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Abstract

This paper provides a framework for estimating parameters in a wide class

of dynamic rational expectations models. The framework recognizes that dy-

namic RE models are often meant to match the data only in limited ways.

In particular, interest may focus on a subset of frequencies. Thus, this paper

designs a frequency domain version of GMM. The estimator has several advan-

tages over traditional GMM. Aside from allowing band-restricted estimation, it

does not require making arbitrary instrument or weighting matrix choices. The

general estimation framework also includes least squares, maximum likelihood

and band restricted maximum likelihood as special cases.
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1 Introduction

This paper develops frequency domain techniques for estimating dynamic rational
expectations models. This approach allows, models to be estimated and tested over
a subset of frequencies, such as business cycle frequencies, seasonal frequencies, or
long horizons. The techniques described in this work are also particularly useful in
allowing researchers to deal squarely with high frequency measurement error.

It is natural for researchers interested in avoiding high frequency noise or in match-
ing particular cyclical behavior to carry out estimation and evaluation of such models
in the frequency domain. The frequency domain provides an orthogonalization of the
uctuations in the observed data. Engle (1974) introduced band spectral regression as
a means to assess the relationship between economic variables at speci�c frequencies.
In that work, the criterion being minimized was restricted to linear least squares.

Generalized spectral estimation (GSE) allows for a much wider class of minimiza-
tion criteria than was previously possible. The GSE framework includes a new class
of estimators which I will call 'whitening estimators', as well as least squares, band
spectrum regression, and 'Whittle likelihood' estimation (which is asymptotically
maximum likelihood).1

This paper builds on Diebold, Ohanian and Berkowitz (1995), who propose tech-
niques for estimating and evaluating dynamic rational expectations models in the
frequency domain. Their framework allows for parameter estimation and model as-
sessment in a very general setting. Parameters are estimated by minimizing distance
between spectra of observed data and model-generated data. Distance may be de�ned
by the user and may focus on any relevant subset of frequencies. A shortcoming of
this framework is that in all but the simplest cases, the model must be approximated
and simulated in order to carry out the estimation.

Since, in general, analytic solutions are not available for nonlinear dynamic equi-
librium models, one must choose an approximate solution method. Furthermore, in
order to proceed with estimation, the approximation to the model must be carried
out at each parameter con�guration. That means the model must be simulated hun-
dreds if not thousands of times. Solution methods which can be chosen arbitrarily
'close' to the true model (such as discretizing the parameter space) are generally pre-
cluded because of the extreme computational intensity associated with simulating the
model only once. For estimation, then, faster and less accurate solution methods are
required. To the extent that the approximate solution di�ers from the true model,
the Diebold, Ohanian and Berkowitz (1995) estimated parameters will di�er from the
parameters which minimize loss. It is di�cult to make general statements regarding

1For a discussion of band-restricted maximization of the Whittle likelihood function see Engle

(1980), Diebold, Ohanian, and Berkowitz (1995).
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this sort of approximation error. However, Taylor and Uhlig (1990), in a compari-
son of 14 approximation methods applied to the stochastic growth model, concluded
that "the simulated sample paths generated by the di�erent solution methods have
signi�cantly di�erent properties."

The generalized spectrum estimator will allow for model estimation, inference and
evaluation without requiring an approximate solution of the model. We accomplish
this by imposing moment conditions given by the model and then minimizing devi-
ations from these conditions in the frequency domain. It is thus very much in the
spirit of generalized method of moment and other minimum distance estimators. For
whitening estimators, we impose moment conditions on the residuals which require
that the residuals are 'close' to white noise.

Section 2 de�nes the generalized spectral estimator and presents some special
cases for illustration. Section 3 illustrates GSE estimation by presenting the results
of a Monte Carlo experiment. In the experiment, I maintain the realistic assumption
that the true model is unknown. Section 4 concludes.

