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      See for example Braulke (1982), Gardner (1993), Just (1993), and Tomek and Myers1

(1993).

      A related paper, of which we became aware after completing ours, is Bewley and Fiebig2

(1990).  As will become clear shortly, however, the two papers are very different.  Ours, in

particular, focuses entirely on the agricultural supply question and treats it in depth.

1.  Introduction

The Nerlove model of agricultural supply response (e.g., Nerlove and Addison, 1958)

is one of the most successful in applied econometrics, as evidenced by the hundreds of

subsequent studies that use it productively.  A nagging and recurring problem, however,

concerns the variability of estimated supply response.  In their extensive English-language

survey, for example, Askari and Cummings (1977) document this variability and ascribe it to

differences in the "quality" of estimates, due to differences in definitions of price and output

measures, as well as data measurement errors.  They note, however, that:

"Still unexplained is why, if these results reasonably reflect the responsiveness
of the cultivators concerned, considerable differences in elasticity exist for the
same crop in different regions, or why, in the same country, the degree of
supply responsiveness may vary widely from crop to crop."  (p. 263)

One suspects, then, that factors other than data quality may be relevant, including model

specification, sample period, true underlying differences in response parameters across

regions, countries and commodities, and so on.   We shall elaborate on one such factor, the1

properties of the commonly-used econometric estimator.  Specifically, we argue in sections 2

and 3 that its sampling properties are poor, which may explain (at least in part) the high

dispersion of reported estimates.   We show that the standard supply response estimator2
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possesses infinite moments of all orders and may have a bimodal distribution.  We propose an

alternative estimator with better sampling properties, which we document using Monte Carlo

methods in section 4.  We conclude in Section 5.

2.  The Sampling Properties of Estimates of Supply Response

The standard structural form of the Nerlove model is

(1)

(2)

(3)

(4)

where A denotes crop acreage under cultivation, P is crop price, A  is desired acreage, P  is* e

expected future price, and and are parameters.

Equation (1) describes the relationship between desired acreage and expected price. 

Economic theory predicts that � ≥ 0, and there are economic reasons to expect �  > 0 as0

well, due to subsistence farming.  Equations (2) and (3) represent a simple adaptive-

expectations partial-adjustment mechanism linking P  and A  to observable P and A values. e *

The adjustment parameters � and � are expected to be positive.  As shown by Muth (1960),

the adaptive expectations (2) are in fact fully rational if prices follow an integrated moving

average process, and the partial adjustment mechanism (3) has been advocated for

approximating economic dynamics at least since Samuelson (1947).

The reduced-form equation relating acreage and price is found by solving equations

(1)-(4) for acreage in terms of the observable variables of the system, yielding
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(5)

where

The parameter of interest, �, is expressed in terms of the reduced-form parameters as

(6)

where

In practice, of course, the reduced form must be estimated.  Least squares (LS) may

not be strictly appropriate, however, because the reduced-form disturbance is potentially

serially correlated and the regressors include lagged dependent variables.  We nevertheless

focus on LS estimation and an improvement obtained via Bayesian shrinkage techniques.  Our

focus is entirely appropriate in certain cases.  If, for example, expectations adapt quickly (that

is, if � is close to 1), then the reduced-form disturbance is approximately white noise. 

Alternatively, if the supply-response equation's disturbance is serially correlated, and if that

serial correlation is approximately first-order autoregressive with parameter 1-�, then the

reduced-form disturbance is again approximately white noise.  Much more important than any

such special cases, however, is the recognition that regardless of whether LS is entirely
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      See Zellner (1978, 1985, 1986), Zellner and Park (1979), Zaman (1981) and Piegorsch3

and Casella (1985), inter alia.

      Problems of non-existence of moments and multimodality are not likely to be solved4

through various "improved" structural specifications, leading to different reduced forms.  As
(continued...)

appropriate, it has nevertheless been used regularly in the applied agricultural economics

literature.  Because we want to mimic what's done in practice, our research strategy is to

follow suit, and to ask whether improvements are nevertheless possible within the LS

framework via Bayesian shrinkage techniques.  As we shall show, our strategy yields

important insights, even if it leaves certain other issues unaddressed. 

