
Around and around: The expectations hypothesis

Mark Fisher

Research and Statistics

Board of Governors of the Federal Reserve System

and

Christian Gilles�

Monetary A�airs

Board of Governors of the Federal Reserve System

May 1996

�Mail Stop 74, Federal Reserve Board, Washington, DC 20551; phone: (202) 452{2567; e-

mail: cgilles@frb.gov. The views expressed herein are the authors' and do not necessarily

re
ect those of the Board of Governors or the Federal Reserve System. We thank Greg

Du�ee for extensive comments and many useful discussions.



Abstract

We show how to construct arbitrage-free models of the term structure of interest
rates in which various expectations hypotheses can hold. McCulloch (1993) provided
a Gaussian non-Markovian example of the unbiased expectations hypothesis (U{EH),

thereby contradicting the assertion by Cox, Ingersoll, and Ross (CIR, 1981) that only
the so-called local expectations hypothesis could hold. We generalize that example in
three ways: (i) We characterize the U{EH in terms of forward rates; (ii) we extend

this characterization to a class of expectations hypotheses that includes all of those
considered by CIR; and (iii) we construct stationary Markovian and non-Gaussian

economies. The building block is a maturity-dependent vector that travels around a
circle at a constant speed as maturity increases.



Around and around: The expectations hypothesis

Introduction

In one form or another, the expectations hypothesis has played a central role in the

analysis of the term structure of interest rates. Perhaps the most common form of

the expectations hypothesis is the so-called unbiased expectations hypothesis (U{

EH) that asserts that forward rates equal the conditional expectations of future spot

rates, but other forms exist as well. Cox, Ingersoll, and Ross (1981) (CIR) char-

acterized a number of mutually incompatible forms of the expectations hypothesis,

including, besides the U{EH, the local expectations hypothesis (L{EH), under which

the expected rate of return on all zero-coupon bonds (on all assets, in fact) equals

the short-term risk-free rate. Of the various expectations hypotheses they consid-
ered, they claimed that only the L{EH was consistent with general equilibrium in

continuous-time models.1

McCulloch (1993) provided a counter-example to CIR's claim. His example is

in the spirit of Heath, Jarrow, and Morton (1992) (HJM), in the sense that it does
not admit a representation in terms of a �nite number of Markovian state variables.
Indeed, McCulloch suggests that CIR's claim may be true within the framework of

an economy with a �nite number of Markovian state variables. As we show, it is not.
There is a weak version of the U{EH according to which forward rates are biased

predictors of future spot rates, but the bias, or term premium, is a constant that only

depends on the forecast horizon. In this weak version, a regression of future spot
rates on current forward rates has a slope coe�cient equal to unity, but the intercept

is unrestricted.2 To construct an arbitrage-free model of the yield curve in which
the weak U{EH holds, it is su�cient to let all volatilities be constant|the Gaussian
case.3 By contrast, our objective is (in part) to construct models of the strong version

of the U{EH.
In this paper, we �rst generalize McCulloch's example by putting the U{EH explic-

itly into the HJM framework, focusing on absence-of-arbitrage conditions rather than
building from a general equilibrium model.4 We then extend the analysis to a class
of expectations hypotheses, parametrized by a scalar q, that includes as special cases

those considered by CIR. Finally, we show how to construct Markovian examples:

We start with two-state-variable stationary Markov economies that are Gaussian|
that is, volatilities are nonrandom. Then, we show how to construct non-Gaussian

1
They extended their claim to discrete-time models where interest rates are continuously

compounded.

2
See, for example, Campbell and Shiller (1991), who tested, and rejected, a weak version of the

U{EH.

3
See Campbell (1986) for a one-factor, general-equilibrium example.

4
In Appendix A we show how to interpret the results from a general equilibrium perspective.
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two- and three-state-variable models. The two-state-variable Gaussian model and

the three-state-variable non-Gaussian model (but not the two-state-variable non-

Gaussian model) are members of exponential-a�ne class of term structure models

characterized by Du�e and Kan (1993).

The building block for the construction of any of our examples is a vector-valued

function �(t; T ), where t is the current time and T is the maturity date. As long

as, for any �xed t, �(t; T ) lies on a sphere, the expectations hypothesis holds. If, in

addition, the path of �(t; t+ �) describes a circle on the sphere and goes around that

circle at a constant speed as � increases, then the model is Markovian.

1 The U{EH in an HJM setting

In this section, which serves to introduce the analysis, we generalize McCulloch's

example by characterizing the U{EH in terms of the HJM absence-of-arbitrage re-
striction.

Let P (t; T ) denote the price at time t of a default-free zero-coupon bond that pays
one unit of account at time T . Assume that, at any time t, P (t; T ) is a di�erentiable
function of T , and de�ne the instantaneous forward rate as

f(t; T ) := � @

@ T
log[P (t; T )]; (1)

which, of course, implies

log[P (t; T )] = �
Z

T

s=t

f(t; s) ds; (2)

and de�ne the short rate at time t, which is assumed to exist, as

r(t) := lim
T!t

f(t; T ):

Let Et[ � ] be the conditional expectation operator.5 Following CIR, we de�ne the

U{EH as follows: Forward rates are the conditional expectation of future spot rates;
i.e,

f(t; T ) = Et[r(T )]:

In the HJM approach to modeling the term structure, the primitives are (i) an

initial yield curve ff(0; t) j t > 0g, (ii) the process for the market price of risk

5
The concept of equivalent martingale measures hinders rather than facilitates the analysis of

expectations hypotheses. As a result, we make no use of it and all expectations are taken with

respect to the physical measure.
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�(t),6 and (iii) the volatility of forward rates. We restrict attention to economies in

which forward rates are di�usions driven by a d-dimensional vector W (t) of standard

Brownian motions. Let the process for forward rates be7

df(t; T ) = �f(t; T ) dt+ �f(t; T )
> dW (t); (3)

where �f (t; T ) is a d-dimensional vector of forward-rate volatilities. Note that the

market price of risk, �(t), is also a d-dimensional vector, and that it could be a random

process, as could �f(t; T ) and �f(t; T ).