2 Generalized Spectral Estimation

The Euler equation implied by a typical rational expectations model can be written
as

E(g(yt; �0) j 
t) = 0; (1)

where g(�; �) is a function given by model's �rst order conditions, yt is an Tx1 vector of
observable data, �0 is a vector of parameter values, and 
t is the (��algebra de�ned
by) agent's time t information set. g(yt; �) is sometimes called the Euler residual.
Equation 1 says that the Euler residual has a zero conditional mean. It implies that
for any rx1 instrument xt�1, in the agent's time t information set,

E

 
g(yt; �0)


"
1

xt�1

#!
= 0: (2)

Equation 2 is the familiar basis for GMM estimation. The notion here is that economic
agents should be unable to forecast the model residual. Each element of xt�1, each
instrument, gives us an additional residual whose mean should be zero.

xt�1 is generally taken to be some number of lags of the endogenous variables,
yt: However, consideration of lags of g(yt; �0) as instruments will lead to some very
interesting results. Note that it is always true that all lags of g(yt; �0) are in agents'
time t information set. The motivation for doing this is that equation 1 says that the
Euler residuals form a martingale di�erence sequence. Since martingale di�erence
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sequences are also white noise, equation 2 says that the Euler residual g(yt; �0) is
multivariate white noise2.

This fact provides the motivation for a class of GSE estimators, which I will call
'whitening estimators.' The reasoning is as follows. The model residual by design
should contain only the unexplainable part of the model in question. So, if we wish to
estimate �0, we would like to eliminate as much of the predictable dynamics in g(yt; �0)
as possible. These dynamics should be incorporated into the model. Another way of
saying this, is we would like to estimate the parameter con�guration in such a way as
to make the residuals as 'close' as possible to white noise. We are, in e�ect, trying to
whiten the g(yt; �0): Some examples of whitening estimators will be provided below.

Rewriting equation 3, we have that

E (g(yt; �0) � g(yt�� ; �0)) = 0; � = 1; 2; ::: (3)

For notational simplicity, let ut = g(yt; �0), so that ujt is a single Euler residual. Then
equation 3 is equivalent to the statement,

fujt(!) = k; !l =
2�l

T
; l = 0; :::

T

2
:

The spectral density of each ujt; is constant over the entire support, [0, �]: Then given

a �nite realization of the residuals, fujtg
T

1
; we can calculate a consistent estimate of

the spectrum, such that
^
fuj (!)

p
! k; 8!:

In reality, though, ut = g(yt; �0); and we do not know �0: So we never observe
a realization of the true Euler residualsfujtg

T

1
; but rather at best we can observe

fujt(�)g
T

1
; where � is chosen somehow by the user.

2.1 A Simple Example

In order to �x ideas, consider a simple linear example, an AR(1),

yt = �0yt�1 + ut:

The yt are observed and assume ut � (0; 1): In GSE notation, ut(�0) = g(yt; �0) =
(1��0L)yt; where L is the lag operator. If we do not know �0, we may look at the
spectrum of the residual implied by any arbitrary �; fu(�)(!); to see whether it is
constant across all frequencies. For this arbitrary �; we can generate a length T
residual,

ut(�) = (1� �L)yt

2By this, I mean that, if g(yt; �0) is a vector sequence, each element of g(yt; �0) is white noise.
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= (1� (�0 + �)L)yt

= ut � �yt�1 = ut � �
1

1� �0L
ut�1 = A(L)ut:

And so the spectrum of this residual ut(�) is,

fu(�)(!) =
����1�

�
�

1� �0ei!

�
ei!
����
2

Then fu(�)(!) 6= k; across frequencies, unless � = 0 (that is, at � = �0):
It is in this sense natural to estimate �0, by setting the spectrum fu(�)(!) 'close'

to the spectrum of white noise. In other words, �nd

^
�GSE=argmin

�

X
!T

C
�
fu(�)(!)

�
;

where the loss function C(�) is a measure of divergence of the spectrum from a at
line.

