cointegration between

exchange rates and fundamentals.  Mark (1995) and Chinn and Meese (1995), for example, do

not find evidence of cointegration for several leading exchange rates.  MacDonald and Marsh



These results are not sensitive to the definition of the ªfundamentalº exchange rate1

implemented in various studies.

See Mankiw and Shapiro (1986), Stambaugh (1986) and Nelson and Kim (1993).2
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(3)

(1995) cannot reject cointegration, but reject a cointegrating vector of [1 -1].   If the error-1

correction term is nonstationary, then adoption of specification (2) is inappropriate.

Second, the right-hand-side variable in equation (2) is predetermined but not

exogenous and is highly positively autocorrelated. In this case the least squares (LS) estimate

of the slope parameter, , is biased away from zero in small samples.   Mark (1995)2

attempts to correct for the bias in .  However, the bias in  may, in turn, also lead to

severe bias in other statistics associated with equation (2), such as t-statistics.  This occurs

because both the numerator and the denominator, the standard error of the regression, depend

on  .

Third, for k > 1, that is, when the forecasting horizon is greater than the sampling

frequency, the error term of equation (2) will be a moving average process of order k-1, even

under the null.  To see this, note that if the exchange rate is well approximated by a random

walk, then we may write = , where ~ .  So that equation (2) becomes

It is well known that the presence of serial correlation in the residuals produces inconsistent

LS standard errors of the coefficients. 

Moreover, for very large k, the dependent variable is itself approximately a random

walk.  So that, even if there is no statistical relationship between  and , the long-horizon

regressions become close to a classical spurious regression. 

In finite samples, one might reasonably expect larger k to be associated with larger 

t-statistics and , even if  is independent of .  If this is the case, doubt is cast upon the

interpretability of the results of this methodology.

Mark undertakes to tabulate Monte Carlo (bootstrap) corrected critical values in order

to account for the finite sample biases associated with equation (2).  The bootstrap data are



In a second experiment, we generated both Monte Carlo series as random walks. The3

results were nearly identical.
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generated by fitting a restricted VAR to the error-correction term and changes in the exchange

rate, ( , ).  Unfortunately, this bootstrap is likely to be invalid.  If the exchange rate and

fundamentals are independent then the error-correction term has a unit root.  The standard

bootstrap algorithm fails if the true process has a unit root, as shown by Basawa, Mallik,

McCormick, Reeves and Taylor (1991) and Datta (1995).  The design of this bootstrap is, in

any event,  inconsistent with the hypothesis that fundamentals and exchange rates are

statistically unrelated.

3.  Simulation Experiment 

We emphasize that the appropriate null hypothesis associated with estimation of

equation (2) is the independence of the two time series.  Our simulation study, thus,

investigates the results of estimating error-correction models with series which fail to

cointegrate.  This experimental design is supported by existing empirical evidence and

properly reflects the null hypothesis contained in Mark (1995).

We generate independent Gaussian random variables,  and .  The relative variances

of the innovations of the two processes are calibrated to the estimated relative variances of

the quarterly U.S. dollar/Deutsche mark (DM) and the monetary fundamental from 1973:2 to

1991:4 (the same sample considered by Mark (1995) consisting of 76 observations).  Each

experiment consist of 1000 Monte Carlo trials.

The exchange rate is modeled as a random walk and the fundamental as an AR(1)

with persistence parameter equal to .92.   This choice for the fundamental was made by3

fitting ARMA models to the actual U.S.-German data with the BIC selecting the lag orders.

For each Monte Carlo dataset, the long-horizon regressions (equations 2) are run for k=1, 4,

8, 12 and 16.  The results for a sample size of 76 observations are presented in Table 1, panel

A. Column 3 displays the median, 90th percentile and 95th percentile of the estimated slope

coefficients across Monte Carlo trials for each horizon of interest.  Despite the independence

of the series, the median  rises with k to a maximum of .644 for k=16.  The associated

naive OLS t-statistics displayed in column 4 also increase with the horizon.  Columns 5 and 6



At each Monte Carlo trial, the out-of-sample forecasting exercise precisely mimics the4

procedure in Mark (1995).  For a sample size of 76, this results in 40 1-step ahead forecasts

and 25 16-step ahead forecasts.
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display t-statistics corrected for autocorrelation with a truncation lag of 20 and with the

Andrews (1991) rule (labeled t(20) and t(A), respectively). Again, as the horizon increases so

do median values of the slope coefficient's t-statistics. The right-shift of the empirical

distribution of the t-statistics inflates the empirical critical values. For example, when k=16

the one-sided empirical 95th percentile for t(A) is 9.97 instead of 1.64, i.e., the corresponding

critical value from a Gaussian distribution. 

