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ABSTRACT
A long standing puzzle in the Capital Asset Pricing Mdel (CAPM)

has been the inability of empirical work to validate it. Roll (1977) was
the first to point out this problem and recently, Fama and French
(1992, 1993) bolstered Roll’s original critique with additional
enpirical results. Does this nean the CAPMis dead? This paper presents
a new enpirical approach to estinmating the CaAPM, taking into account the
di fferences between observabl e and expected returns for risky assets and
for the market portfolio of all traded assets, as well as inherent
nonlinearities and the effects of excluded variables. Using this

approach, we provide evidence that the CAPM is alive and well.

1. Introduction

The Capital Asset Pricing Mdel (capM) of Sharpe (1964), Lintner

*The views expressed are those of the authors, not necessarily
those of the Board of Governors or staff of the Federal Reserve System
the Conptroller of the Currency, or the Department of the Treasury. The
aut hors thank Janmes Barth, Peter von zur Muehlen, Thomas Lutton, and
Larry Mdte whose comments considerably inmproved the paper. They are al so
benefited from di scussions with Dennis Glennon, Peter Nigro, WIIliam
Lang, Marsha Courchane, Jeff Brown, Philip Barthol onew, and with
participants in a semnar at the Ofice of the Conptroller of the
Currency.

e *John Leusner unexpectedly died on March 5, 1996. W nourn his
tragic death and will miss our good friend.

1



(1965) , and Black (1972) in its various fornul ations provides
predictions for equilibriumexpected returns on risky assets. Mre
specifically, one of its formulations states that an individual asset’s
(or a group of assets) expected excess return over the risk-free
interest rate equals a coefficient, denoted by B, times the (mean-
variance efficient) market portfolio' s expected excess return over the
risk-free interest rate. This relatively straightforward rel ationship
bet ween various rates of return is difficult to inplement enpirically
because expected returns and the efficient narket portfolio are
unobservable e. Despite this form dable difficulty, a substantial nunber
of tests have nonethel ess been perfornmed, using a variety of ex-post
val ues and proxies for the unobservable ex-ante variables. Recognizing
the seriousness of this situation quite early, Roll (1977) enphasized
correctly that tests follow ng such an approach provi de no evidence
about the validity of the CAPM The obvious reason is that ex-post

val ues and proxies are only approxi mati ons and therefore not the

vari abl es one should actually be using to test the CAPM. The primary
purpose of this paper is to provide a new approach to testing the CAPM
that overcones this deficiency.

Recently, Fama and French (1992, 1993) conducted extensive tests
of the CAPM and found that the rel ation between average stock return and
Bis flat, and that average firmsize and the ratio of book-to-narket
equity do a good job capturing the cross-sectional variation in average
stock returns. These findings suggest, anmong other things, that a formal
accounting of the effects of “excluded variables” mayresurrectthe
CAPM This will be the central issue in this paper.

According to Fama and French (1993), sone questions that need to
be addressed are: (i) How are the size and book-to-market factors in
returns driven by the stochastic behavior of earnings? (ii) How does
profitability, or any other fundanmental, produce comon variation in

returns associated with size and book-to-market equity that is not



picked up by the market return? (iii) Can specific fundanentals be
identified as state variables that lead to comon variation in returns
that is independent of the market and carries a different prem umthan
general market risk? This paper attenpts to answer these questions.

In an interesting article, Black (1995) gives three theoretica
expl anations of the neasured flat line relating expected return and f :
(i) msnmeasuring the market portfolio, (ii) restricted borrow ng, and
(iii) reluctance to borrow. Even if such reasoning is correct, an
additional finding in this paper is that the relation between the
observed counterparts of expected return and B is nonlinear. Finally,
we shall provide sonme answers to questions posed by Black (1995)
concerning the future prospects of the capM: (i) will the line be flat
in the future? (ii) will it be steep as the CAPM says it should be? and
(iii) will it be flatter, but not conpletely flat?

First, the capPM is nodified to take into account the differences
bet ween expected and observabl e returns and between the market portfolio
and its proxy. In this nodified nodel, B is not required to be a
constant, but instead pernmitted to vary. Second, the effects of excluded
vari abl es and departures froma linear functional formare taken into
account. Third, all the nodifications are then expressed in terms of
observabl e variables. Finally, the coefficients on the observable
regressors are nodel ed as stochastic functions of the variables that
Fama and French (1992) include in their test of the CAPM and find to
have reliabl e power in explaining a cross-section of average stock
returns . once this has been done, the resulting nodel is estimted using
data for 10 stock portfolios fornmed on the basis of both firmsize and
the ratio of book-to-market equity. (This procedure of form ng
portfolios is originally due to Fama and French (1993). )

The specific nmodel to be estimated is devel oped in Section 2. The
i ssue regarding what constitutes a reasonable inference based upon this

nodel is addressed in Section 3. A brief description of the data used to



estimate the nodel is presented in Section 4. Section 5 discusses the
enpirical results and their applications. Section 6 contains the
concl usi ons .

2. Interpreting and Extending the CAPM

2.1 A brief description of the nopde

The CAPM nmay be expressed as

Er;, - Tee = Bit

(Bry, ~r.), (1)
where Er,, is the (subjective) expected return on an asset (or a group
of assets) an investor chooses to hold, Er, is the (subjective)
expected return on the nean-variance efficient market portfolio, r, ..
the risk-free rate, i indexes assets or groups of assets, t indexes
time, and B, is equal to the ratio of the covariance between r; and
ly. denoted by cov(r,, r,), and the variance of r,, denoted by S
(Alternative definitions of B, are provided in Ingersoll (1987, pp. 92,
124, and 134) and Constantinides (1989) .) The time variability of this
variance and covariance inplies that B, is time varying. It is inportant

to note that as in the case of Er, and Er,, both cov(r,, r,), and O

Mt !
are the noments of a subjective distribution.
2.2 Sonme problens with the CapPM

Adifficulty with enpirically testing whether B;, is statistically
significantly different fromzero in equation (1) is that it represents
a statement about expected returns, which are not observable. To
transformthe relationship into observable variables for testing

purposes, Wwe introduce the follow ng two equations rel ating observable

returns to expected returns:

Lip = EXj ¥ Vi (2)
Tye = ELye + Vi (3)

where r;,, and r, are the observable returns, and v, and v, are random
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variables . These latter variables will be distributed with zero neans
only if the data-generating processes and subjective processes of
returns possess the sane means. Substituting equations (2) and (3) into

equation (1) vyields

_ * _ .
Lie = e = Bit(rm re) Vier (4)
v
* Mt
where B;. =B, [1 - —_'T} .
Twe ~ T

Al 't hough equation (4) is not expressed in the formof an errors-
in-variables nodel, it reduces to such a nodel if the means of v, and
vV, are zero and B, is a constant. Models possessing these properties
have been extensively studied in the statistics and econonetrics
literature (see Lehmann (1983, pp. 450-451)) . As it turns out,
estimtion of equation (4) when it is not restricted to be an errors-in-
vari abl es nodel is relatively straightforward, as will be shown in the
next section. Furthernore, the now classic “Roll’'s (1977) critique” of
tests of the CAPM noted earlier does not apply to the estimtion of
equation (4) because v, accounts for any differences between the “true”

(unobservabl e) nmarket portfolio and the particular portfolio that is

chosen as a proxy. Further, v

we 1S permtted to have a nonzero and time-

varyi ng nean to cover situations where these differences are systematic
and tinme varying. The presence of v, in equation (4) mkes the effects
of m sneasurenents noted by Black (1995) explicit, although equation (3)
indicates that r, is a good proxy for Er, only if the mean of v, is
zero.