It is now straightforward to derive the relationship between expected future short

rates and current forward rates. Since r(T ) = f(T; T ) = f(t; T ) +
R
T

s=t
df(s; T ), we

can write

Et[r(T )] = f(t; T ) +
Z

T

s=t

Et[df(s; T )] = f(t; T ) +
Z

T

s=t

Et[�f(s; T )] ds:

De�ne the forward rate premium as follows:

 (t; T ) := f(t; T )� Et[r(T )] =
Z

T

s=t

Et[��f (s; T )] ds: (4)

From (4), it is evident that if forward rates are unbiased predictors of future spot
rates, then forward rates are martingales: �f(t; T ) � 0. If, in addition, an ergodic

yield curve exists, then it is 
at. An upward sloping ergodic yield curve would require
an expected decrease in forward rates on average.

It might seem easy, then, to construct examples of the U{EH: simply choose

processes for forward rates (3) with �f(t; T ) � 0. The problem is that doing so
arbitrarily might introduce arbitrage opportunities. The HJM absence-of-arbitrage
condition speci�es the drift of forward rates as8

�f(t; T ) = �f (t; T )
>

 
�(t) +

Z
T

s=t

�f (t; s) ds

!
(5)

for all 0 � t � T . Equation (5) shows that we must be able to write forward rate

drifts in terms of their volatilities and the market price of risk. It follows directly

that the HJM characterization of the U{EH is

�f (t; T )
>

 
�(t) +

Z
T

s=t

�f (t; s) ds

!
= 0: (6)

6
See Appendix A for a discussion of the market price of risk.

7
We use (�)

>
to denote transposes of vectors and matrices.

8
We derive this expression in Appendix A. This was �rst shown by HJM; see also Du�e (1996),

p. 151 or Hull (1993), p. 398{401. The form of our restriction di�ers from the form that Du�e and

Hull give because in their presentations the drift is risk adjusted, while here �f (t; T ) is not.
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The modeling challenge, then, is to �nd f�(t); �f (t; T )g pairs that satisfy (6).

To meet this challenge, it is convenient to de�ne

�(t; T ) := �(t) +
Z

T

s=t

�f(t; s) ds: (7)

Note that �0(t; T ) = �f (t; T ), where we de�ne F
0(t; T ) := @

@T
F (t; T ) for any function

F ( � ; � ). Using (7), we can write (6) as

�0(t; T )>�(t; T ) = 0: (8)

Any function �(t; T ) that satis�es (8) has constant length: k�(t; T )k = k�(t; t)k.
Two comments are in order. First, note that when d = 1, this condition can be

satis�ed only if �(t; T ) is a constant function of its second argument, in which case

�f (t; T ) � 0, which means there is no uncertainty. Thus in order for (8) to hold when
interest rates are stochastic, there must be at least two Brownians. Second, note

that (8) does not restrict how �(t; T ) behaves as a function of its �rst argument: In
particular, �(t; T ) can be a stochastic process.

We can restate the key relationship between �(t; T ) and the U{EH as follows:

If �(t; T ) is a rotation of �(t; t), then the U{EH is satis�ed in an arbitrage-
free way.

We now have a simple recipe for constructing arbitrage-free models of the U{EH:
(i) choose �(t; T ) such that �(t; t) is some random process and �(t; T ), for T > t, is

a rotation of �(t; t); (ii) de�ne �(t) = �(t; t), and (iii) de�ne �f (t; T ) = �0(t; T ).
McCulloch (1993) constructed an economy in which the U{EH holds.9 In McCul-

loch's example there are two sources of risk, so that d = 2. He chose10

�(t; t+ �) = a
�p

2 e�� � e�2� ; 1� e��
�
>

;

where a = �
p
g0 in his notation. Note that k�(t; t+ �)k = k�(t; t)k = a. Clearly, as �

increases, �(t; t+ �) turns continuously from �(t; t) = (a; 0)> to �(t; t+1) = (0; a)>

going a quarter of the way around the circle over the in�nite horizon. Finally note
that McCulloch's example is Gaussian since �(t; T ) is deterministic.

2 A class of expectations hypotheses

In this section, we generalize the results from the previous section to encompass an

entire class of expectations hypotheses. For this purpose, we will need to refer to the

9
Frachot and Lesne (1994) noted that such an example could be constructed easily by exploiting

equation (6).

10
We reversed the order of McCulloch's Brownian motions for comparison with what follows.
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process for zero-coupon bonds:11

dP (t; T )

P (t; T )
= �P (t; T ) dt+ �P (t; T )

>dW (t): (9)

From (2), note the following relation between the volatility of bond prices and that

of forward rates

�P (t; T ) = �
Z

T

s=t

�f (t; s) ds: (10)

CIR characterized four versions of the expectations hypotheses: the U{EH, the

L{EH, the Yield-to-Maturity Hypothesis (YTM{EH), and the Return-to-Maturity Hy-

pothesis (RTM{EH). They showed that the U{EH and the YTM{EH are identical in
continuous time.12 CIR went on to show that|after imposing absence-of-arbitrage

conditions|the three independent expectations hypotheses could be characterized in
the following way:

�P (t; T )
>�(t) =

q

2
k�P (t; T )k2; (11)

where

q =

8<
:
0 under L-EH,

1 under YTM/U-EH, and
2 under RTM-EH.