This approach has some signi�cant advantage relative to Maximum Likelihood
and GMM estimation. To continue with the example, ML estimation would proceed
by minimizing the distance between the model data, fy(�)gT

1
; and the observed data,

fygT
1
.

The problem is that in the context of general dynamic equilibriummodels the data
generating process (the policy function) is not known analytically. The innovation
process, fut(�)g

T
1
; must �rst be simulated and then the rest of the model data must

be generated via an approximate policy function. MLE thus requires an additional
layer of approximation.

The advantage of GMM is that one never needs to construct an approximate policy
function. Parameters can be estimated using only the observed data. The problem
with GMM is that there is no such thing as the GMM estimator. The researcher is
required to make a choice regarding both instruments and the weighting matrix.

GSE, like GMM, can proceed without requiring an approximate solution of the
model. But unlike GMM, the instruments and weighting are not arbitrarily chosen.
Rather, the user chooses a frequency band of interest. For example, if the model is
designed to explain business cycle uctuations, the user may specify cycles between
2 to 8 years.

De�nition: The generalized spectral estimator is de�ned as:

^
�GSE=argmin

�

X
!T2$

C

�^
fu(�) (!)

�
;
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where C(�) may include a wide variety of appropriate loss functions,
^
fu(�) (!) is a

consistent estimate of the sample spectral density matrix (or possibly the periodogram
matrix ) of ut(�) = g(yt; �): The summation is taken over the frequencies of interest,

represented by the set $:We may appropriately think of the
^
fu(�) (!l) as a triangular

array with !l =
2�l
T
; l = 0; :::T

2
: The maximum frequencies per sample size are T

2
. This

loss function allows for focusing on a subset of frequencies which are judged to be
economically relevant. This is not possible in the time domain. To get a better feel
for this estimation strategy, we now describe some examples of the loss function C(�):
For what follows, we consider only a univariate ut(�):

2.2 Whitening Estimators

We might specify,

^
�=argmin

�

X
!

�
�

^
F u(�) (!)� !

�2
; (4)

where
^
F u(�) (!) is the spectral distribution or 'cumulative spectrum' of ut: We have,

in e�ect, inverted the Cramer-Von Mises statistic to obtain an estimator3. A few
comments are in order here.

1) Rational expectations implies that ut is white noise, so our moment conditions

are that E
�
� � Fu(�)(!)

�
= !: In words, we have that, in population, the spectral

distribution function of white noise is the 45� line. This estimator minimizes the
L2 distance between the sample spectral distribution and the population spectral
distribution of white noise.

2) This estimator is very much like GMM in that it minimizes the squared devi-
ations from moment conditions.

3) There are an in�nite number of valid functions, C(�), with unique minima where
ut is white noise. Durlauf (1991), for example, considers a number of speci�c distance
functions that measure deviations of the cumulative periodogram in the context of
testing for white noise.

4) We suppress dependence of the set of ! on the sample size for the remainder
of the paper for notational simplicity.

A particularly interesting example of a whitening estimator, which I will call
"Spectral-GMM", arises when we take C(�) as follows,

3The Cramer-Von Mises statistic is actually
R
0

1
(BB(z))

2
dz; where BB(z) is a Brownian Bridge.

6



^
�=argmin

�

X
!2$

�^
fu1(�) (!)� fu(�)

�2

; (5)

where fu(�)is the average of the estimated spectra (or periodograms).
This estimator displays some interesting properties. We will show that it coincides

with a time domain GMM estimator, with the choice of $ corresponding to the choice
of a GMM weighting matrix. First we need to de�ne some notation.