Even if the nisnmeasurement issue is resolved, equation (4) may
nonet hel ess still be criticized insofar as inportant regressors are
excluded. For exanple, no asset is perfectly liquid because all trades
required to convert assets into cash involve sonme transactions costs. As

a result, investors may choose to hold nore liquid assets with |ower

transactions costs than otherwise. If so, an illiquidity premi um shoul d



be taken into account. This can be done by allowing for trading costs
to enter the right-hand side of equation (4) (see Amihud and Mendelson
(1986)) . Other potentially inportant variables, excluded from equation
(4), are discussed bel ow

Anot her issue in the capM is whether all investors face only one
risk arising from uncertainty about the future values of assets. In all
l'i kel'i hood, investors face many sources of risk, as shown by Merton's
(1973) intertenporal asset pricing nodel. In such instances, investors
woul d suppl enment the narket portfolio with additional positions in hedge
portfolios to hedge these risks. This results in separate betas and risk
prem uns for every significant source of risk that investors try to
hedge. Equation (4), therefore, should be extended to account for the
ef fects of extramarket hedgi ng transactions on equilibriumrates of
return. Such an expanded version of equation (4) would recognize the
mul ti di mensional nature of risk and thereby show that sone inportant
regressors are necessarily excluded fromequation (4)
2.3 A generalization of the capm

I ncluding previously excluded regressors in equation (4) is not
trivial because the functional form of the relationship between them and
t he dependent variable is unknown. This difficulty is resolved in
principle by nodifying equation (4) as follows:

m
- *
Lo = Lre = BielLy - Ted ¥ vy JZ; éijt:xijt’ (5)

where the X;;. represent excluded variables, the ¢ denote their

t ijt

coefficients, and m denotes the nunber of excluded variables. Since m
cannot be known with certainty, one may assunme without restricting it to
be equal to a specific nunmber that the regressors of equation (5) forma
sufficient set in the sense that they exactly deternine the val ues of

ry. — I, in all periods.

As a general rule, by allowing all the coefficients in a linear

equation to be different for each and every observation, the equation is



permtted to pass through every data point and hence it coincides, for
certain variations in the coefficients, with the actual process
generating the data on its dependent variable. Because of this rule,
equation (5) provides the only reliable way to capture unknown
functional forns without relying upon strong prior infornmation. One may
assunme that the coefficients of equation (5) are constants only when
this equation is known with certainty to be linear. In contrast, with
varying coefficients, equation (5) is truly nonlinear.

Qbvi ously, equation (5) cannot be enpirically estimated if the

are not available. Wat is not so obvious is that when

data on the x,;,

t he X;;, are not observabl e, one cannot prove they are uncorrelated with

(L= Tgp) (see Pratt and schlaifer (1984)). aAn approach for resolving
this problemis to avoid meki ng such uncorrel atedness assunptions and

assune instead that

Ko = Wogge ¥ Wigse (B ~ Tpd e T =102, 0000my (6)

where y,,,. is the portion of x,. remaining after the effect of the

t

variable (r, - r

Mt has been removed. Accordingly, even if the wvariable

£e)

is correlated with the x, it can nonethel ess be

( r - r ljt,

Mt ft)
uncorrelated with the renuminders, ¥;,;,- Also, for certain variations in
Voi5: and U5 €quation (6) exactly coincides with the true relationship
bet ween the x,;

and (r, - r if such a relationship exists. Once

t ft) !

agai n, however, one cannot assume the vy, and v,;, are constants unless
equation (6) is known with certainty to be linear. Equation (6) should
be recogni zed as an auxiliary equation, a |linear form of which has been
utilized to analyze the effects of excluded variables in the
econonetrics literature (see Greene (1993, pp. 245-247)) . Since this
equation does not inpose any constraints on the coefficients of equation
(5), it does not prevent the latter equation fromcoinciding with the
true relationship between the variables. Substituting equation (6) into

equation (5) vyields



Fig ™ Tee ~ Yose Yiie (Fue ~ Tge) v (7)

m m
where YOit = (Vit + E] Cijtwo_ijt) and Ylit = (Bit ' le <.1'._7'tw‘1.1'.j(:) “
i p
The coefficient, v,;.,, has a relatively straightforward economc
interpretation. It consists of three parts, the “true” beta, B;.. of the
BitVMt

CAPM a misneasurenent effect, ——— , and an omtted-vari ables

Iue = Tt

bi as, :iijtwlijt- More so than the “true” beta, the onitted-variables
bi as crj1_anges over tinme because the set of excluded variabl es undoubtedly
changes quite frequently, lending further real-world, econonic
plausibility to time variability of Yiit- similarly, the connection of
Yoie Wth the intercepts of equations (5) and (6) clarifies its real-
world origin.
The preceding discussion proposes the introduction of varying
coefficients and auxiliary equations into the estimation procedure as an
i mportant approach to dealing with unknown functional forns and the
effects of onmtted variables. Equation (7) provides a useful fornulation
[ t hat does not suffer from various specification errors when testing the
CAPM, and it avoids such serious errors by not relying on any
{ definitions of vy,,, and y;;,, other than those provided by equation (7)

3. Econometric Underpinnings of the Extended CAPM

Estimati on of equation (7) requires specific stochastic
assunptions about vy, and v,;,. The perm ssible set of assunptions is,
however, restricted. For exanple, one cannot assume that v,;, 1S a
constant because doing so would contradict the assunption that v, is a
random variable, even ignoring any variations in B, and any omitted-
variable bias. In addition, the fact that v,;, depends on (r, r,) via

Bic: and Yoir and Yiic are functions of the conmon set of tine-varying

coefficients (,

is¢ Prohibits one from assuming that the variables Yoit-

Yiie+ and (r,, — r,) are uncorrelated with one another. (Remenber that

the nonlinearities involved in equation (5) cannot be captured w thout

the time-varying ¢ ) In other words, one cannot assune that

ijt”

l
L
:
;
;




| (r where o and B are constants,

E[ (r r we - Fed 1 =a+B(r, - r

it PR

wi t hout contradicting the definitions of Yoit and Yiit - Thi s argument
lies at the heart of Roll’s (1977) criticismof earlier tests of the
capM I n principle, generalizing the set of assunptions about Yoit and
Y,;. can help in this respect. The reason is that general assunptions
are nore likely to enconpass true assunptions as special cases than nore
restrictive assunptions. W shall proceed therefore by weakening the
assunptions about v,;, and Y-