Column 8 of Table 1, panel A, displays the ratio of root-mean-squared error for out-

of-sample regression forecasts over root-mean-squared error implied by the random walk

model.  Thus, for values below 1 the regression appears to deliver more accurate forecasts

than the benchmark random walk.  As expected, the pattern is very similar to the results

found by Mark (1995), Chinn and Meese (1995) and Bauer (1995).  The median ratio

declines from .968 to .796, as the horizon of interest reaches 16.4

Columns 9-10 display the Monte Carlo Diebold and Mariano (1995) statistics, again

with either a truncation lag of 20 or using the Andrews (1991) rule (labeled DM(20) and

DM(A)).  For both truncation rules, the values of the Diebold-Mariano statistics display a U-

shape at each percentile.  The median value using the Andrews rule is 1.213 for k=1; it

decreases somewhat for k=4,8 only to increase to about 1.4 for k=12,16.

These findings result from the combination of problems which afflict inference long-

horizon regressions, when the two series fail to cointegrate.  For example, although we argue

that explanatory power appears to increase with k (e.g., high median 's and high empirical

critical values of the t-statistics), there are sizeable distortions even for k=1.  These biases

arise because of the presence of stochastic and highly persistent regressors.

Such stark results obtain in sample sizes typical of available data. For any fixed and

finite k, a long-horizon regression will deliver consistent estimates as the sample size tends to



However, Richardson and Stock (1989) show that LS estimates of the slope of5

regressions (2) are inconsistent when the forecast horizon grows with the sample size (so that

k/TÕ	, a constant). 
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infinity.   In panel B of Table 1, we report the results of an identical simulation experiment5

with a sample size of 576. Now, the median �s are all lower, but the bias is still sizable for

large k; for example, the median of  is .115 for k=16.   are  low and the ratios of

RMSE of regression to random walk forecasts are very close to 1 for all horizons. However,

the presence of small bias in the LS slope parameters introduces large distortions at all

horizons in the empirical critical values of the t-statistics and the Diebold-Mariano statistics. 

These distortions do not seem to vanish quickly with the increase in the sample size.

It is important that finite sample inference from long-horizon regressions be assessed

by means of empirical distributions of the statistics of interest simulated under the null of no

statistical relationship between series.  If standard Gaussian asymptotic theory is adopted,

spurious evidence of predictability arises at practically all horizons and regardless of the

length of the sample considered. 

Lastly, we suggest that even the graphical evidence of predictability presented by

Mark (1995) may be  spurious.  Figure 1 reproduces the actual k-period changes in the log

dollar/DM rate against the regression forecast, displayed in Mark (1995). In the author�s

words, ªthese figures illustrate the striking improvement in fit that occurs as the forecast

horizon is lengthened.º  In Figure 2 the actual k-period changes in the log dollar/DM rate is

plotted  against a regression forecast with simulated fundamental data.  These plots also

appear to suggest predictive accuracy for longer horizons.  Since, in Figure 2 the exchange

rate is obviously independent of the randomly generated fundamental, we conclude that even

the graphical evidence from long-horizon regressions is misleading.

4. Backward Regressions

In this section, we adopt an approach to conducting long-horizon inference originally

suggested by Jegadeesh (1991).  This approach has been implemented by Hodrick (1992) to

test for the presence of long-horizon predictability of stock returns, and recently by Mark and



Hodrick (1992) analyzes the size distortions pertaining to coefficients estimated via6

equations (4) and (5). In contrast to this comment, Hodrick focuses only on large samples

(much larger than the ones encountered in exchange rate studies).  Moreover, the regressor of

Hodrick�s long-horizon equations,  of (4), is not precisely an error-correction term.  This

implies, in particular, that the importance of the bias of the LS coefficients in Hodrick�s long-

horizon regressions may be somewhat different from the one arising in presence of exact

error-correction terms.
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(4)

(5)

Choi (1995) to test for the presence of long-horizon predictability of real exchange rates. 

Notice that equations 1 may be re-written as, 

The backward regression approach of Jegadeesh rearranges the implicit lag operator

polynomial to the right hand side, 

Under the null hypothesis of no predictive power, the  of equations (4) and  of (5) obey

standard asymptotic theory for any fixed k.  However, equations (5) are likely to exhibit

better finite sample behavior because, under the null, the error term has no serial correlation.

Notice that (4) and (5) are exactly equivalent for k=1.