Set W be the Fourier matrix. It has typical element [W]ij =
1p
2�T

[ei!i�1j], note

that this matrix has the property thatW yW = I, whereW y is the conjugate transpose
of W:

De�ne W*, [W*]mj =
1p
2�T

[cos(!mj)]k(j), where k(j) is a smoothing window so

that k(j)=0 for j>BT ; m 2 $: So the number of rows of this matrix is equal to the
number of frequencies included in $: Call the number of frequencies included in the
band M, so that W* is an M x T matrix. Let,

Ĝ =

2
66664

1

T�1
P
utut�1

1

T�2
P
utut�2
:::

1

T�(T�1)
P
utut�(T�1)

3
77775 (6)

be the vector of moment conditions implied by the model. Also de�ne,

A =

2
64
1� 1

T
:: � 1

T

:: 1� 1

T
::

� 1

T
:: 1� 1

T

3
75 (7)

V =W �0A0AW �:

Now we will show that

Ĝ
0

V Ĝ =
X
!2$

�^
fu(�) (!)� fu(�)

�2

:

By de�nition, Ĝ
0

V Ĝ = Ĝ
0

W �0A0AW �Ĝ = (AW �Ĝ)0(AW �Ĝ): But this is simply,

"X
�

cos(!1�)k(�)G� :::
X
�

cos(!M�)e
i!K�k(�)G�

#
A0A

2
64
P

� cos(!1�)k(�)G�

:::P
� cos(!M�)k(�)G�

3
75 (8)
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=
X
!2$

�^
fu(�) (!)� fu(�)

�2

; (9)

since multiplication by the matrix A de-means each column. We could equally
well choose the smoothing window in W� to be k(�) � 1 and thus minimize

P
!2$�

Iu(�)(!)� Iu(�)
�2
;where Iu(�)(!) is the periodogram of the residual.

This "spectral-GMM" estimator has the special property that the moment con-
ditions being imposed are exactly those which correspond to requiring that ut � wn:

This estimator allows for whitening of the residuals and, because it is a GSE, it allows
for band restricted whitening. This estimator also has a particularly simple form.

2.3 Other Frequency Domain Estimators

In this section, we will now present the GSE cost functions which give rise to
the least squares and band restricted least squares estimators, and then (asymptoti-
cally) maximum likelihood and band restricted maximum likelihood estimators.

First, we can implement least squares by choosing the trivial cost function, which
yields

^
�=argmin

�

X
!

Iu(�)(!); (10)

where Iu(�)(!) is the periodogram of the residual ut: To see that this estimator coin-
cides with least squares, write the nonlinear least squares estimator,

^
�=argmin

�

U 0U; (11)

where U is the Tx1 vector of residuals u1t. Now U 0U = U 0W yWU = (WU)yWU

=
X
!

Iu(�)(!): (12)

Band spectral regression is nested within this estimator. Instead of taking the
summation over T/2 frequencies, we sum only over the frequencies of interest,

^
�=argmin

�

X
!2$

Iu(�)(!): (13)

If, for example, we would like to focus on uctuations of business cycle frequency we
might restrict $ =

h
�
16;

�
4

i
: Using quarterly data, this band would isolate cycles of

length between 2 and 8 years.
Now consider Whittle likelihood estimation,
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^
�=argmin

�

X
!

Iu(�)(!)
^
fu(�) (!)

where
^
fu(�) (!) is again, the smoothed spectral density of ut: Under normality and

circularity of the residual this estimator can be derived from the familiar time do-
main likelihood function (see, for example, Harvey (1989)).4 Diebold, Ohanian, and
Berkowitz (1995) advocate band-restricted maximum likelihood, which di�ers from
maximum likelihood by taking the summation over only those frequencies of foremost
interest,

^
�=argmin

�

X
!2$

Iu(�)(!)
^
fu(�) (!)

: (14)

2.4 Consistency

This section delineates su�cient conditions for the consistency of the GSE under cor-
rect speci�cation of the model. Although correct speci�cation is surely an unrealistic
assumption, it is of obvious interest to verify that our estimation procedure would be
asymptotically valid if we did, in fact, know the true model.

As above, let
^
�T=argmin

�

P
!2$

C

�^
fu(�) (!)