Suppose that r, refers to the rate of return on the i-th group or

n
portfolio of assets. Then r,, = JX; W.ieFije + where r;. isthe rate of

return on the j-th asset included in the i-th portfolio, one of the Tt

is equal to r,, and w,, is the proportion of the investor’'s total

budgets allocated to the j-th asset. It follows that the variance of r,,
is
2 — be Jel n 2
O; __7=1'k= o WiseWie COVITyger Tipe) + ;21 Wisevar(r; ), (8)
Jj*k

where var(r,

i5¢) denotes the variance of r,; and cov(r,,., r;.) denotes

ijt

the covariance between r,, and r,,.

jt
The variance of r;, can also be obtained directly from equation

(7. It is

CHE var(y,; (L, - Ipd) + var(yy;,) + 200V(Vgir Yy (L Fpd) - (9)

Equation (9) eases the conputational burden conpared to equation
(8) because the latter equation involves a l|arge number of variances and
covariances that may be tine varying and cannot be estinated unl ess one
knows how they vary over tinme even if the data on all n securities are
avail abl e. However, it does not have the advantage of parsimony (in
terms of a preference for a nmodel with fewer parameters and in all other

respects al nost as good as other conpeting nodels) if these two



equations yield different values for the sane variance ci.Che shoul d
therefore, consider the conditions under which the sane val ues woul d be
obt ai ned. Suppose that the third termon the right-hand side of equation
(9) is zero. Suppose also that the covariances and variances given in
equation (8) are attributable to (r, - r,) and other specific
variables, respectively. In this case, the first and second terms on the
ri ght-hand side of equation (9) can be equal to those on the right-hand
side of equation (8) , respectively. If, in addition, the first and
second terns on the right-hand side of equation (8) tend to nonzero and
zero, respectively, as n -~ =, then the first and second ternms on the
right-hand side of equation (9) can be defined to be the systematic (or
nondiversifiable) and nonsystematic (or diversifiable) risk conponents
of the portfolio variance, respectively (see Swany, Lutton and Tavlas
(1995)). These definitions are nore conprehensive than the corresponding
definitions found in the finance literature because, ashas been shown
above, equation (7) captures all sources of risk whereas equation (1)
captures only one such source

Using a specific nodel for testing the CAPM follow ng Fama and
French (1993), the third termon the right-hand side of equation (9)
will be zero under the follow ng general Assunptions | and II:

Assunption |. The coefficients of equation (7) satisfy the
stochastic equation

y, =lz, +e, (10)

where y denotes the two element colum vector (Yoier Yise)'7 T denotes
the 2x7 matrix [(m 1, k=0 1, 3=0 1, . . . . 6; =z, denotes the seven
el enent colum vector (1, 2z, (1r 25, ro1r 25 eo1r Zyg, t-17 235, e-17 Zig, t-1) ,‘

i1, -1 - the log of average size over all firnms in the i-th portfolio (a
firms size is equal to its market equity, ME = a stock’s price tines
shares outstanding, for June of year t-1),

Z;, ¢, - the average of book-to-market ratio over all firms in the i-th
portfolio ( a firms book-to-market ratio is equal to its book equity
BE . book value of its commpn equity as measured by Fana and French

(1993, p. 11), for the fiscal year ending in cal endar year t-1i, divided

z

10



by its market equity, Mg in Decenber of t-1) ,

43,01 - the dividend price ratio (dividend/price) for the S&P 500,
qq,t-1 - the default premium (Mody’'s Baa bond rate mnus Mody's Aaa
bond rate),

z
z

Z;5,..1 - the yield on the 10-year Treasury bill mnus the |-year
Treasury bill rate,
Zi6¢q - @ dumy variable that is 1 in January and O in other nonths,

and e, denotes the two elenent colum vector (e, e,,.)’ that
satisfies the stochastic difference equation

By = P§t.q * oS (11)

where @ denotes the 2x2 diagonal matrix diag(¢y,, ¢;;) with
-1 < ¢y ¢, <1 and a,, =(a,;,, alit)’ is distributed with mean zero and
variance-covariance matrix o, = 03(8,,,], k = Q 1,j =0,1.

Note that Assunption | pernmits the v, and v, of equations (2)
and (3) to have nonzero and tine-varying neans. Fama and French (1993)
found that the current values of =z, have reliable power to explain the
cross-section of average returns, even though their chosen variables do
not appear directly in the CAPM In a previous article, Fama and French
(1992) also found that stock risks are rmnultidinmensional and firm size
and BE/ ME proxy for two different dinmensions of risk. As discussed
earlier, equation (5) captures the nultidinmensional nature of risk. For
this and other reasons already discussed, equation (10) , relating the
functions of the coefficients of equations (4)-(6) to one-period |agged
values of firmsize and BE/ME, is an appropriate specification so |ong
as these | agged values are highly correlated with their corresponding
current val ues.

Assunption Il. The (r, - r,) are independent of the £, given the

val ues of =z, .
This assunption is weaker than the assunption (nade by others in testing
the CAPM) that the (r, - r,) are independent of the v,;,, (see Daw d
(1979, p. 5)).

The variables, denoted by =z, , are called 'conconmtants’ in pratt

and Schl aifer (1988) and are the right set of regressors for equation
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(10), provided they conpletely explain all the variation in vy, .

Al gebraically, this condition is expressed as

l¢;1 = Oor 1, 8y, = 8y, = 8, =0, m; # 0 for k=0, 1and j+0. (12

The inplication of these conditions on Q and A, is that the
distribution of e,,, is degenerate. |If it is degenerate and if the
expectation of ey, , given the values of z, and (r,, - r,), is zero, as
implied by Assunption Il, then the third term on the right-hand side of
equation (9) is zero and the usual consistency proofs apply to Swany,
Mehta and Singansetti’s (1995) paraneter estimators of nodel (7)

Under Assunptions | and 11,

6

H1°+j; My5255, e Eleye) Zip) (13)

V
ety £ e ind -

If the sumof the second and third terns on the | eft-hand side of this
equation is equal to the sumof the second and third ternms on its right-
hand side and E(B, 1=2,)is a constant, then E(B, {z,) = n,. Thus,

Assunptions | and Il can facilitate the estimation of the conditional

mean of B,  in the original CAPM given z, . Even when E(B;. | 2;,) = my,

the conditional mean m, + ;;nlj 4, t1 IS preferable to m, as a
nmeasure of the risks of the i-th asset (or group of assets) if
E{ 1i_|3 Ve . 1 & . .

TE T ) o) lz;,.) is equal to ?;E(eml z,), since equation (5) ,
unlike equation (1), covers all sources of risk. For large T, the nean
1 T

Evht will be equal to m, + _Tt: E MZisen E Y1 converges in
probability to & Zylltlzt and if both E(LY -g,, |z, and
1 & T th—rft:)

—TtZ;E(em |z,,) tend to zero as T - «.