Equation (11) provides an equilibrium (or absence-of-arbitrage) characterization of
the expectations hypotheses. Moreover, it shows that the three hypotheses are mu-
tually inconsistent unless �P (t; T ) � 0. Although CIR only considered q 2 f0; 1; 2g,
we allow q to be an arbitrary real number, and we refer to (11) as the q{expectations
hypothesis (q{EH). CIR referred to (11) in making their claim that only the L{EH
could hold in a continuous-time general equilibrium model. Clearly, the L{EH has a

special status, since q = 0 implies �(t) is orthogonal to �P (t; T ) but imposes no other
restriction; with �(t) � 0, for example, the L{EH is always satis�ed and �P (t; T ) is

unrestricted. For any other value of q, by contrast, if �(t) is orthogonal to �P (t; T ),
then �P (t; T ) = 0.

We can recast (11) in terms of forward rates by di�erentiating both sides with

11
In such a process, we call �P the proportional drift of P ; the drift of P is �P � P , of course.

12
CIR showed that the two hypotheses are identical in discrete time too if interest rates are

continuously compounded.
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respect to T , using (10), and rearranging:

�f (t; T )
>

 
�(t) + q

Z
T

s=t

�f (t; s) ds

!
= 0: (12)

We see that (6) is a special case of (12) with q = 1. It is convenient to generalize the

de�nition of �(t; T ): De�ne �(t; T ) implicitly by

�(t) = q �(t; t) (13)

and

�f (t; T ) = �0(t; T ); (14)

so that q �(t; T ) = �(t) + q
R
T

s=t
�f(t; s) ds.

Using (13{14), we can write (12) as

q �0(t; T )>�(t; T ) = 0: (15)

Equation (15) is satis�ed automatically if q = 0. If q 6= 0, (15) reduces to (8), in
which case the comments that follow (8) apply here to the generalized de�nition of
�(t; T ).

The recipe for constructing arbitrage-free models of the q{EH is this: (i) choose
�(t; T ) such that �(t; t) is some random process and �(t; T ), for T > t, is a rotation

of �(t; t); (ii) de�ne �(t) = q �(t; t), and (iii) de�ne �f (t; T ) = �0(t; T ). For example,
with McCulloch's �(t; T ), we could choose �(t) = q �(t; t) for any q.13

Finally, note that we can restate the q{EH in terms of either forward rate drifts

or term premia. Using (13{14), we can rewrite the no-arbitrage condition (5) as

�f(t; T ) = �0(t; T )>
�
(q � 1)�(t; t) + �(t; T )

�
:

For q 6= 0, (15) implies

�f(t; T ) = (q � 1)�0(t; T )>�(t; t); (16)

which in turn, in view of (4), holds if and only if

 (t; T ) = (1� q)
Z

T

s=t

Et[�
0(s; T )>�(s; s)] ds: (17)

In what follows, we assume for convenience that (8), (16), and (17) hold even when

q = 0.

13
The underlying general equilibrium would look di�erent of course. See Appendix A.
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3 Markovian models

McCulloch (1993) established decisively that the unbiased expectations hypothesis is

consistent with general equilibrium. But he left open the possibility that expectations

hypotheses may be inconsistent with general equilibrium in the �nite-state Markovian

world analyzed by CIR. We settle this issue by exhibiting two- and three-state variable

stationary Markov economies. The construction allows for the volatility of bond prices

to be stochastic. The trick is to make �(t; T ) proceed around a circle at a constant

pace, producing an in�nite number of cycles.

In all of the examples we develop below, the processes for the short rate and its

drift share the following structure:

dr(t) = x(t) dt+ ! �(t) dW2(t) (18)

and
dx(t) = y(t) dt� !2 �(t) dW1(t): (19)

Note that the di�usion for r(t) depends only on W2(t), while the di�usion for its

drift x(t) depends only on W1(t), which is orthogonal to W1(t). As we will see, this
seemingly capricious ordering of Brownians follows from our canonical representation

for �(t).
To facilitate the analysis of the examples, we de�ne a pair of functions that we

will use repeatedly and for which (q; !; �; z) is a vector of �xed parameters:

Y (r; �) := !2
�
�� r + (q � 1)

�
z2 � �2

��
and

Fq(r; x; �) := �+ (r � �) cos[! � ] + x
sin[! � ]

!
+ (q � 1) z2 (1� cos[! � ]):

A two-state-variable model

Consider the following example, where d = 2 and �(t; T ) has constant norm z and

turns at constant angular velocity !:

�(t; t+ �) = z C(!; �) ; (20)

where

C(!; �) =

�
cos[! � ]

sin[! � ]

�
:

We prove below that this choice for �(t; T ) leads to processes for the short rate r(t)
and its drift x(t) of the form (18{19), where �(t) = z and

y(t) = Y (r(t); z) = !2 (�� r(t)):
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This is a model of the yield curve in which the two state variables r(t) and x(t)

form a Markovian vector. The short rate is stationary and has unconditional mean

equal to �, while its drift x(t) is also stationary and its unconditional drift is zero.