Let "^" denote the LS estimator of the reduced-form parameter vector.  The estimate

of � is formed as

(7)

Note in particular that � is formed as the ratio of two random variables,  Under^

very general conditions, ratios or reciprocals of random variables have Cauchy tails and hence

no finite moments.   Moreover, as shown by Zellner (1978) for the normal case and Lehmann3

and Popper Shaffer (1988) for more general cases, the distributions of reciprocals or ratios

will, in general, be multimodal (typically bimodal).  Both the non-existence of moments and

the multimodality may contribute to high variability in estimates of agricultural supply

response.4
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     (...continued)4

long as the supply-response parameter is constructed as a ratio of estimated reduced-form

parameters, such problems will arise.

      From the Bayesian vantage point �, and hence 	  and 	 , are viewed as subjectively5
1 2

random variables.

3.  An Improved Estimator

In contrast, for problems of ratio estimation such as ours, the minimum-expected-loss

(MELO) estimator of Zellner (1978) has been shown to have (at least) finite first and second

moments, and hence finite risk with respect to generalized quadratic loss in small as well as

large samples.  Furthermore, the MELO estimator is consistent, asymptotically efficient and

asymptotically normal.

The generalized quadratic loss function for our problem is

(8)

where is any estimate of  Let and let prior information

regarding (the standard deviation of the disturbances of the reduced form (5)) be

represented by the density function   The information contained in the data is5

summarized by the likelihood where A is a (Tx1) vector with t-th

entry X is a (Tx4) matrix with t-th row and T is sample size. 

Then, by Bayes' theorem,

(9)

where the posterior density summarizes posterior beliefs.  For any prior and likelihood,

the estimator that minimizes posterior expected loss (that is, the MELO estimator) is given by
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      See Zellner (1971) for the derivation.6

      For the present application, we require T > 6, so that the posterior covariance matrix is7

well defined.

(10)

      

where denotes posterior expectation, denotes posterior variance

and denotes posterior covariance (that is, expectation, variance, and covariance with

respect to ), and F denotes the shrinkage factor.

If the reduced-form disturbance e  is approximately white noise, and if the likelihoodt

is normal and the prior is diffuse, then the marginal posterior density has a multivariate

Student-t distribution with 4-dimensional mean vector6

(11)

which is equal, of course, to the LS estimator.  Immediately,

(12a)

and

(12b)

Furthermore, the posterior covariance matrix is given by

(13)

where and7

(14)
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the LS residual sum of squares.  Then

(15)

     

Simple manipulations enable us to write this as

(16)

   (17)

where denotes the ij-th element of Furthermore,

(18)

     (19)

so that

(20)

Given these quantities, may be constructed at once from equation (10).  

Some insight into the properties of the MELO estimator may be gained by considering

special cases, such as that arising when and in

which

(21)
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      To see this, let and  Then the Cauchy-Schwartz inequality8

gives but by positivity of we can write this

as or

These expressions show how the MELO estimator "shrinks" in the direction of

 Note, however, that as T gets large, given in (7). 

Thus, it's in small samples, precisely the case where the performance of LS is expected to be

poor and precisely the case relevant for the analysis of agricultural supply response, that

MELO estimation is expected to yield the most improvement.

We obtain the estimated long-run elasticity evaluated at price P and acreage A

as where P and A are the selected values of price and acreage at which the

elasticity is to be evaluated.  Note that is also a MELO estimator if we treat as a

nonstochastic entity to be selected by the investigator, which is the view adopted in this paper

and typically adopted in practice.  Alternatively, assuming stationarity of the price and

acreage series, one might attempt to evaluate the elasticity at the true but unknown

means  Then the ratio can be estimated by the MELO approach

outlined above, with the requisite posterior variances and covariance obtained from an

application of the normal-likelihood diffuse-prior Bayesian multivariate regression model. 

The MELO estimator for the ratio of means will have at least finite first and second

moments, and by the Cauchy-Schwartz inequality for random variables (e.g., Rao, 1973, p.

149) the elasticity estimator will have finite second moment

if and have finite fourth moments.8

In closing this section, we sketch how the MELO procedure could be extended to
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      To compute the elasticity, take expectations of both sides of the reduced form (5),9

yielding which satisfies the behavioral relationship (1) exactly. 