Estimati on of equation (7) under Assunptions | and Il is perforned
with and without the restrictions that?®

‘“Equation (7) is estimated under Assunptions | and Il, using a

comput er program devel oped by |-Lok Chang and Stephen Taubman. This

12



nkj=0fork=0,1andj¢0. (14)

These restrictions, when inposed, elininate the tinme-varying z's from
equation (10)
Note that Assunption | does not pernit the restrictions on ¢ and
A, given in (12) to be exactly satisfied. They can only be nearly
satisfied if the estimates of @ and A, are equal to the boundary val ues
l®,,17.99, &, = 8,5, =5,;,,=-0001. If these restrictions are nearly
satisfied when the restrictions on m given in (14) are not inposed than
when they are inposed, then one can conclude that the regressors
i ncluded in equation (10) are appropriate in the sense that they
adequately explain the variation in the coefficients of equation (7)
Equations (7) and (10) jointly describe the tine-series nodel
being estimated to explain the excess returns r, — r, in Section 5

bel ow. Thus, substituting equation (10) into equation (7)

1
Moo o1 ™ Mg || Ziz, e-1 | o1t (15)
it Tee = 11 (L= Tp ) o m. eom : [1{r,-rg)] .
10 M1 16 : [ €1ic
Zi6,t-1

This equation is not linear and contains an error termthat is both
heteroscedastic and serially correlated. The explanatory variables in
this equation are the excess market return r, - r,, the six

concom tants, z, (introduced in Assunption | that includes firm size and
the ratio of book-to-market equity), and the interactions between the
excess market return and each of the concomitants Used al one without

these interactions, the concomitants nmay not have adequate power to

program uses an al gorithm devel oped by Chang, Hallahan and Swany (1992)

and based on a nethodol ogy introduced by Swany and Tinsley (1980) . For

further discussion of this methodol ogy, see swamy, Mehta and Singansetti
(1995)

13



expl ain stock returns because of the nultidinmensional nature of stock
risks . Previous tests of the CAPM neglect to consider these
interactions. They also utilize two-pass regressions (see Bodi e, Kane
and Marcus (1993, Chapter 11) for a survey of these tests) . In
principle, applying one-pass regression to (15) is superior to two-pass
regressi ons, even when the second-pass regression overcones the
measurenent error problem created by the B estinates. Under Assunptions
| and I, the conditional nean of the dependent variable of equation

(7), given the values of =z, and (r, - r is equal to the first term

ie)
on the right-hand side of equation (15). For enpirical estimation of
equation (15), any one of three data sets (tinme-series data, cross-
section data, and tinme-series-cross-section data) nmay be used, although
Assunptions | and Il are well suited only to tine-series data (see Swany
and Tavlas (1995)) .°

Now suppose that Assunptions | and Il and the restrictions given
by (12) hold. It follows that: (i) equation (15) explains how firm size
and the ratio of book-to-market equity influence the excess returns
I, — Ig, Which, in turn, influence the stochastic behavior of earnings,

(ii) the sum my;z;; .1 Mo2%;2 -1 measures variation in excess returns

r., —r associated with firmsize and BE/ ME that is not captured by

it ft!
the market return, and (iii) the g, can be identified as state
variables that lead to comon variation in the excess returns, r, -r.,
that is independent of the nmarket and thus carries a different prem um
than general market risk. Note that (i)- (iii) are directly responsive to

issues (i)- (iii) raised by Fama and French (1993) and restated in the

3If time-series-cross-section data are used to estimate equation
(1) , then equation (10) may be changed to y,, = Dz, +p + e, wher e
B; = (Bg; ulﬂ' is a constant through tinme; it is an attribute of the i-
th asset (or group of assets) which is unaccounted for by the included

variables but varies across i. When equation (7) is estinated separately
for different i, the vector p, gets absorbed into (m,, nw)ﬂ So m,, and
m, in equation (15) are inplicitly allowed to vary across i.

14



I ntroducti on.

It is useful here to consider variations of the nodel proposed
above. Clearly, the conjunction of the nodel given by equation (7) and
Assunptions | and Il is false if it cannot performbetter in explanation
and prediction than the follow ng inconsistent or restrictive

alternatives introduced earlier,

m, =0 for k=0, Land j # 0, ¢, =0, 8y, =8,,, =8, =0, &, =1, (16)

or,

nkj=0fork=0,land j#*0,®=0,08;,,=5%, =3 =0, 8y, = 1. (17)

Restriction (16) inplies that equation (7) is a fixed-coefficients nodel
with first-order autoregressive (AR(1) ) errors, while Restriction (17)
inmplies that equation (7) is a fixed-coefficients nodel with white-noise
errors .

It is useful to digress for a nonent to the subject of nodel
validation based on forecast comparisons. A rationale for this type of
conparison is provided by the cross-validation approach--which consists
of splitting the data sanple into two subsamples. The choice of a nodel,
i ncluding any necessary estimation, is then based on one subsample and
its performance is assessed by neasuring its prediction against the
ot her subsample. The premise of this approach is that the validity of
statistical estinmates should be judged by data different fromthose used
to derive the estimates (see Mosteller and Tukey (1977, pp. 36-40))

Fri edman and Schwartz (1991, p. 47) also indicate that a persuasive test
of a npdel nust be based on data not used in its estimation.

Furthernore, formal hypothesis tests of a nbdel on the data that are
used to choose its numerical coefficients are alnost certain to
overestimate performance: the use of statistical tests |leads to false
nodels with probability 1 if both the null and alternative hypotheses

considered for these tests are false, as shown by Swany and Tavlas
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(1995, p. 171 and footnote 7) . That this is a problemin the present
case follows fromthe | ack of any guarantee that either a null or an
alternative hypothesis will be true if the inconsistent restrictions
(14) or (16) or (17) are necessary parts of the maintained hypothesis.
Conversely, a hypothesis is true if it is broad enough to cover the true
nodel as a special case. This is the notivation for extending the CAPM:
to make it broad enough so that there is a better chance of enconpassing
the true nodel as a special case. Accordingly, in Section 5 below, model
(7) and Assunptions | and Il with or without restrictions (14) or (16)
or (17) are evaluated based upon forecast conparisons.

Model (7), Assunptions | and Il, and the three sets of
restrictions can be conbined as conjunctions, listed here in decreasing
order of generality regarding the restrictiveness of assunptions

Conjunction I: nodel (7) , Assunptions | and Il

conjunction II: nmodel (7) , Assunptions | and II, and set (14) .

Conjunction IIXI: nodel (7) , Assunptions | and II, and set (16) .

Conjunction IV: nodel (7) , Assunptions | and II, and set (17) .

The reason for considering Conjunctions Il-1V--even though they are
inconsistent--is to exanm ne how they performin explanation and
prediction relative to Conjunction I. Doing this is especially useful
for understanding earlier enpirical work leading to the CAPM puzzle.