Volatilities are constant, and therefore the model is Gaussian. Finally, the market

price of risk is given by

�(t) = q �(t; t) =

�
q z

0

�
:

With linear drifts, constant volatilities, and a constant price of risk, the model

belongs to the exponential-a�ne class introduced by Du�e and Kan [1993]. Its

solution for forward rates is

f(t; t+ �) = Fq(r(t); x(t); �): (21)

Using the methods described in Fisher and Gilles (1996), it is possible to verify that

the conditional expectation of the short rate is

Et[r(t+ �)] = F1(r(t); x(t); �): (22)

Clearly, this forecast is independent of the value of q, as it must be given that the
process for (r(t); x(t)) is independent of q. But the value of q a�ects the market price

of risk, and therefore the shape of the yield curve given in (21). From these equations,
it is clear that the term premia are given by

 (t; t+ �) = f(t; t + �)� Et[r(t+ �)] = (q � 1) z2 (1� cos[! (�)]);

which agrees with the term premia under the q{EH as given in equation (17). In
particular, under the unbiased expectations hypothesis (q = 1) all term premia vanish.

The example is the canonical Gaussian model

This example has a two-dimensional Markovian state vector with deterministic
volatility|the Gaussian case. In Gaussian models, term premia are nonrandom func-

tions of maturity. It would be interesting to �nd out how to construct non-Gaussian

models of the q{EH, because in such models term premia change randomly. We
construct such examples by generalizing the canonical example.

Before turning to the issue of non-Gaussian models, however, we prove two re-
sults about the canonical example, which clearly show that it is the place whence to

generalize. First, we show that there exists no one-state variable model of the q{EH,

Gaussian or not. This is simply because, under the q{EH, the univariate process for
the short rate cannot be Markovian (all proofs appear in Appendix B).
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Proposition 1 If the q{EH holds and the short rate r(t) is not deterministic, then

its univariate process is not Markovian.

Second, we show that any Gaussian model of the q{EH with a two-dimensional

Markovian state vector amounts to a renormalization of the canonical example.

Proposition 2 Suppose that the q{EH holds in a model with two Markovian state

variables in which bond prices have deterministic volatilities. Then there exist con-

stant scalars �, !, and z such that, perhaps after changing the basis for the vector

of Brownian motions (thus a�ecting the representation of the processes, but not the

form of the yield curve):

� �(t; T ) has the form shown in (20);

� the processes for the short rate and its drift have the form shown in equations

(18) and (19), with �(t) = z and y(t) = Y (r(t); z);

� and the initial yield curve has the form

f(0; �) = Fq(r(0); x(0); �): (23)

Proposition 2 asserts that in a Gaussian and Markovian economy (with two state
variables), the q{EH implies that �(t; T ) keeps turning around the circle at constant

angular velocity, !. It also speci�es x(t), the drift of r(t), as linearly independent
of r(t), and y(t), the drift of x(t), as a translation of r(t) with coe�cient �!2, and
independent of the value of x(t) itself. The short rate is stationary with unconditional

mean equal to �, while its drift is also stationary with unconditional mean equal to
zero.

Because the model is Markovian, the initial time has no particular signi�cance,
and equation (23) for the \initial" yield curve delivers the form of the generic yield
curve, which indeed agrees with the solution that follows from solving a Du�e-Kan

model, as we did to get (21). But while the Du�e-Kan method requires solving a
simultaneous system of three Ricatti diferential equations, we obtained the initial
yield curve in the proof of Proposition 2 by solving a single second-order di�erential

equation.

Clearly, yield curves can be 
at; in fact the yield curve is 
at if and only if

r(t) = �+ (q � 1) z2 and x(t) = 0:

Fq(�+ (q � 1) z2; 0; �) = �+ (q � 1) z2:

There is always an ergodic yield curve that is obtained by setting r(t) and x(t) at

their respective unconditional means, � and 0:

Fq(�; 0; �) = �+ (q � 1) z2 (1� cos[! � ]):

9



The ergodic yield curve is thus the same as the 
at yield curve under the U{EH

(q = 1), but in other cases it is a sine wave.

Non-Gaussian models

We now turn to the non-Gaussian case. The simplest way to generalize the canonical

Gaussian example is to suppose that �(t; t)|which is porportional to the market

price of risk �(t)|is an Ito process. To do this without increasing the number of state

variables, replace equation (20) by �(t; t+�) = �(t)C(!; �) where �(t) is some function

of r(t) and x(t). There result non-Gaussian two-state variable Markov models of

the yield curve in which the q{EH holds. Although this strategy works well and

delivers closed-form expressions for bond prices, checking that the q-hypothesis holds

may not be easy in practice, because we do not have closed-form expressions for

the conditional forecasts of the state variables. For this reason, we also introduce
a three-state variable non-Gaussian model in which we know how to compute both
bond prices and conditional forecasts.

Proposition 3 Let �(t; t + �) = �(t)C(!; �), where C(!; �) is as in (20) and

�(t) = �(r(t); x(t)), for any function �(�; �) (with the restriction that the implied

stochastic processes for r(t) and x(t) have a solution). Suppose also that �2(t) has an

unconditional mean z2. Pick a constant � and initial conditions r(0) and x(0), and
choose the following initial yield curve

f(0; �) = Fq(r(0); x(0); �):

Then:

� the resulting yield curve model is Markovian with a two-dimensional state vector

(r(t); x(t)), as well as non-Gaussian if �(t) is random, and it satis�es the q-

expectations hypothesis;

� the processes for the short rate and its drift have the form shown in equations

(18) and (19), with y(t) = Y (r(t); �(t));

� at any time t, the yield curve is

f(t; t+ �) = Fq(r(t); x(t); �): (24)