�
:

Assumption B1: � 2 �; a compact subset of Rk.
Assumption B2: g(�; �) is Borel measurable for each � 2 � and g(yt; �) is continuous,
uniformly in yt:
Assumption B3: E(g(yt; �)) = 0 and g(yt; �) has a �nite spectral density, L1-
continuous on � 2 �:
Assumption B4: C(�) is continuous. For both spectral-GMM and the CVM es-
timator, this assumption is easily veri�ed. In the spectral-GMM case, C(�) is the
quadratic. For the CVM estimator, C(�) is a compound function, a quadratic oper-
ating on a summation.
Assumption B5: There exists a unique �0 such that g(yt; �0) = u(�0) � WN:

There must be a unique parameter vector for which the Euler residual is white noise.
This is not restrictive in the context of dynamic models. However, some time series
models such as ARCH models must be handled with care. Consider for example,

4A process is said to be circular if its autocovariance matrix has the form of a circulant. Letting

(�) denote the autocovariance at lag �; a circulant has the property that (�) = (T � �); for

� = 1; :::T � 1: Circularity does not hold in in�nite moving average processes, in general, but even

without circularity Whittle's derivation holds asymptotically.
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an AR(1) with ARCH innovations. Even under correct speci�cation, the innovations
are not uniquely white noise for any set of ARCH parameters. The parameters may
be estimated, however, by noting that the squared innovations have a conditional
homoskedastic ARMA representation.
Assumption B6: The loss function , C(�); must have the property that

argmin
�

R
$ C

�
fu(�)(!)

�
d! = �0 with 0<

R
$ C

�
fu(�)(!)

�
d!: This says that, given that

the model is identi�ed (assumption B4), the loss function must be minimized at
the population parameter vector �0. This is obviously satis�ed for a wide variety
of functions, C(�): To make this concrete we will check this assumption for the two
Whitening Estimators introduced above.

For the CVM estimator, this condition is trivially ful�lled sinceZ
$
C
�
fu(�)(!)

�
d! =

Z
$

�
�Fu(�)(!)� !

�2
d!;

which achieves a minimum at �Fu(�)(!) = !; uniquely at �0:

Next consider the spectral-GMM.We have
R
$

�
fu(�)(!)� fu(�)

�2
d!:This is clearly

minimized at any � for which fu(�)(!) = k: Together with assumption B4, �0 is the
unique value for which this is true.

Theorem 1 Under the assumptions B1-B6,
^
�T

p
! �0: Given the regularity condi-

tions discussed above, the generalized spectrum estimator is consistent for the true

parameter vector.

Proof. From assumption B4 and the continuity of C(�),
R
C
�
fg(yt;�)(!)

�
d! is

continuous in �:
Next, note that for �xed �; we can calculate a consistent estimate of the spectrum,

f̂g(yt;�)(!)
p
! fg(yt;�)(!) uniformly in !: The f̂g(yt;�)(!i) are asymptotically independent

with cov
�
f̂g(yt;�)(!i); f̂g(yt;�)(!j

�
= O(T�1); by, for example, Brillinger (1981). This,

in turn, implies that,

T�1
X

C
�
f̂g(yt;�)(!)

�
p
!
Z
C
�
fg(yt;�)(!)

�
d!:

Now, since � is compact, we can write

sup
�

����T�1XC
�
f̂g(yt;�)(!)

�
�
Z
C
�
fg(yt;�)(!)

�
d!

���� p
! 0: (15)
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Assumption B3 implies that f̂g(yt;�)(!) is measurable in y and with continuous C(�);

C
�
f̂g(yt;�)(!)

�
is y-measurable. De�ne N(�0) as an open neighborhood around �0; and

N(�0) as its complement: Then N(�0) \� is compact and min
�2N(�0)

R
C
�
fg(yt;�)(!)

�
d!

exists. Further de�ne,

� = min
�2N(�0)

Z
C
�
fg(yt;�)(!)

�
d! �

Z
C
�
fg(yt;�0)(!)