The accuracy of the nodel, or its validity, is determ ned as
follows. Let R, =r, - r,. After estimating the nodels defined by
Conjunctions |-1V, forecasts of the out-of-sanple values of R, are
generated from each of the estimted nodels. Let these forecasts be

denot ed by ﬁit. Then two formul as are used to neasure the accuracy of

~

it!

(i) root nean-square error = RMSE = J
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and

E
(ii) mean absolute error = MAE = % Y IR ps - Rygls (19)

$=1

where F is the nunber of periods being forecasted and T is the terninal
date of the estimation period.

4. Dat a

The r,, are the nonthly val ue-weighted stock returns on each of 10
portfolios that are forned following Fama and French’s (1993, p. 11)
procedure: “Each year t from 1963 to . . . [1993] NYSE quintile
breakpoints for size (M, . . .), measured at the end of June, are used to
allocate NYSE, Anmex, and NASDAQ stocks to five size quintiles.

Simlarly, NYSE quintile breakpoints for BE/ME are used to allocate

NYSE, Amex, and NASDAQ stocks to five book-to-market equity quintiles.”
The 10 portfolios are fornmed as the intersections of the five-firmsize
and the |owest- and highest-BE/ ME quintiles, denoted nsi bje, i . 1, 2,

5 and j =1, 5. For exanple, the nsl ble portfolio contains the
stocks in the snall est-ME quintile that are also in the | owest-BE ME
quintile, and the ns5_b5e portfolio contains the biggest-Me stocks that
also have the highest values of BE/ M.

The proxies for r, and r, are the same as those enployed by Fanma
and French (1993) . That is, r, . the one-nmonth Treasury bill rate,
observed at the beginning of the nmonth, and r, = the val ue-weighted
nonthly percent return on the stocks in their 25 size-BE/ ME portfolios,
plus the negative-BE stocks excluded from the portfolios.

The sources of the data enployed here on the z,, , and z,  are
explained in Fama and French (1992) . The variables z, ., z;, ., and

z were obtained fromthe FAME data base maintained by the Board of

i5 t-1
Governors of the Federal Reserve System The index t denotes the nonths
that occurred in the period from July 1963 through Decenber 1993. The

subscript i of variables in equations (7) , (lo), and (11) should not be
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confused with the i of nsi bje. It denotes the 10 portfolios nsi_bje, i
=1, 2,. . . . 5and j = 1, 5.
5. Empirical Results and Applications

Tables la-c show the estimates for Conjunction |. The maxima,
mninma, and ranges of the estimates (Yoie) of Yoie in Table 1a show
consi derabl e variation over tine for all 10 portfolios. By contrast, for
the same portfolios, the volatilities of the estimates (Viic) of Yiie are
quite low. When estimated wi thout the nonnegativity constraint, the
estimtes of v,,, were negative only for 5 of 341 nonths and for 1
(ns1_bse) of 10 portfolios.

Bl ack (1995) provides three theoretical reasons why the line
relating expected return and B is flatter than suggested by the CAPM,
as stated in the Introduction. The question arises then, do the val ues
in Tables la-c support such a flat line? The answer is “no,” as is shown
bel ow. Under the conditions stated bel ow equation (13), the arithnetic
means of ¢, in Table la give neasures of portfolio risks. These
arithnetic neans are positive for all 10 portfolios and are
significantly different fromzero for 7 of these portfolios. The
arithmetic means of V,;,, are not significantly different fromzero for
these 7 portfolios and are significantly different from zero for the 3
hi ghest-BE/ ME portfolios (ns2 b5e, ns3 b5e, and ns4_b5e) for which the
arithmetic nmeans of v,,. are insignificant. The significant neans of ¥,,,
and the insignificant means of ¥,;, for the 3 portfolios cannot be
interpreted as evidence of a flat expected return-f |ine because they
ari se as a direct consequence of the significant estinmates of sone of

the coefficients on z’s and on the interactions between (r, - r and

we = Lre)
each of the z's that are discussed, in detail, below
Table I'b shows that the estimtes of the intercept (m,) of
equation (15) are insignificant for all 10 portfolios. Wiat does this
findi ng say about Conjunction |? The answer follows from Merton’s (1973)

work, revealing that a well-specified asset-pricing nodel produces
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intercepts that are indistinguishable from O Fama and French (1993, p.
5) also state that “judging asset-pricing nodels on the basis of the
intercepts in excess-return regressions inposes a stringent standard.”
The insignificance of the fiy; in Table Ib shows that at least in the
cases considered here, Conjunction | shares a property with a well-
speci fied asset-pricing nodel and neets Fama and French’s stringent

st andar d.

Table 1b also shows that the estimates of the coefficient (m,) on
log(size) are significant for 2 portfolios (ns2_ble and ns2 b5e) , the
estimtes of the coefficient (my;) on the dividend-price ratio of the S
& P500 are significant for 4 portfolios (ns2 b5e, ns3 bb5e, ns5 ble, and
ns5_bS5e) , and the estimates of the coefficient (m,) on the January
dunmy variable are significant for 7 portfolios (nsl ble, nsl b5Se,
ns2_b5e, ns3 b5e, ns4 bSe, ns5 ble, and ns5 b5e) . This result shows,
among ot her things, that except for 3 portfolios (ns2 ble, ns3 ble, and
ns4_ble) , the strong January seasonals in the returns on 7 stock
portfolios are not absorbed by strong seasonals in the explanatory
variabl es of equation (15) other than the January dummy variable

(z The estimates of the coefficients on z, ., 2 1 and Zi5 e

i6,t—l) .
are insignificant for all 10 portfolios.

Furthernmore, the estimates of the coefficient (mg) on (r, r,)
are significant for 7 portfolios (ns1 ble, nsl bSe, ns2 ble, ns3 ble,
ns4_ble, ns5_ble, and nss bse) (See Table Ib) . For the remaining 3
portfolios (ns2 bSe, ns3_b5e, and ns4_bSe), the estimated coefficients
on the interaction between (r, - r,) and the default premium( z,,,)
are significant (see Table Ib) . Under the conditions stated bel ow
equation (13) , the estimates of m, can be viewed as the estinmates of
E(B,. lz;)and the difference between the arithnetic mean of ¥,;. in
Table la and fi,, in Table 1b gives an estimate of the arithmetic nmean of

t he sum of nisneasurenent effects and onitted-vari abl es bi ases. These

di fferences do not appear to be negligible for nost of the 10
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portfolios.
The interactions, the estimates of whose coefficients are

significant, are (r

we — Fg) *log(size) for 3 portfolios (nsl_ble,

ns3_ble, and ns5_b5e), (r, — r.) *(BE/ME) for the portfolio ns5_b5e,

(ry, - r,,) *(default premum) for 4 portfolios (ns2_bse, ns3_bse,

ns4 D5e, and nss_bse) , and (r,, - r for the portfolio ns5_ble.