We see that bond prices are independent of �(t) and depend on the other two state

variables r(t) and x(t) exactly as they do in the corresponding Gaussian model. The
only di�erence between the Gaussian and the non-Gaussian models is the distribution

of these state variables; therefore yield curves of a given shape do not occur with the

same frequency in both models.
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In the non-Gaussian model, the drift of x(t) depends on �2(t) (except when q = 1),

which complicates the task of making conditional forecasts. If �2(t) were a linear func-

tion of x(t) and r(t), then the model would be in the exponential-a�ne class, and we

would know how to compute conditional forecasts. Unfortunately, in our two-factor

model there is no guarantee that either the interest rate or its drift can stay positive

(in fact, the mean of x(t) equals zero), and no linear combination of these variables is

guaranteed to stay positive. Therefore, �2(t) cannot be a linear function of (r(t); x(t)).

We can get around this problem by adding a third, independent state variable, how-

ever. The following three-state-variable model belongs to the exponential-a�ne class.

Proposition 4 Set d = 3. Let �(t; t + �) = �(t)C�(!; �), where C� extends the

function C given in (20) by adding a third component which identically equals zero;

let the process for �2(t) satisfy

d�2(t) = k (z2 � �2(t)) dt+ �(t) dW3(t);

and let f(0; �) = Fq(r(0); x(0); �), so that the initial yield curve is as in Proposition

3. Then:

� the resulting yield curve model is Markovian with a three-dimensional state vec-

tor (r(t); x(t); �2(t)), as well as non-Gaussian, and it satis�es the q-expectations

hypothesis;

� the processes for the short rate and its drift have the form shown in equations

(18) and (19), with y(t) = Y (r(t); �(t));

� at any time t, the yield curve is

f(t; t+ �) = Fq(r(t); x(t); �):

The bond price formula in the three-state-variable model is identical to that in the
two-state-variable model. The only di�erence is that, because the former model

belongs to the exponential-a�ne class, it is possible to obtain closed-form solutions for

the conditional forecasts of all state variables (as well as their conditional variances).
The state variable of most interest, of course, is the short rate itself, for which we

have:

Et[r(t+ �)] = F1(r(t); x(t); �) +

(1� q)!2

k2 + !2

�
�2(t)� z2

� 
e�k� � cos[!� ] +

k sin[!� ]

!

!
:

It can then be veri�ed that the forward premium is

 (t; t+ �) = f(t; t+ �)� Et[r(t+ �)]

11



= (q � 1)
�
z2(1� cos[!� ])� !

2(�2(t)�z2)

k2+!2

�
e�k� � cos[!� ] + k sin[!� ]

!

��
:

It can be further veri�ed that, because

Et[�(t+ s)2] = z2 + e�ks
�
�(t)2 � z2

�
;

the above expression for the term premium agrees with (17), which in the present

case reduces to

 (t; t + �) = (q � 1)!
Z

�

s=0
Et[�(t+ s)2] sin[!(� � s)] ds:

4 Concluding remarks

We have shown that the expectations hypothesis is compatible with general equi-
librium even in Markovian settings. The models we have been able to construct,
however, will not help to rehabilitate the expectations hypothesis. Rather, they show

how implausible the hypothesis is. The main reason all expectations hypotheses are
implausible in Markovian settings is that they share the same process for the short

rate, which implies that the forecast of the short rate path is a sine wave with non-
dampening amplitude. Of course, forward rates behave in the same way (they are
equal to the short rate forecast under the unbiased expectations hypothesis).

In a non-Markovian setting, yield curves and forecasts of the path of the short
rate can look more reasonable. Note that in his example, McCulloch did not exhibit a

yield curve. In fact, McCulloch's example is compatible with any initial yield curve.14

The expectations hypothesis imposes restrictions only on the dynamics of the yield
curve. Given the initial yield curve and its dynamics, it is in principle possible to

reconstruct future yield curves for any path of the set of Brownian motions. But
because there is no �nite set of variables that summarizes the state of the economy,
we cannot say what a typical yield curve looks like.

At �rst blush, it may seem that the Markovian models have the potential to
represent the cyclical behavior of interest rates prior to the existence of the Federal

Reserve. Unfortunately, the models cannot be made to reasonably approximate that
sort of cyclical behavior. The problem is that the pre-Fed cycle occurs in absolute

time, while the cycles in the Markovian models occur in relative time. In other

words, there is no way to make summer (for example) be a high (or low) rate season
on average.

As a �nal observation, we suspect that no equilibrium model of the expectations
hypothesis, Markovian or non-Markovian, can guarantee the non-negativity of the

14
Initial yield curves in our examples are determined only by the condition that the model is

Markovian, as the proofs of the propositions make clear.

12



short rate. This is certainly true in McCulloch's example and all of our examples.

Such a feature makes the expectations hypothesis a poor benchmark for nominal

rates. The reason for the inability to keep the short rate positive is simple. If the

short rate is to stay positive, its volatility must be small enough and its drift must be

positive whenever its level is close to zero. But in all our examples, the drift of the

short rate is independent of the short rate itself, and therefore will not always point

in the right direction when the rate is small.

13



Appendices

A Absence-of-arbitrage and general equilibrium

In this Appendix we derive the HJM absence-of-arbitrage restriction and we show

the relationship to general equilibrium models. Much of the material can be found in

Du�e (1996).