�
d!:

Let AT be the event
���R C �fg(yt;�)(!)�d! � T�1

P
C
�
f̂g(yt;�)(!)

���� < �=2; 8�: Then
by rearranging terms, AT implies

Z
C
�
fg(yt;�T )(!)

�
d! < T�1

X
C
�
fg(yt;�T )(!)

�
d! � �=2: (16)

AT also implies,

T�1
X

C
�
f̂g(yt;�0)(!)

�
<
Z
C
�
fg(yt;�0)(!)

�
d! � �=2: (17)

Now
T�1

X
C
�
f̂g(yt;�T )(!)

�
< T�1

X
C
�
f̂g(yt;�0)(!)

�
; (18)

by de�nition of �T : Combine equation 16 with 18, so that,
AT ) Z

C
�
fg(yt;�T )(!)

�
d! < T�1

X
C
�
f̂g(yt;�0)(!)

�
� �=2: (19)

Now add, 17 and 19, which leaves,R
C
�
fg(yt;�T )(!)

�
d! <

R
C
�
fg(yt;�0)(!)

�
d! � �: So that when AT is true, �T =2

N(�0) \ �; or �T 2N(�0):

Now, since, lim
T!1

P (AT ) = 1;by equation 15, we conclude that
^
�T

p
! �0:

Q.E.D.

2.5 Asymptotic Normality

Under two additional assumptions, it is possible to show that the Generalized Spec-
trum estimator is asymptotically Normally distributed. The asymptotic variance will
depend not only on the underlying data generating process, but also on the choice of
C(�):
Assumption C1: C(�) is twice continuously di�erentiable.

Assumption C2: E
�
C

0

(�!)�!
�2

<1 , �! is an exponentially distributed random
variable.
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Theorem 2 Under the additional assumptions C1 and C2,
p
T
�
�̂GSE � �0

�
d
! N(0; H(�0)

�1�H(�0)
�1); where H(�0) is the Hessian of the GSE

minimand.

Proof. De�ne QT (�) =
P
!
C(f̂(!))d!, the quantity being minimized. We have

that @2

@�2
QT (�) exists and is continuous. It is established in the proof of Theorem 1

that
T�1QT (�)

P
! Q(�); uniformly in �:

It is thus straightforward to show that

T�1
@2

@�2
QT (�) j�T

P
!

@2

@�2
Q(�0): (20)

Next we consider the quantity T�1=2 @
@�
QT (�) j�0 : From the de�nition of the GSE,

@

@�
QT (�) =

X
!

C 0(f̂�(!))
@f̂�(!)

@�
: (21)

We will evaluate this quantity at the point �0,
P
!
C 0(f̂�0(!))

@f̂�(!)

@� �0: The f̂�0(!i); i =

1,.. T/2, form an asymptotically independent triangular array, with cov
�
f̂�0(!i); f̂�0(!j)

�
=

O(T�1): We may now apply a Central Limit Theorem due to McLeish (1975),

T�1=2
X
!T

C 0(f̂�0(!))
@f̂�(!)

@�
�0

d
! N(0;�); (22)

� =
R
C 0(f�0(!))

2
�
@f�(!)

@� �0

�2
d!:

Combining 20 and 22 will be su�cient to prove the theorem by applying the mean
value theorem,

@QT

@�
�T =

@QT

@�
�0 +

@2QT

@�2
��(�T � �0); �

� 2 (�̂; �0):

=)
p
T (�T � �0) = �

"
T�1

@2QT

@�2
��

#+
T�1=2

@QT

@�
�0

But, plim
h
T�1 @

2QT

@�2 ��

i+
= @2

@�2
Q(�0) by 20. Setting H(�0) =

@2

@�2
Q(�0); we conclude

that
p
T (�T � �0)

d
! N(0; H(�0)

�1�H(�0)
�1):
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3 Simulation Experiment