) 25,61
The estimates of the interaction coefficients m, and m,, are
insignificant for all 10 portfolios

All the estimates in Tables |la and 1b unanbi guously support only
one conclusion: the relation between the observable counterparts of
expected return and Bis not a flat line but is nonlinear. This finding
provi des possible answers to Black’s (1995) questions stated in the
Introduction. The cross-section of average returns on U S. comopn stocks

probably shows little relation to the m, + p;; defined in footnote 3

and shows significant relation to the =z,

it/

as inplied by Fama and
French’s (1992) results, if the interactions between (r, - r,) and each
of the =z, , and the heteroscedasticity and serial correlation of the
error termin equation (15) are neglected

Tabl e 1c indicates the extent to which Conjunction | satisfies set
(12) of restrictions. In 7 of 10 cases shown in this table, the whole
set is nearly satisfied. In addition, in all 10 cases, the estinated

vari ance of a and the estimated covariance between a,;,, and a,;,, are

1lit
very small in magnitude relative to the estimted variance of a,;, . It
shoul d be noted that exclusion of a conconitant variable from equation
(10) because its estimated coefficient is insignificant is inproper if
the variable is needed to explain the variation in vy, . It is better to
include a concomtant that substantially explains the variation in vy,
than to exclude it even if its inclusion neans reducing the t ratios of
the estimates of the coefficients of equation (10)

Tabl es 2ab and 2cdisplay the results for Conjunction Il. These

results provide infornation on the effects of set (14) of restrictions
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on the estimates in Tables la-c. The values in every colunm of Table 2ab
can be conpared with those in the corresponding colum of Table |a.
plots (not included here) show that while the tine profiles of Yoit in
Tables 2ab and la are the sane in all 10 cases, those of ¥;;,, in these
tables are the sane only in 4 of 10 cases. The t ratios of fi,, and fi,
in Table 2ab are generally higher than those of the arithnmetic neans of
Voit and Yiie in Table la in magnitude. It is possible that the extra
preci sion obtained by inmposing set (14) of restrictions is spurious
because several of the estimates of min Table |b are significant. In 4
of 10 cases, the estimates of m,, in Table 2ab are significant. This
shows that Conjunction Il does not always satisfy the property of a

wel | -specified asset-pricing nodel noted by Merton (1973) . In 3 of 10
cases shown in Table 2ab, the estimates of mny,, and m, are significant
and insignificant, respectively, supporting the conclusion that a

rel ati on between expected return and B is flat. However, such a
conclusion is not credible because it is based on Conjunction Il, which
i s inconsistent.

Tabl es 1c and 2c mi ght be conpared to determ ne whether the
regressors of equation (10) are appropriate It can be seen from these
tables that for 8 of the 10 portfolios, set (12) of restrictions is
better satisfied when set (14) of restrictions is not inposed than when
it is inmposed. This result supports the conclusion that the concomtants
in equation (10) are the appropriate explanatory variables for vy, but
sonme additional concomitants are needed to explain conmpletely all the
variation in v,;,, for all portfolios. Further work is needed to find
such additional conconitants.

Tabl es 3 and 4 show paraneter estimates for Conjunctions |1l and
IV, respectively. The t ratios of fi,, and fi;, in these tables are
general ly higher than those of fi,, and i1,;, in Table 2ab in absolute
val ue. The spuriousness of the extra precision obtained by inposing

i nconsi stent sets (16) and (17) of restrictions is nore pronounced than
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when one inposes inconsistent set (14) of restrictions. Since the

expl anatory vari abl es of equation (15) are not orthogonal to one
another, and its error covariance matrix is not equal to a scalar tines
an identity matrix under all Conjunctions |-1V, the estinmates I, in
Tabl es 2ab, 3, and 4 are not conparable to the estimates i, in Table

I b. The estimates of ¢,, in Tables 1c, 2c, and 3 offer little support
for the presence of serial correlation anong the e;,,. The estimates

(GﬁgwE) of the variance of a,,, in Table 1c are generally snmaller than

t

the estimates &% in Table 2c and the estimates 6§in Tables 3 and 4

a~00a

indicating that in nost cases the variance of a,, is reduced as the zZ's

0it
are added to equation (10) . This reduction in variance hel ps to weaken
the correlations between v,;, and (r,, - r.).

The values of log likelihood in Tables la, 2ab, 3, and 4 m ght be
conpared to determ ne whether one of the Conjunctions |-1V has greater
support of the time-series data used for estimation than other
Conjunctions . Wth one exception, these values in Table | a are higher
than those in Tables 2ab, 3, and 4. The exception corresponds to the
portfolio ns2 ble in Table 2ab. Even in this case, the value of the |og
likelihood in Table 1a is only slightly smaller than that in Table 2ab.
This shows that the support of the data to Conjunction | is either
greater or only slightly less than the support to Conjunctions II-1V.

Since the t ratios in Tables 1a and 1b are based on a consi stent
set of general assunptions that are not utilized by earlier tests of the
CAPM in the literature, they do not fall into Black’s (1995 p. 2)
category of “the sinplest kind of data mining.” Still, it is appropriate
to seek RVBE and MAE neasures for each portfolio of a conjunction’s
success in predicting the out-of-sanple values of the dependent variable
of equation (7) . Tables 1c, 2c, 3, and 4 report for each portfolio the
val ues of such measures in the RVBE and MAE col uims. The RMBES fOr
Conjunction | are smaller for 7 portfolios and slightly higher for 3

portfolios than those for Conjunctions I1-1V. For a conjunction which
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has at |east 10 nore unknown paraneters and hence uses up at |east 10
nor e degrees of freedomthan any of Conjunctions Il-1V, this is not a
bad performance. Perhaps Conjunction | would have produced |ower RMSES
than Conjunctions Il1-1V for all 10 portfolios if all the parameters of

equations (11) and (15) were known. Based on the RMSES, Conjunctions II-

IV cannot be preferred to Conjunction |. Even though the MAEs for
Conjunction | are smaller than those for Conjunctions I1-1Vin 5 of 10
cases, they are nuch bigger than those for Conjunctions [I-1V in 2 of

the remaining 5 cases. Two reasons for this result are: (i) the

predi ctor used to generate forecasts of the dependent variabl e of
equation (7) is optimal relative to a quadratic |oss function but is not
optimal relative to an absolute error loss function, and (ii) sonetines
i nconsi stent nodel s appear to predict better than consistent nodels if

i nappropriate fornulas are used to nmeasure the accuracy of forecasts. In
the long run, only consistent nodels are able to tell the truth.

Any enpirical result that holds for all four Conjunctions can be
considered robust. The arithmetic nmeans of the estimates of v,,, under
Conjunction | and the estimates of m;, under Conjunctions IIl-IV are the
estimtes of the sane paraneter Ey,, . It can be seen from Tables Ia,
2ab, 3, and 4 that these estimates are close to one another and hence
are robust.