Absence-of-arbitrage

There are several equivalent ways to impose the no-arbitrage condition on the process

for bond prices. The most direct, perhaps, is to postulate the existence of a strictly

positive process m(t), which obeys

dm(t)

m(t)
= �m(t) dt+ �m(t)

>dW (t); (A.1)

such that the value at time t, V (t), of any payo� D(T ) at time T obeys

V (t)m(t) = Et[D(T )m(T )]; (A.2)

as a result, the de
ated value V (t)m(t) is a martingale. Following Du�e (1996), we
call m(t) the state-price de
ator .

De�ne the conditional expectation at time t of the state-price de
ator at time T :
z(t; T ) := Et[m(T )]; then z(t; T ) is a strictly positive martingale whose process can
be written as follows:

dz(t; T )

z(t; T )
= �z(t; T )

>dW (t); (A.3)

which, by Ito's lemma, implies

d log[z(t; T )] = �1

2
k�z(t; T )k2 dt+ �z(t; T )

>dW (t): (A.4)

In view of (A.2) specialized to the case D(T ) = 1, the term structure of interest rates

can be written as

P (t; T ) =
z(t; T )

m(t)
: (A.5)

We now relate the process for the state-price de
ator to the short rate and the
so-called market price of risk. To do this, de�ne the money market account �(t) as

the value of the particular asset that consists of the accumulation of one unit of the

14



numeraire continuously reinvested at the short rate:

�(t) := exp

�Z
t

s=0
r(s) ds

�
;

which implies that the process for �(t) is

d�(t)

�(t)
= r(t) dt: (A.6)

In view of (A.1) and (A.6), Ito's lemma implies that the proportional drift of �(t)m(t)

is r(t) + �m(t). Since �(t) is the value of an asset, however, �(t)m(t) must be a

martingale, and therefore its drift must equal zero. It immediately follows that

�m(t) = �r(t):

Similarly, in view of (9) and (A.1), Ito's lemma implies that the proportional drift
of m(t)P (t; T ) is �m(t; T ) + �P (t) + �P (t; T )

>�m(t). Since the de
ated bond price
P (t; T )m(t) = Et[m(T )] is a martingale, we must have

�P (t; T ) = r(t) + �P (t; T )
>�(t); (A.7)

where �(t), which we call the market price of risk, is de�ned as �(t) := ��m(t).
Therefore we can always write the process for the state-price de
ator as

dm(t)

m(t)
= �r(t) dt� �(t)>dW (t):

which, by Ito's lemma, implies

d log[m(t)] = �
�
r(t) +

1

2
k�(t)k2

�
dt� �(t)>dW (t): (A.8)

Next, applying Ito's lemma to (A.5) produces the following relationship:

�P (t; T ) = �z(t; T ) + �(t): (A.9)

Since z(t; t) = m(t), we have �z(t; t) = ��(t) and as a result �P (t; t) = 0.

We now turn to the no-arbitrage condition in the HJM framework. This condition

states that in (3), the drift �f(t; T ) cannot be chosen independently of �(t) and
�f (t; T ). To see this, note that equations (1) and (A.5) imply

f(t; T ) = � @

@ T
log[z(t; T )];

15



from which it follows that

df(t; T ) = �d
 
@

@ T
log[z(t; T )]

!
:

In view of the process for log[z(t; T )] given in (A.4), we have

�f (t; T ) = �0
z
(t; T ) (A.10)

and

�f(t; T ) =
1

2

@

@ T
k�z(t; T )k2 = �0

z
(t; T )>�z(t; T ): (A.11)

In the spirit of HJM, considering �f (rather than �z) as a primitive, then, equations

(A.9), (A.10) and (A.11) imply (5).

Relationship to general equilibrium

Any model of the term structure that is free of arbitrage can be interpreted as a
general-equilibrium model. We now give our model such an interpretation. Assume

an exchange economy with a representative consumer who maximizes the expected
discounted sum of instantaneous utility with constant discount factor �,

Et

�Z
1

t

e�� s u(c(s)) ds

�
:

Let the instantaneous utility be of the constant relative risk aversion class, with risk
aversion parameter �:

u(c) :=

8><
>:
c1�� � 1

1� �
for 0 � � < 1 or 1 < �

log(c) for � = 1,

so marginal utility at time t is

m(t) = e�� t c(t)��; (A.12)

where c(t) is consumption at time t. In these models marginal utility is the state-price

de
ator.15 The process for the log of consumption can be found by solving (A.12) for

log[c(t)]:

d log[c(t)] = �1

�
(d log[m(t)] + � dt)

= ~�c(t) dt+ �c(t)
>dW (t);

15
See Du�e (1996), pp. 225{226.
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where, using equation (A.8),

~�c(t) =
1

�

�
r(t) +

1

2
k�(t)k2 � �

�
(A.13)

and

�c(t) =
�(t)

�
: (A.14)

From (13) and (A.14) we see that under the q{EH, �c(t) = (q=�)�(t; t).

Finally, note that equation (A.11) allows us to write the forward premium as

 (t; T ) = �1

2

Z
T

v=t

Et

"
@

@ T
k�z(v; T )k2

#
dv: (A.15)

When the state-price de
ator is interpreted as the marginal utility of consumption,

(A.15) expresses in continuous time Woodward's (1983) characterization of the term
premium. In particular, we see that the forward premium is zero if the relative
standard deviation (the coe�cient of variation|in Woodward's terminology) of the

conditional expectation of the marginal utility of consumption is independent of the
horizon; i.e., if @=@ T k�z(v; T )k � 0.