In order to verify that this procedure leads to more accurate rejection rates, we

conducted a simulation experiment in which, again, the generated exchange rates and

fundamentals are independent.   The results are presented in Table 2. 6

Panel A of Table 2 contains the simulation results of the sampling performance of the

backward regression (5) for a sample size of 76.  Column 3 verifies that the �s are small

and do not increase with k.  The one-sided empirical critical values of the t(A)-statistic for

regression (5) remain constant for all k�s (column 6).  are consistently low across horizons

(column 7). For completeness, panel B of Table 2 presents the results for sample size of 576. 

5.  Long-run Exchange Rate Predictability
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Given the ability of equation (5) to deliver more accurate finite-sample inference, we

estimate equation (5) with 4 leading dollar exchange rates. The sample includes Germany,

Canada, Japan and Switzerland, as in Mark (1995). The data are quarterly observations

collected from the International Financial Statistics of the International Monetary Fund, from

1973:2 to 1994:1. All macroeconomic series are seasonally adjusted. Real income is real GNP

for the U.S. and real GDP for other countries.

Table 3 displays the estimation results. At odds with evidence presented in Mark

(1995), the �s in column 2 do not increase with the horizon length. Indeed, they decrease

with the horizon for the four exchange rates considered. Further, when using the critical

values associated with the percentiles of the empirical distributions of t(A) from the Monte

Carlo (see Table 2, panel A), we cannot reject the null hypothesis of no predictability content

of fundamental exchange rates for all currencies and horizons at the 90% confidence level.

For example, at k=16 the dollar/DM t(A) statistic is 2.511 which would exceed the standard

normal 90% critical value of 1.208. However, the tabulated statistics are biased upward so

that the simulated 90% critical value is 2.553. For the Canadian dollar and the yen, t-statistics

are flat across horizons, while they appear to decrease for the Swiss franc.

�s increase with the horizon only for the dollar/DM rate. Indeed, the  for

k=12,16 exceed the 95th percentile of  simulated under the null. Nevertheless, the 

reaches a maximum of only .129 as compared to .762 in Mark (1995). 

Mark (1995) finds favorable evidence of the ability of the error-correction to forecast

out-of-sample at horizons k=12,16. Column 7, labeled OUT/RW, displays the regression

mean-squared forecast errors over the random walk mean-squared forecast errors. For the

Canadian dollar, yen and Swiss franc, these ratios are close to 1 at all horizons. For the

Deutsche mark and the Swiss franc the ratio is significant at k=8,12,16, given the simulated

90% critical values. However, the computed Diebold-Mariano statistics with the Andrews

truncation rule, reported in column 9 of Table 3, are never larger than the 90th percentiles of

the empirical distributions. 

The estimation results of the backward regressions, when inference is made allowing

for the presence of bias in estimated parameters and diagnostic statistics, suggest no long-

horizon predictability via monetary fundamentals.  These findings are at odds with the
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evidence reported by Mark (1995), Chinn and Meese (1995) and Bauer (1996) obtained using

long-horizon regressions. 

6.  Conclusion

Applied economists must choose and interpret statistical methods with great care. The

use of long-horizon regressions, in particular, may lead to spurious findings of predictive

ability at long-horizons. 

The results of a Monte Carlo study, in which two independent series are generated,

confirm that applying long-horizon regressions to data which fail to cointegrate yields

diagnostic statistics (e.g., t-statistics and Diebold-Mariano statistics) which display severe size

distortions. A second simulation experiment suggests that the same diagnostic statistics

generated from an alternative regression approach, due to Jegadeesh (1991), have better size

properties. 

Applying this methodology to historical data, we find neither in-sample nor out-of-

sample evidence that fundamentals help to predict movements in major U.S. dollar exchange

rates as the forecast horizon lengthens. 
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Table 1 - Long-Horizon Monte Carlo Estimates: Random Walks and Independent AR(1)

                               k  %-ile           t(LS)      t(20)      t(A)          OUT/RW  DM(20)  DM(A)

Panel A:  Sample Size = 76                                               

1     50    0.046     1.412     2.038     1.486     0.027     0.968     1.727     1.213

       90    0.120     2.508     3.993     2.704     0.079     0.942     4.435     2.831

       95    0.150     2.800     4.895     3.124     0.097     0.930     5.443     3.211

4     50    0.185     2.765     2.269     2.003     0.100     0.938     1.148     0.911

       90    0.424     5.058     5.098     4.356     0.268     0.847     3.454     2.438

       95    0.503     5.802     6.350     5.170     0.325     0.817     4.327     2.833

8     50    0.361     4.018     2.766     2.573     0.198     0.888     1.330     1.088

       90    0.712     7.383     6.645     5.897     0.452     0.742     3.691     2.687