Thus,  For the present example this yields
(continued...)

handle explicitly a reduced form that contains a lagged dependent variable and serially-

correlated errors.  Zellner and Geisel (1970) give a Bayesian treatment of such models and

provide expressions for the posterior density function, from which the posterior moments

could be computed numerically and then used as inputs to MELO estimation.  Such an

approach, however, loses the attractive simplicity of the LS and MELO procedures explored

in this paper.  Recent work by Zellner (1994, 1995) on Bayesian method-of-moments

instrumental-variables estimation goes a long way toward recapturing that simplicity,

however, and represents a very promising direction for future research. 

4.  A Monte Carlo Experiment

Here we report on a Monte Carlo experiment designed to contrast the sampling

properties of the least-squares and MELO estimators of supply response.

4a.  Experimental Design

We generate 1000 samples of data from each of various parameterizations of the

restricted reduced form (5).  Certain of the parameters are kept at fixed values; we set � = .5,

�  = .25, and � = 2.  The supply adjustment parameter � = .5 implies a moderate adjustment0

speed.  The small but positive value of �  reflects subsistence farming.  Setting � = 2 (and0

E(P) =100, as is done below) implies a supply elasticity of approximately 1.   9
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(...continued)
so that the elasticity is approximately

Other parameters are varied.  In particular, we examine

 T = 25, 50, 100 

where 

(22)

First let us discuss the choice of sample sizes (T) explored.  A sample size of 25 (or

even less) is typical in empirical work using annual time series of acreage and price.  It is our

hope, of course, that the MELO estimator will perform well in this important small-sample

situation.  As sample size increases, MELO estimation should yield progressively less

noticeable improvements, because sample information will eventually dominate prior beliefs. 

Inclusion of sample sizes of 50 and 100 allows us to see the speed and patterns with which

such effects transpire. 

The values are associated with varying speeds of expectations

adaptation.  The standard deviations are varied within ranges designed to capture

a variety of relative shock volatility patterns.  The three values of # explored span a range of

moderate persistence through high persistence.  We set all initial conditions at their expected
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values; that is, and

4b.  Results

Table 1 provides an easily-digested summary of certain of the Monte Carlo results,

focusing on T = 25 and � = 1.  The entries in the table are the percent reductions in mean-

squared error (MSE) due to the use of MELO rather than LS, under a variety of values

of  MELO is always best, often by a large margin.  The relative efficiency

of the MELO estimator depends significantly on and tends to be greatest

when the variability of price relative to acreage is small.  This is particularly evident in the

way in which the relative efficiency of the MELO estimator is decreasing in #.  The intuition

for the result is straightforward.  The likelihood function contains relatively little information

about the location of the reduced-form coefficients when variability of the reduced-form

regressors is small, which is precisely the case in which the shrinkage induced by MELO

estimation will be beneficial.  Moreover, the amount of shrinkage varies inversely with the

precision of the reduced-form parameter estimates, as evidenced by the expression for the

shrinkage factor F in (10).

Note that, although one of the estimators (LS) is known to have infinite MSE in

population, it does not follow that examination of MSE across Monte Carlo replications is

inappropriate.  If MSE is considered to be an appropriate loss function, as it is in this paper

and throughout the econometrics and statistics literatures, then estimators should be judged in

terms of it and not some other loss function.  We could of course change the loss function,

but then the optimal estimator would change as well (e.g., absolute-error loss and 0-1 loss
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      See Zellner (1971, p. 276).  It's interesting to note that 0-1 loss and use of the resulting10

posterior mode may be particularly attractive when the posterior is bimodal, as can happen in

models such as the one studied here, but additional research along those lines is beyond the

scope of the present paper.

      This finding parallels that of Park (1982) for the MELO estimator in the simultaneous-11

equations model.

lead to posterior median and mode estimators, respectively).   For any fixed number of10

Monte Carlo replications, MSE provides a legitimate summary of the sampling variability of

both the LS and MELO estimators.