In order to illustrate the behavior of GSE, this section reports the results of a simple
Monte Carlo experiment. The experiment is designed to mimic some of the charac-
teristics of daily NYSE stock returns data. There is a large literature which studies
the e�ect of high frequency noise on observed stock returns. The measurement er-
ror arises primarily from bid-ask spreads and asynchronous trading (e.g., Blume and
Stambaugh (1983), Roll (1984)). Consider the following data generating process,

xt = �xt�1 + "t

yt = xt + ut:

The researcher can only observe yt; which includes high frequency measurement error
ut: The researcher does not the data generating process for ut: We are interested
in estimating the unknown parameter �: We can proceed by using standard ARMA
information criteria and estimation tools to �t an ARMA to yt. Alternatively, we can
�t an AR(1) to yt and omit high frequencies by GSE.

Since we are not interested in the high frequency dynamics in ut; we will use
spectral-GMM with a low frequency band. Intuitively, the spectrum of yt will be
the sum of a low frequency component, xt and a high frequency component, ut: By
ignoring the high frequencies, we can e�ectively estimate the spectrum of the low
frequency component and thus invert out the persistence parameter.

Following Roll (1984) ut is modeled as an MA(1) with variance equal to 10% of
the variance of yt: For the purposes of the experiment, "t and ut are taken to be
normally distributed. Table 1 reports spectral-GMM estimates for � using the low
frequency half of available spectra, ! 2 [0; �

2
]: Row 1 contains OLS estimates of �;

with Monte Carlo standard errors in Row 2. OLS is severely downward biased due
to the measurement error. The poor performance of OLS is not surprising, since
the model is, in e�ect, misspeci�ed. Rows 3 and 4 contain estimates which are con-
structed by �tting an ARMA model to the data using the Hannan and Rissanen
(1982) information criterion to select the lag lengths and estimating the parameters
via Maximum likelihood. This procedure delivers consistent �̂, since the order of
the ARMA is asymptotically correctly selected. Indeed, the bias of these estimates
disappears quickly in the sample sizes studied here. Nevertheless, Spectral-GMM es-
timates, displayed in Rows 5 and 6, clearly outperform the standard ARMA approach
in this experiment. Comparison of Rows 3 and 5 indicates that the GSE has both
smaller bias and less Monte Carlo variation, in every sample size.
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4 Conclusion

This paper suggests some new techniques for estimating dynamic rational expecta-
tions models which are explicity designed to match only subsets of uctuations in
observed data. For example, the methodology allow models to be estimated in the
presence of high frequency noise. Generalized Spectral estimators may also be of
use in estimating business cycle models or long term growth models because of their
inherent focus on subsets of frequencies.

A simple Monte Carlo experiment studies the ability of the GSE to estimate an
autoregressive parameter, when the data of interest is observed with high frequency
measurement error. It is assumed that the particular form of the measurement error
is unkown to the economist. The results of the experiment suggest that the ability
of the GSE to "ignore" high frequencies leads to far more precise estimation than
standard ARMA techniques in �nite samples.
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Table 1. Simulation Results

Sample Size 25 50 75 100 150 200 250 1000
OLS .236 .386 .446 .482 .516 .536 .547 .578

(.284) (.212) (.177) (.154) (.128) (.107) (.097) (.047)
ARMA .333 .664 .770 .815 .844 .861 .870 .894

(.461) (.316) (.216) (.166) (.115) (.085) (.069) (.023)
GSE .787 .838 .856 .856 .875 .882 .886 .896

(.233) (.118) (.084) (.069) (.054) (.043) (.038) (.018)

Notes: Alternative estimates of � averaged across 2000 Monte Carlo trials. Monte
Carlo standard errors are in parentheses. Rows 1-2 are OLS estimates. For Rows 3-4,
the order of the moving average is selected by Hannan and Rissanen (1982) infor-
mation criterion, the parameters are then estimated by MLE. Rows 5-6 are spectral-
GMM estimates with ! 2 [0; �

2
]:
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