       95    0.810     8.420     8.222     7.171     0.518     0.686     4.706     3.176

12   50    0.515     4.947     3.129     3.152     0.284     0.841     1.596     1.347

       90    0.961     9.261     7.649     7.356     0.580     0.636     3.969     3.016

       95    1.089     11.16     9.508     8.858     0.668     0.578     4.890     3.495

16   50    0.644     5.702     3.541     3.479     0.360     0.796     1.874     1.428

       90    1.143     11.13     9.027     8.236     0.681     0.541     4.935     3.640

       95    1.284     13.18     11.16     9.973     0.750     0.487     5.977     4.511

Panel B:  Sample Size = 576                                              

1     50    0.007     1.509     1.598     1.514     0.004     0.996     1.086     0.747

       90    0.018     2.579     2.834     2.560     0.011     0.987     3.679     2.337

       95    0.023     2.875     3.268     2.923     0.014     0.983     4.402     2.902

4     50    0.029     3.033     1.673     1.671     0.016     0.991     0.702     0.550

       90    0.071     5.101     2.968     3.014     0.044     0.954     3.041     2.244

       95    0.090     5.741     3.471     3.505     0.055     0.938     3.835     2.781

8     50    0.057     4.312     1.756     1.774     0.032     0.984     0.661     0.590

       90    0.139     7.225     3.211     3.347     0.084     0.905     3.234     2.450

       95    0.172     8.026     3.642     3.828     0.102     0.876     4.073     3.204

12   50    0.085     5.346     1.869     1.885     0.048     0.980     0.657     0.607 

       90    0.206     9.004     3.337     3.576     0.126     0.849     3.583     3.026 

       95    0.250     9.967     3.925     4.282     0.150     0.801     4.744     3.823 

16   50    0.115     6.255     1.965     1.975     0.066     0.976     0.721     0.601

       90    0.269     10.41     3.598     3.793     0.163     0.804     4.349     3.433

       95    0.323     11.67     4.253     4.529     0.196     0.731     5.449     4.603

Notes: The table presents estimated slope coefficients, , for equation (2) with the LS t-statistics,

heteroskedasticity and autocorrelation-corrected t-statistics using a Bartlett kernel and a truncation lag of

20 and the Andrews (1991) rule, respectively, t(LS), t(20) and t(A).  OUT/RW denotes the ratio of

regression mean-squared out-of-sample forecast error to the random walk mean-squared out-of-sample

forecast error.  DM(20) and DM(A) denote the Diebold-Mariano statistics with a Bartlett kernel and

truncation lags of 20 and truncation via the Andrews (1991) rule, respectively.



Table 2 - Backward Regression Monte Carlo Estimates: Random Walks and Independent AR(1)

                              k    %-ile          t(LS)      t(20)      t(A)           OUT/RW  DM(20) 

DM(A)

 Panel A:  Sample Size = 76                                               

1     50    0.046     1.412     2.038     1.486     0.027     0.968     1.727     1.213

       90    0.120     2.508     3.993     2.704     0.079     0.942     4.435     2.831

       95    0.150     2.800     4.895     3.124     0.097     0.930     5.443     3.211

4     50    0.012     1.343     2.035     1.473     0.025     0.966     1.923     1.303

       90    0.033     2.442     4.211     2.786     0.079     0.935     4.447     2.669

       95    0.040     2.738     4.941     3.142     0.097     0.925     5.384     2.998

8     50    0.007     1.330     2.095     1.429     0.026     0.963     2.018     1.309

       90    0.017     2.298     4.526     2.655     0.074     0.931     4.498     2.585

       95    0.022     2.600     5.576     3.182     0.093     0.919     5.371     2.966

12   50    0.005     1.244     2.063     1.354     0.025     0.963     2.146     1.358

       90    0.012     2.242     4.396     2.555     0.075     0.931     4.803     2.538

       95    0.016     2.554     5.412     2.964     0.095     0.919     5.754     2.862

16   50    0.004     1.197     2.010     1.288     0.025     0.961     2.267     1.302

       90    0.010     2.218     4.443     2.553     0.078     0.913     4.824     2.402

       95    0.014     2.532     5.263     2.879     0.100     0.896     5.881     2.742

Panel B:  Sample Size = 576                                              

1     50    0.000     1.509     1.598     1.514     0.004     0.996     1.086     0.747

       90    0.018     2.579     2.834     2.560     0.011     0.987     3.679     2.337

       95    0.023     2.875     3.268     2.923     0.014     0.983     4.402     2.902

4     50    0.002     1.520     1.627     1.539     0.004     0.996     1.051     0.729

       90    0.005     2.553     2.829     2.602     0.011     0.986     3.494     2.178