The results are presented in a different way in Tables 2 through 5, in which we

fix and but vary T, �, and #.  We present various statistics indicating

distributional shape, including mean, variance, MSE, and several percentiles.  First consider

the effects of varying sample size.  Like the LS estimator, the MELO estimator displays some

bias, but the variability of the MELO estimator is substantially less than that of the LS

estimator.   This variance reduction results in overall MSE-superiority of the MELO11

estimator, which is what one expects from a "shrinkage" estimator:  variance reductions are

achieved at the cost of possible bias increases, but the tradeoff is favorable, and the result is

an MSE decrease.  For example, for T = 25, MELO estimation reduces MSE from 5.93 to

3.10.  This is quite a dramatic reduction in variability of the estimator, and it should be

remembered that this small-sample case is the one relevant in typical applications.  As

expected, however, the reduction in MSE decreases as sample size increases. 

Now consider the effects of varying � and #.  MELO estimation continues to yield
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improvements, and as seen before, the improvements are decreasing in #.  Interestingly, the

improvement afforded by MELO estimation appears robust to the value of �, and in

particular, it remains when � is less than one.  This is fortunate in light of the revealed

preference in applied work for LS estimation, even though it is not strictly appropriate when

� is less than one.

In closing this subsection, we conjecture that, even if one were to use classical and

Bayesian estimators that explicitly account for serial correlation in the presence of a lagged

dependent variable, the relative superiority of the Bayesian estimator would remain.  Previous

studies that bear on the conjecture include Fomby and Guilkey (1978), who study classical

and Bayesian approaches to regression with AR(1) errors and find that a Bayesian estimator

dominates others, as well as the impressive contributions of Park (1982) and Tsurumi (1990),

who compare classical and Bayesian estimators of simultaneous-equations models and

document good relative performance of the Bayesian estimators.  Tsurumi, in particular, notes

that the relative performance of the Bayesian estimators increases with the degree of

simultaneity.

4c.  Additional Discussion

The Monte Carlo results show clearly that MELO estimation improves upon LS. 

Moreover, they highlight two characteristics of the data important for determining the relative

efficiency of the MELO estimator--the sample size and the relative variability of price and

acreage. 

Although the smallest sample size in our Monte Carlo study is 25, the Nerlove model

is often applied when even less data are available.  A review of the studies summarized by
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      For one crop, rice, a significant portion of output is consumed by the family farmer,12

making significant modifications to the model necessary.  For this reason, we do not include

rice in the subsequent discussion.

Askari and Cummings (1977) indicates that sample sizes of eight are not unheard of, and

numerous estimates have been made on the basis of sample sizes of ten or eleven.  Indeed, of

the 602 different crops and regions for which Askari and Cummings catalog supply response

estimates, approximately 85 percent were obtained from samples of size 25 or less.  Thus, on

this ground alone, it appears advantageous to use the MELO estimator.

Concerning the relative variability of prices and acreage, one might expect low relative

variability of prices.  For export crops, whose prices are determined in the world market,

prices are less subject to variability from country-specific factors such as weather.  For crops

produced for domestic consumption, government price controls are frequently imposed, which

reduces price variability.

The empirical issue remains, however, as to the relative variability of price and

acreage.  Here we attempt to shed some light on the issue by focusing on one very important,

well-known and representative dataset, that used in Behrman's (1966, 1968) study of the

supply response of total production and the marketed surplus of four major crops in

Thailand.12

Behrman used annual data to estimate the Nerlove model for various regions of the

Thai kingdom.  We examine 64 of Behrman's crop/region combinations, 32 of which involve

a sample size of 13, 28 of which involved a sample size of 9, and four of which involved a

sample size of 8.  Such small sample sizes are typical of the literature, and they are in the
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region for which the Monte Carlo analysis indicated superior performance of the MELO

estimator.

In order to assess the relative variability of acreage and price, we computed their

coefficients of variation (CV) for each of the 64 datasets, the distributions of which are

summarized in Table 6.  The acreage CV is rather widely dispersed, with the bulk of the

probability mass above unity.  In contrast, the price CV is much less dispersed, with most of

its probability mass between .1 and .4.  The median acreage CV is about six times the median

price CV.

Finally, we estimated the first-order serial correlation coefficient for each of the 64

price series, the distribution of which is also summarized in Table 6.  The estimates are rather

widely dispersed, as expected in such small samples, but most of the probability mass appears

in the low to moderate range -- the vast majority of the 64 estimates are below .75.