Fama and French (1993, p. 53) list four applications--(a)
selecting portfolios, (b) evaluating portfolio performance, (c)
neasuring abnornmal returns in event studies, and (d) estimating the cost
of capital--that require estimtes of risk-adjusted stock returns. The
estimates in Table 1b can be substituted into the first termon the
ri ght-hand side of equation (15) to obtain the estinmates of risk-
adj usted stock returns because v,;. isa conprehensive descriptor of
stock risk. The precedi ng discussion shows that these estinmates do a
better job in all four applications than those of previous studies. The

nmet hodol ogy used to obtain the estimates in Tables la-c can al so be used
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to obtain accurate predictions about as yet unobserved val ues of the
dependent variable of equation (15). The discussion in this section and
in Sections 2 and 3 shows that the neasures of market or “systematic”
risks of portfolios given by the arithmetic nmeans of ¢,,, in Table la
are theoretically and enpirically superior to estimates of B presented

so far in the literature

6. Concl usions

Thi s paper has extended the CAPMto account for the effects of
di fferences between unobservabl e and observabl e stock and market
portfolio returns, of excluded variables, and of departures from a
linear rel ationship between the observable returns on individual stock
and market portfolios. The extended caPM is tested using a stochastic-
coefficients nethodol ogy. For purposes of conparison, both consistent
and i nconsistent sets of assunptions are nade in these tests. The tests
based on a consistent set of assunptions show that the relation between

the observable returns on stock and market portfolios is nonlinear.
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Table 1a
Summary Statistics for the Estimates of the v, and v, When Conjunction | Holds
Estimation Period: August 1963 to December 1991,341 months

341

(tratios in Parentheses, * denotes statistically significant t ratio at 0.05 Ievel,andMean(?ﬁ') 3772 Voo T~

Portfolio Min(t, ) Max(¢,,) Range(?,) Min(y,) Max(?,,) Range( ¥ ,) Mean(¥,,) Mean(

Oit lit

nsl_ble  -1445 13.76 28.21 0.71 2.32 161 0.0 13
(0. 15) (8.0C
nsl bSe  -6.28 19.61 25.89 -0.89 3.62 451 0.76 0.9
(1.91) (15.2
ns2ble  -12.61 10.78 23.38 0.97 2.00 1.03 -0.06 14
(-0.23) (215
ns2_bse  -8.34 13.02 2135 0.47 1.86 1.39 0.66 11
(2.83)* (1.0
i3 ble 671 10,01 16.72 101 1.98 0.97 -0.06 1.3
(-0.28) (36.4
ns3_bse 6,20 11,72 17.92 0.40 1,91 151 0.65 1.1
(3.26)* (0.9
nsd_ble  -6.41 8.57 14.98 1.09 1.42 0.33 0.00 12
(0.02) (13.4
ns4 bse  -6.35 9.14 15.49 0.44 1.79 1.35 0.52 11
(2.50)* (12
ns5 ble  -4.03 433 8.37 0.67 1.36 0.69 0,12 10
(-1 .04 (48.3
nsS bse  -8.47 9.70 18.18 0.07 1.42 1.35 0.20 0.9




Table1b
Estimates of the Coefficients of Equation (10) When Conjunction | Holds
Estimation Period: August 1963 to December 1991,341 months
(t ratios in Parentheses; * denotes statistically significant t ratio at 0.05 level)

Portfolio

~ Y

00 Ty 02

=1

06 Ty Ty Ty Tys L T

=1
>

i

=5
>

1 03 04 05 14 15 16

nsl ble

nsl_b5Se

ns2 ble

ns2_b5Se

ns3 bie

ns3_b5e

ns4_ble

ns4_b5e

nsS ble

ns5_bSe

533 -189 -097 033 -065 02 456 353 -039 -049 -022 016 -0.09 -0.09
(1 .26) (-1 .80) (-0.23) (0.76) (-0.90) (0.90) (5.50)* (2.24)* (-1 .10) (-0.38) (-1 .39) (0.59) (-0.95) (-0.51)

204 141 -120 076 001 046 550 323 055 -037 -003 004 -000 -0.13
(0.87) (-1.68) (-0.89) (1 .55) (O. 12) (1 .49) (8.01)* (4.63)* (-3.20)* (-1 .37) (-0.29) (0.23) (-0.02) (-0.68)

397 -14 015 019 -048 020 068 233 -018 -017 002 003 000 -0.15
(1.39) (-2.04)* (-0.28) (0.57) (-0.74) (0.84) (1.04) (3.1 1)* (-1.06) (-1.31) (0.20) (-0.18) (0.02) (-1.18)

210 -0.60 -0.74 061 -0.02 024 3.8  L16 016 -0.43 -0.25 0.60 -0.00  -0.03
(1.27) (-2.24)% (-0.97) (2.06)* (-0.04) (1.26) (6.76)* (0.40) (0.34) (-1 .10) (1 .47) (2.50)* (-0 15) (-0.24)

006 -031 -007 043 -024 012 014 257 019 -012 001 002 -002 001
(0.04) (-1 .00) (-0.20) (1 .67) (-0.52) (0.74) (0.26) (6.37)* (-2.76)* (-1.67) (-0.22) (O. 16) (-0.56) (0.1 O)

0.13 -0.20 -0.28 05 -0.26 0.07 291 068 020 -0.13 -0.28 0.44 -0.06 -0.00
(0 10) (-0.99) (-0.49) (2.26)* (-0.65) (0.51) (5.41)* (0.22) (0.46) (-0.36) (-1.73) (2.01)* (-0.81) (-0.03)

05 007 -030 024 -019 -006 061 157 -003 003 -007 005 -002 -001
(-0.46) (0.40) (-1 .03) (1 .22) (-0.48) (-0.43) (-1 .50) (3.39)* (-0.47) (0.55) (-1.58) (0.57) (-0.70) (- 0. 15)

052 005 090 -022 -013 -002 277 104 005 -015 -010 043 -003 -0.02
(0.29) (-0.20) (1 .34) (-0.83) (-0.28) (-O. 11) (5.45)* (0.28) (0.10) (-0.43) (-0.68) (2.03)* (-0.37) (-0.18)

0.67 013 -0.43 -0.30 037 001 -112 08 00l 002 006 -007 006 -0.03
(0.66) (0.94) (-1 .99) (-2. 16)* (1 .39) (-0.07) (-3.38)* (3.26)* (-0.29) (0.44) (1 .77) (-1 .09) (2.43)* (-0.50)

204 0.3 043 -048 069 -0.13 197 350 -0.27 -0.49 -0.02 031 0.02  0.03
(1.31) (-1.15) (1.22) (-2.49)* (L.94) (-0.97) (3.59)* (3.22)* (-2.16)* (-3.30)* (-0.21) (2.00)* (0.45) (0.27)




Tablelc
Estimates of the Parameters of Equation ( 11) and Forecasting Performance of
Equation (7) When Conjunction | Holds, Estimation Period: August 1963 to
December 1991, 34 1 months, and Forecasting Period: January 1992 to
December 1993.24 months