B Proofs of Propositions

To prove the propositions, we need the process for the short rate under the q{EH. In
the HJM framework, the three model primitives|the initial yield curve, the market

price of risk and the volatility of either forward rates|are guaranteed to deliver an
arbitrage-free model of the term structure. The short rate is given by

r(t) = f(t; t) = f(0; t) +
Z

t

s=0

�f(s; t) ds+
Z

t

s=0

�f (s; t)
>dW (s); (B.1)

where �f(t; T ) is given by equation (5). Clearly, from (B.1), the process for the short

rate obeys

dr(t) =

(
@

@ t
f(0; t) + �f(t; t) +

Z
t

s=0

@

@ t
�f(s; t) ds

+
Z

t

s=0

@

@ t
�f(s; t)

>dW (s)

)
dt+ �f (t; t)

>dW (t): (B.2)

Note that the short rate process in equation (B.2) is not necessarily Markovian for
an arbitrary f�(t); �f (t; T )g pair, although it can be one of the components of a

Markovian state vector in an economy where the q{EH holds. Using (14) and imposing
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the q{EH condition (16), the short rate, given in (B.1), becomes

r(t) = f(0; t) + (q � 1)
Z

t

s=0

�0(s; t)>�(s; s) ds+
Z

t

s=0

�0(s; t)>dW (s); (B.3)

from which it follows that the process for the short rate obeys

dr(t) = x(t) dt+ �0(t; t)>dW (t); (B.4)

where16

x(t) = f 0(0; t) + (q � 1)
Z

t

s=0

�00(s; t)>�(s; s) ds+
Z

t

s=0

�00(s; t)>dW (s): (B.5)

From this de�nition, the process for x(t) clearly obeys

dx(t) = y(t) dt+ �00(t; t)>dW (t); (B.6)

where

y(t) = f 00(0; t) + (q � 1)�00(t; t)>�(t; t) +

(q � 1)
Z

t

s=0

�000(s; t)>�(s; s) ds+
Z

t

s=0

�000(s; t)>dW (s): (B.7)

The di�culty is to guarantee that the short rate is driven by a Markov state
vector. The short rate itself cannot be Markovian, except in the trivial case of no

uncertainty, in view of Proposition 1.

Proof of Proposition 1

If r(t) is Markovian, then (i) its drift x(t) must be a function of r(t), say x(t) =

g(r(t)), for some continuous function g( � ); and its volatility must be of the form
�0(t; t) = h2(r(t); 0), where �(t; t + �) = h(r(t); �), the function h is di�erentiable

and hi denotes the derivative with respect to the second variable. Fix a time s and

consider a disturbance in the path of W (t) by �W (s). For simplicity, we assume g to
be di�erentiable. Then from equations (B.3) and (B.5), we see that change at time s

in the short rate and its drift would have been

�r(s) = h2(r(s); 0)
>�W (s);

and
�x(s) = h22(r(s); 0)

>�W (s):

16
Note that �f (t; t) = 0, a result that follows directly from (15).
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But for �W (s) small enough, we must also have �x(s) = g0(r(s))�r(s). This equa-

tion must be satis�ed for any value of r(s),

h22(r(s); 0) = g0(r(s)) h2(r(s); 0) for all s � t:

Since g0 is a scalar, this equation means that h22(r(s); 0) is proportional to h2(r(s); 0).

Unless h2 = h22 = 0, which is the deterministic case, h22 = �00 cannot be proportional

to h2 = �0 because that would drive � outside the circle. Q. E. D.

Proof of Proposition 2

In a two-factor model, we can set d = 2. From Proposition 1, we know that the

short rate is not Markovian, and therefore its drift, x(t), is not a function of r(t).
But in a two-state variable Markovian model, the vector (r(t); x(t)) is driven by a

two-dimensional Markovian vector, and is Markovian itself. In other words, it is
legitimate to take r(t) and x(t) as the two state variables. This requires that y(t),
the drift of x(t), be a function of the state variables. Assume, then, that for some

continuous function g( � ; � ), y(t) = g(r(t); x(t)).
We assume without loss of generality that �(t; t) has a non-zero entry only in its

�rst component, and we write �(t; t) = (�(t); 0), for some scalar process �(t) to be

determined later. There is no loss of generality because, if �(t; t) = 0, it has the
correct form to start with, whereas if �(t; t) 6= 0, then we can rede�ne the basis of

Brownian motions as follows: Let B(t) = (B1(t); B2(t)) be an orthonormal set of
Brownian motions such that B1(t) = �(t; t)>W (t)=k�(t; t)k; the other component of
B(t) is chosen in the span of W1(t) and W2(t) to be orthonormal to B1(t). This

procedure amounts to choosing a Choleski decomposition of the noise in the economy
such that the noise in the state-price de
ator comes �rst (recall that �(t; t) and �(t)
are co-linear, and ��(t) is the volatility of the state price de
ator17). From now on,

we assume that W (t) was chosen to start with to coincide with the basis B(t).
Before proceeding further, we re-parametrize the function � using polar coordi-

nates to enforce the restrictions that �(t; t) = (�(t); 0) and that �(t; T ) lies on a circle.
Write

�(t; T ) = �(t)

�
cos[�(t; T )]
sin[�(t; T )]

�
;

where �(t; T ), the angle determining the position of �(t; T ) on the circle, satis�es

�(t; t) = 0. Clearly, k�(t; T )k = k�(t; t)k = j�(t)j. By di�erentiation, we get

�0(t; T ) = �(t) �0(t; T )

�� sin[�(t; T )]
cos[�(t; T )]

�
; (B.8)

17
See Appendix A.
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�00(t; t) = �(t)

�
�00(t; T )

�� sin[�(t; T )]

cos[�(t; T )]