The upshot is clear:  the conditions under which the MELO estimator performs best

may well be satisfied in the data.

5.  Conclusion

Accurate assessment of agricultural supply response is of key importance both to

academic economists and policy makers.  Unfortunately, an oft-cited but little-understood

problem plagues such assessments:  supply-response estimates display curiously large

variation across crops, regions, and time periods.  We identified one suspect, the commonly-

used econometric estimator, which has infinite moments of all orders in small samples.  We

proposed an alternative and simple minimum-expected-loss estimator, and we evaluated its
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      See also Nerlove (1979) and Zellner (1985).13

sampling properties, which were consistently superior.  Moreover, an examination of

Behrman's well-known and representative agricultural data indicated accordance with the

conditions under which minimum-expected-loss estimation yields improvements.

In closing, we stress that the supply model we study is restrictive in many respects.  13

It is potentially limited by its aggregative nature, ad hoc expectations and adjustment

schemes, partial equilibrium perspective, lack of institutional detail, and so forth.  We hasten

to add that our improved estimator is not a panacea for these and other potential limitations of

the model.  But we also hasten to add that the model's immense popularity is not accidental. 

It is discretely sophisticated and highly parsimonious.  It has emerged as a great workhorse of

agricultural supply analysis, and its popularity shows no signs of waning.  It will remain in

widespread use, and it appears that improvements in estimates of the key supply response

parameter can be attained through minimum-expected-loss estimation.
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Table 1

Minimum Expected Loss Estimation, T = 25, � = 1
Mean-Squared Error Reduction Relative to Least Squares 

# = .50 # = .625 # = .75 # = .90
6��������������������������������������

 52%  45%  39%  35%

 37%  31%  21%  12%

 32%  24%  17%  6%

 32%  12%  17%  6%

 32%  29%  17%  6%

6��������������������������������������



Table 2
Empirical Distributions of Estimated Supply Response

        

              44444444444444444444444444444444444444444444444444444444U
                                     T = 25
W444444444444444444444444444444444444444444444444444444444444444444444U

            

 

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.93     1.48      1.95    1.58     1.88     1.55
 VAR        35.30    15.17     17.21    6.49     5.92     2.89
 MSE        35.36    15.44     17.18    6.66     5.94     3.09
 1 %       -12.39    -7.49    - 6.62   -4.09    -3.21    -2.09
 5 %       - 5.79    -4.43    - 2.78   -2.25    -1.13    -0.96
 50%         1.60     1.33      1.70    1.44     1.69     1.49
 95%        10.42     7.82      7.67    5.95     5.37     4.29
 99%        19.83    13.58     14.43    9.25    10.33     6.62
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 50
W444444444444444444444444444444444444444444444444444444444444444444444U

         

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN       2.04    1.81       2.10     1.91     1.98    1.84
 VAR       13.10    9.45       5.47     3.90     2.18    1.75
 MSE       13.10    9.49       5.48     3.91     2.18    1.78
 1 %      - 6.03  - 5.42      -2.60    -2.40    -0.98   -0.97
 5 %      - 3.00  - 2.77      -1.17    -1.07    -0.13   -0.15   
 50%        1.75    1.62       1.86     1.74     1.84    1.74
 95%        7.59    6.87       5.76     5.14     4.34    4.02
 99%       12.23   10.72       9.25     7.71     6.50    5.62
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 100
W444444444444444444444444444444444444444444444444444444444444444444444U

         

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.93    1.85      2.01    1.94      1.93    1.87
 VAR         5.34    4.86      2.03    1.87      0.84    0.78
 MSE         5.34    4.88      2.03    1.87      0.84    0.80   
 1 %        -3.23   -3.10     -1.01   -0.99      0.06    0.06
 5 %        -1.68   -1.56     -0.14   -0.14      0.57    0.54
 50%         1.71    1.65      1.89    1.82      1.86    1.80
 95%         5.81    5.56      4.48    4.23      3.51    3.40



 99%         8.03    7.63      6.01    5.85      4.39    4.25
W444444444444444444444444444444444444444444444444444444444444444444444U