Portfolio @y, d, 628, &8

a~10a

826,,, RMSE MAE

nsl_ble 0.15 0.88 15.04 0.57 0.07 4.36 0.87
ns1_b5e 051 -0.35 6.02 1.02 0.61 4.25 0.82
ns2_ble 0.13 0.76 9.86 0.20 0.02 3.63 5.17
ns2_bSe 0.11 0.99 6.69 0.17 0.03 3.05 0.77
ns3_ble 0.07 -0.32 5.80 0.07 0. 04 3.05 0.77
ns3_b5e 0.05 0.99 6.16 0.32 0.03 249 1244
nsd_ble 0.12 0.99 4.00 0.03 0.00 2.23 0.83
ns4_b5e 0.11 0.99 531 0.09 0.02 2.15 121
ns5 ble  -001 -0.99 2.08 0.01 0.01 2.15 2.76
ns5_bb5e -0.10 0.94 6.97 0.24 0.01 4.59 1.74




Summary Statistics for the Estimates of the v, and v, , When Conjunction Il Holds
Estimation Period: August 1963 to December 1991,341 months
(t ratios in Parentheses, * denotes statistically significant t ratio at 0.05 level)

Table 2ab

Portfolio Min(f,,) Max(9,)  Range( 1, Min(¥,,) Max(1,,) Range(1,,) r, ) Log
likelihood

nsl ble -15.15 14.03 29.18 0.73 2.38 1.65 0.10 1.35 -1004. 99
(-0.34) (4.28)*

ns1 _bSe -7.97 19.01 26.98 0.09 2.07 1.98 0.59 0.97 -955.58
(2.36)* (20. 43)*

ns2 ble -12.08 11.90 23.98 111 1.77 0.66 -0.11 141 -889. 15
(-0.56) (32.29)*

ns2_bSe -8.24 1311 21.34 0.22 2.06 1.84 0.53 1.14 -890. 06
(2.90)* (0.96)

ns3_ble -6.37 10.94 17.30 0.9 1.97 1.03 0.09 1.39 -832.23
(-0.60) (19.50)*

ns3_bse -6.15 11.73 17.88 0.18 1.97 179 0.54 1.09 -847.29
(3.54)* (1.14)

nsd ble -5.97 8.46 14.44 1.01 141 0.40 0.00 1.21 -736. 48
(-0.02) (49.07)*

ns4_bse -6.24 8.85 15.09 0.28 1.77 150 0.48 1.21 -830. 63
(3.22) (1.48)

ns5 ble -4.17 4.77 8.93 0.70 1.40 0.71 -0.08 1.04 -670. 84
(-0.89) (48.90)"

ns5_b5e -7.34 9.77 17.11 0.50 1.32 0.82 0.19 0.88 -845.95
(132 [25.52)*




Table 2¢
Estimates of the Parameters of Equation (11) and Forecasting Performance of
Equation (7) When Conjunction || Holds, Estimation Period: August 1963 to
December 1991, 341 months, and Forecasting Period: January 1992 to
December 1993, 24 months

Portfolio @y, b, 68, 00, 00 RMSE  MAE

nsl ble 0.18 0.96 100.29 74.67 126.77 5.07 1.44
nsl_b5e 0.26 -0.99 10.84 0.63 011 4.89 0.79
ns2 ble 0.13 0.28 9.98 011 0.04 3.70 3.02
ns2_b5e 0.18 0.99 7.45 0.39 0.07 3.53 0.66
ns3 ble 0.07 0.86 6.92 0.36 0.03 2.88 0.88
ns3_b5e 011 0.99 6.10 031 0.05 2.71 5.59
nsd ble 0.15 -0.99 4.38 0.02 0.00 2.24 1.19
ns4_b5e 0.10 0.99 5.57 0.16 0.04 2.54 1.23
ns5_ble 0.08 -0.99 2.16 0.05 0.01 2.03 2.26
ns5 bSe -0.04 -0.99 7.19 0.16 0.01 4.61 3.26




Table 3
Estimates of the Parameters of Equations (7)-(11) and Forecasting Performance
of Equation (7) When Conjunction Il Holds, Estimation Period: August 1963
to December 1991, 341 months, and Forecasting Period: January 1992 to
December 1993,24 months
(t ratios in Parentheses; * denotes statisticaly significant t ratio at 0.05 level)

Portfolio froo M1 $oo o’ Log RMSE  MAE
likelihood
nsl_ble  -0.25 1.36 0.15 19.73 -992.30 5.13 1.55
(-0.89)  (25.86)*
nsl_bse 054 1.03 0.15 14.69 -942.00 484 072
(222  (2269)*
ns2_ble  -0.14 1.39 0.16 10.99 -892.53 373 304
(-0.65  (35.44)*
ns2_b5e 053 111 0.11 10.30 -881.44 353 068
(272*  (29.09)*
ns3_ble  -0.14 1.32 0.09 6.95 -814.34 291 0.86
(-0.92) (4218
ns3_bSe 053 1.06 0.08 8.21 -842.83 268 568
(312*  (30.93)
nsd_ble  -0.02 122 0.15 4.04 -722.15 2.24 117
: (0.16  (51.20)*
nsd_bse 053 111 0.06 8.04 -839.33 2.55 1.30
! (321 (3293
ns5_ble  -0.04 1.02 0.05 2.83 -660.97 200 198
: (-0.37)  (5LO7)*
ns5_bSe 021 0.89 -0.03 7.77 -833.41 457 3.09

g (141)  (26.81)*




Table 4
Estimates of the Parameters of Equations (7)-(1 1) and Forecasting Performance
of Equation (7) When Conjunction IV Holds, Estimation Period: August 1963
to December 1991, 341 months, and Forecasting Period: January 1992 to
December 1993, 24 months
(t ratios in Parentheses; * denotes statistically significant t ratio at 0.05 level)

Portfolio x, o’ Log RMSE  MAE
likelihood

nsl_ble -0.26 1.40 20.18 -996.12 4.97 158
(-108)  (26.22)*

nsl_bS5e 0.53 1.07 14.97 -945.30 4.63 0.73
(251 (23.24)*

ns2 ble  -0.15 1.42 1126  -896.62 367 311
(-0.8) (3553

ns2_b5e 0.53 113 10.42 -883.41 348 0.68
(3.000* (2033

ns3 ble -0.15 134 7.00 -815.61 2.90 0.86
(-1.04) (42.53)*

ns3_bSe 0.53 1.06 8.27 -843.99 2.66 5.61
(337 (3.0

ns4_ble -0.03 123 4.13 -725.74 2.23 117
(-024)  (51.06)*

ns4_bSe 0.53 11 8.08 -840.01 2.53 1.30
(B42r (.92

ns5_ble -0.04 1.02 2.83 -661.38 1.99 1.97
(-040) (5113

ns5_b5e 0.21 0.89 7.78 -833.55 457 3.09

(136)  (26.80)*