       95    0.006     2.806     3.300     2.887     0.014     0.982     4.309     2.535

8     50    0.001     1.514     1.609     1.526     0.004     0.996     1.092     0.685

       90    0.002     2.507     2.850     2.564     0.011     0.985     3.411     1.955

       95    0.003     2.805     3.256     2.903     0.014     0.979     4.126     2.459

12   50    0.001     1.506     1.624     1.523     0.004     0.997     0.918     0.587

       90    0.002     2.497     2.869     2.563     0.011     0.984     3.265     1.955

       95    0.002     2.755     3.274     2.843     0.013     0.979     4.273     2.333

16   50    0.000     1.514     1.654     1.517     0.004     0.997     0.926     0.539

       90    0.001     2.465     2.868     2.528     0.011     0.982     3.173     1.872

       95    0.001     2.725     3.236     2.849     0.013     0.975     4.089     2.232

Notes: The table presents estimated slope coefficients, , for equation (5) with the LS t-statistics,

heteroskedasticity and autocorrelation-corrected t-statistics using a Bartlett kernel and a truncation lag of

20 and the Andrews (1991) rule, respectively, t(LS), t(20) and t(A).  OUT/RW denotes the ratio of

regression mean-squared out-of-sample forecast error to the random walk mean-squared out-of-sample

forecast error.  DM(20) and DM(A) denote the Diebold-Mariano statistics with a Bartlett kernel and

truncation lags of 20 and truncation via the Andrews (1991) rule, respectively.



Table 3 - Backward Regression LS Estimates 

k                    t(LS)      t(20)      t(A)            OUT/RW DM(20)  DM(A)

     

Detusche Mark

1   0.042     1.493     2.168     1.233     0.030     0.964     1.085     0.878

4   0.011     1.507     1.994     1.158     0.031     0.940     2.767     1.940

8   0.009     2.140     2.453     1.565     0.065     0.921     1.493     1.267

12  0.008     2.723     3.165     2.108     0.107     0.898     1.140     1.107

16  0.008     2.931     2.998     2.511     0.129     0.901     0.817     0.879

Canadian Dollar

1         0.063     1.508     1.636     1.199     0.030     1.008    -0.239    -0.186
4         0.014     1.256     1.871     1.320     0.022     0.994     0.240     0.136
8         0.008     1.296     2.069     1.482     0.025     1.015    -0.386    -0.202
12       0.006     1.255     2.615     1.448     0.025     0.985     0.574     0.320
16       0.005     1.112     2.495     1.379     0.021     0.961     2.643     1.614

Japanese Yen
1   0.017     0.515     0.775     0.801     0.004     0.985     4.306     2.047
4   0.002     0.261     0.442     0.432     0.001     0.988     3.902     2.102
8   0.003     0.653     0.948     0.681     0.006     0.986     3.099     1.406
12  0.003     0.733     1.187     0.708     0.009     0.981     2.502     1.629
16  0.002     0.525     0.919     0.475     0.005     0.992     2.527     1.003

Swiss Franc
1   0.130     2.346     4.710     2.115     0.070     0.949     5.378     2.044
4   0.041     2.678     5.155     2.276     0.093     0.956     4.241     1.691
8   0.025     2.776     4.792     2.458     0.105     0.966     1.906     1.025
12  0.015     2.055     3.789     1.805     0.064     0.967     1.996     1.084
16  0.013     1.791     2.823     1.422     0.052     0.971     1.020     0.669

Notes: The data are from the International Financial Statistics of the International
Monetary Fund, 1973:2 to 1994:1.  The table reports estimated slope coefficients and
diagnostic statistics for equation (5).  



Figure 1.  Changes in the Log Dollar/Deutsche Mark Exchange Rate and Monetary
Fundamentals.

Notes to Figure:  For each horizon of interest, k=1, 4, 8, 12 and 16, actual k-period
changes in the log Dollar/DM rate are depicted as dashed lines.  Solid lines indicate
predicted k-period changes from long-horizon regressions on a monetary fundamental. 
Quarterly data from 1973:2 to 1991:4 were obtained from the International Financial
Statistics of the International Monetary Fund.



Figure 2.  Changes in the Log Dollar/Deutsche Mark Exchange Rate and Simulated
Fundamentals.

Notes to Figure:  For each horizon of interest, k=1, 4, 8, 12 and 16, actual k-period
changes in the log dollar/DM rate are depicted as dashed lines.  Solid lines indicate
predicted k-period changes from long-horizon regressions on independent random
numbers. The random numbers are generated from a Gaussian AR(1) with persistence
equal to .92.