�
� �0(t; T )2

�
cos[�(t; T )]

sin[�(t; T )]

��
; (B.9)

and

�000(t; T ) = �(t)

(
�000(t; T )

�� sin[�(t; T )]

cos[�(t; T )]

�
� 3 �00(t; T ) �0(t; T )

�
cos[�(t; T )]

sin[�(t; T )]

�

� �0(t; T )3
�� sin[�(t; T )]

cos[�(t; T )]

�)
: (B.10)

We now show that �(t; T ) is deterministic. Because bond prices have non-random

volatilities by assumption, �0(t; T ) = �f (t; T ) must be deterministic. From the form

of �0 in (B.8), it is clear that if �0 6= 0 (ruling out the trivial case where bond prices are

deterministic), �(t) must be deterministic in order for �0(t; T ) to be deterministic, so

that �(t; T ) is itself deterministic. In other words, the q{EH imposes the restriction

that if bond prices have constant variance, then the price of risk �(t) is constant.
We now turn to the implications of the q{EH for the form of g and �(t; T ). For

simplicity, assume that g is di�erentiable (with this assumption, we �nd that it is

in fact linear), and denote by g1 and g2 its partial derivatives with respect to r(t)
and x(t). We use the variation method used in the previous proof: �x a time t and

disturb the path of fW (s) j s > 0g at some point in the past � < t. Since �(t; T )
is deterministic, it is una�ected by this change; as a result, the short rate r(t), its
drift x(t), and y(t), the drift of x(t), change by the amounts

�r(t) = �0(�; t)�W (�);

�x(t) = �00(�; t)�W (�);

and
�y(t) = �000(�; t)�W (�):

But we must have also (for in�nitesimal changes)

�y(t) = g1(r(t); x(t))�r(t) + g2(r(t); x(t))�x(t): (B.11)

These equations must hold for any value of (r(t); x(t)), and any � . We conclude that

g1 and g2 must be constant, so that, for some scalars a, b and c, we can write

y(t) = g(r(t); x(t)) = a + b r(t) + c x(t): (B.12)

Moreover, given the forms of �r(t), �x(t) and �y(t), equation (B.12) holds if and

only if

�000(t; T ) = b �0(t; T ) + c �00(t; T ): (B.13)
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Substituting (B.8{B.10) into equation (B.13) allows us to conclude that that re-

striction will be violated unless, for some constant !,

�0(t; T ) = ! ; b = �!2; and c = 0:

Since �(t; t) = 0, �0 = !, a constant, implies �(t; T ) = !(T � t). Since �(t) is not

stochastic, it must be constant (otherwise, absolute time would enter as an indepen-

dent argument of g, so that, strictly speaking, (r(t); x(t)) would not be Markovian);

let z denote the constant value of �(t). This establishes the �rst two parts of the

proposition, which have to do with the form of � and, as a result, the processes for

r(t) and its drift, x(t).

The constant a in (B.12) is arbitrary, so that the drift of x(t) is y(t) =

g(r(t); x(t)) = a � !2 r(t); but we let a = �!2, and choose to parameterize g in
terms of � and !, rather than a and !.

To �nish the proof, we need to �nd the form of the initial yield curve. Given the

form of �(t; T ), equations (B.3) and (B.7) imply that

y(t) = f 00(0; t) + !2
�
f(0; t)� r(t)

�
;

from which we conclude that

a = �!2 = f 00(0; t)� (q � 1)!2 �2 + !2 f(0; t): (B.14)

This is a second order ordinary di�erential equation, a solution of which requires two

boundary conditions. These conditions come from the initial conditions for the state
of the system, r(0) and x(0). Clearly, f(0; t) = r(0)|this also follows mechanically
from equation (B.3)|and from equation (B.5), we see that f 0(0; t) = x(0). The

unique solution to (B.14) subject to these initial conditions is (23). Q. E. D.

Proof of Proposition 3

We start by verifying that the second statement, about the processes of r(t) and

x(t). The drift of r(t) is x(t) by de�nition. Given the assumed form of �(t; T ), the

volatilities of r(t) and x(t) are (0; ! �(t)) and (�!2 �(t); 0), as stated. The drift of

x(t), y(t), can be calculated from (B.7). Given (B.3) and the form of �(t; T ), we see

that y(t) = f 00(0; t)�!2
�
r(t)� f(0; t)+ (q� 1) �2(t)

�
. The stated result follows from

the assumed form of the initial yield curve, which implies that f 00(0; t) + !2f(0; t) =

!2(�+ (q � 1) z2).
We now turn to the �rst and third statements. The fact that the model satis�es

the q-expectations hypothesis is built into the form of �(t; T ). The form of the
processes for the short rate and its drift clearly show that (r(t); x(t)) is a Markovian

vector, since �(t) is assumed to be a deterministic function of this vector. If the model
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of the yield curve is Markovian, then given the value of the state vector, it should

not independently matter what value the time index t has. In particular, equation

(B.7) must still hold for any reference date t replacing date 0 (and t+ � replacing t).

This implies that for any t, f 00(t; t+ �) + !2f(t; t+ �) = !2(�+ (q � 1)z2). The only

solution of this di�erential equation (where t is �xed and the variable is �) satisfying

the boundary conditions f(t; t) = r(t) and f 0(t; t) = x(t) is

f(t; t+ �) =
�
�+ (q � 1) z2

��
1� cos[! � ]

�
+ r(t) cos[! � ] +

x(t) sin[! � ]

!
:

Q. E. D.

Proof of Proposition 4

The proof is identical to that of the previous proposition. Q. E. D.
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