Table 3 
Empirical Distributions of Estimated Supply Response

   

              44444444444444444444444444444444444444444444444444444444U
                                     T = 25
W444444444444444444444444444444444444444444444444444444444444444444444U

          

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.89    1.49      1.95    1.60      1.89    1.60 
 VAR       34.12   14.63     16.19    6.26      5.23    2.74
 MSE       34.13   14.89     16.19    6.42      5.24    2.90
 1 %       -12.89  - 7.47    - 5.91   -3.58     -2.91   -1.85
 5 %       - 5.58  - 4.23     -2.64   -2.10     -1.03   -0.87
 50%         1.60    1.32      1.73    1.50      1.73    1.54
 95%        10.06    7.81      7.52    5.86      5.46    4.39
 99%        21.32   12.92     14.94    8.94     10.36    6.68
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 50
W444444444444444444444444444444444444444444444444444444444444444444444U

          

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        2.00   1.80       2.07    1.90      1.98    1.87     
 VAR        12.53   8.54       4.79    3.50      1.83    1.53
 MSE        12.57   8.58       4.80    3.51      1.83    1.55
 1 %        -4.69  -4.37      -2.17   -2.05     -0.77   -0.83
 5 %        -2.90  -2.64      -0.96   -0.89      0.13   -0.00
 50%         1.66   1.56       1.85    1.72      1.88    1.80
 95%         7.16   6.51       5.40    4.92      4.12    3.89
 99%        11.23   9.95       8.25    7.43      5.76    5.32
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 100
W444444444444444444444444444444444444444444444444444444444444444444444U

          

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.85    1.79      1.97    1.91      1.93    1.89   
 VAR         4.47    4.12      1.69    1.57      0.70    0.66
 MSE         4.49    4.16      1.69    1.57      0.70    0.67
 1 %        -2.72   -2.72     -0.86   -0.90      0.13    0.11
 5 %        -1.54   -1.49     -0.03   -0.03      0.70    0.68
 50%         1.76    1.70      1.93    1.89      1.92    1.87 
 95%         5.37    5.14      4.19    4.01      3.33    3.24



 99%         7.27    6.84      5.62    5.47      4.26    4.13
W444444444444444444444444444444444444444444444444444444444444444444444U



Table 4
Empirical Distributions of Estimated Supply Response

     

              44444444444444444444444444444444444444444444444444444444U
                                     T = 25
W444444444444444444444444444444444444444444444444444444444444444444444U

           

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.77    1.53       1.88    1.64     1.89    1.67
 VAR       33.41   13.77      16.28    5.85     4.27    2.52
 MSE       33.46   13.99      16.29    5.98     4.28    2.63
 1 %       -12.87  - 7.47     - 5.91   -3.58   - 2.34   -1.64
 5 %       - 5.58  - 4.23     - 2.64   -2.10   - 0.83   -0.68
 50%         1.60    1.32       1.74    1.49     1.71    1.59
 95%        10.06    7.81       7.52    5.86     5.22    4.35
 99%        21.32   12.92      14.94    8.94     9.16    6.38
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 50
W444444444444444444444444444444444444444444444444444444444444444444444U

          

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.95    1.79      2.03    1.91      1.98    1.90
 VAR         9.91    7.29      3.60    2.90      1.38    1.21
 MSE         9.91    7.33      3.60    2.91      1.38    1.22
 1 %        -4.23   -4.07     -1.71   -1.63     -0.45   -0.45
 5 %        -2.47   -2.43     -0.66   -0.65      0.24    0.22
 50%         1.68    1.58      1.84    1.75      1.90    1.82 
 95%         6.65    6.03      5.13    4.74      3.91    3.73
 99%         9.81    8.96      7.58    6.66      5.23    4.86
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 100
W444444444444444444444444444444444444444444444444444444444444444444444U

           

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.79    1.75      1.93    1.89      1.94    1.90
 VAR         3.42    3.22      1.28    1.21      0.52    0.50
 MSE         3.46    3.28      1.28    1.22      0.53    0.51
 1 %        -2.52   -2.44     -0.66   -0.64      0.32    0.31
 5 %        -1.12   -1.10      0.22    0.21      0.85    0.82
 50%         1.76    1.73      1.92    1.88      1.92    1.89
 95%         4.92    4.74      3.84    3.70      3.13    3.06



 99%         6.57    6.28      5.03    4.94      3.86    3.80
W444444444444444444444444444444444444444444444444444444444444444444444U



Table 5 
Empirical Distributions of Estimated Supply Response

              44444444444444444444444444444444444444444444444444444444U
                                     T = 25
W444444444444444444444444444444444444444444444444444444444444444444444U

           

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        0.94    1.59       2.05    1.70      1.88    1.74
 VAR      566.58   11.57      32.65    4.85      3.27    2.06
 MSE       566.59   11.74      32.65    4.94      3.28    2.13
 1 %        -8.61   -6.35      -4.59   -3.53     -2.01   -1.76
 5 %        -4.66   -3.69      -1.99   -1.75     -0.58   -0.46
 50%         1.49    1.44       1.72    1.59      1.78    1.65
 95%         8.26    6.86       6.21    5.13      4.64    4.08
 99%        16.96   12.07      10.78    7.93      7.15    6.04
W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 50
W444444444444444444444444444444444444444444444444444444444444444444444U

           

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.90    1.81      1.99    1.91      1.98    1.92
 VAR         5.45    4.79      2.04    1.82      0.81    0.74
 MSE         5.46    4.84      2.04    1.83      0.81    0.75
 1 %        -3.47   -3.40     -1.35   -1.36     -0.13   -0.14
 5 %        -1.59   -1.57     -0.16   -0.18      0.61    0.61
 50%         1.82    1.75      1.94    1.88      1.96    1.89
 95%         5.59    5.39      4.25    4.15      3.45    3.33
 99%         8.30    6.98      5.76    5.25      4.32    4.25
  W444444444444444444444444444444444444444444444444444444444444444444444U

              44444444444444444444444444444444444444444444444444444444U
                                     T = 100
W444444444444444444444444444444444444444444444444444444444444444444444U

          

W444444444444444444444444444444444444444444444444444444444444444444444U
 MEAN        1.78    1.75      1.91    1.89      1.95    1.93  
 VAR         1.92    1.86      0.70    0.68      0.28    0.27
 MSE         1.97    1.92      0.79    0.69      0.28    0.27
 1 %        -1.61   -1.51     -0.10   -0.09      0.64    0.64
 5 %        -0.53   -0.50      0.55    0.53      1.08    1.07
 50%         1.75    1.7       1.88    1.86      1.93    1.91



 95%         4.04    3.97      3.33    3.28      2.83    2.80
 99%         5.06    5.04      4.02    3.85      3.20    3.15
W44444444444444444444444444444444444444444444444444444444444444444444U



Table 6
Distributions of Acreage, Price and Price Persistence,

Sixty Four Behrman Datasets

Price CV Acreage CV Price
Persistence

�����������������������������

1% .07  .50 -0.36
5% .08  .50 -0.25
10% .09  .71 -0.21
25% .15  .85  0.03
50% .19 1.24  0.25
75% .25 1.53  0.37
90% .31 1.84  0.56
95% .34 1.96  0.68
99% .44 1.96  1.89
6����������������������������4



Figure 1
Distribution of Coefficient of Variation, Acreage



Figure 2
Distribution of Coefficient of Variation, Price



Figure 3
Distribution of # Estimates



Notes to tables and figures:

Table 1: is the variance of the price innovation, given in equation (22) in the text,

and is the variance of the disturbance in the structural equation for desired acreage, given

in equation (1) in the text. is the first-order autoregressive coefficient governing price

dynamics, given in equation (22) in the text.  

Tables 2 - 5: is the variance of the price innovation, given in equation (22) in the text,

and is the variance of the disturbance in the structural equation for desired acreage, given

in equation (1) in the text. is the first-order autoregressive coefficient governing price

dynamics, given in equation (22) in the text.  T is sample size. is the expectations-

adjustment parameter given in equation (2) in the text. denote the least-

squares and minimum-expected-loss estimators.  For each parameter configuration, we report

the mean (MEAN), variance (VAR), mean-squared error (MSE), and five percentiles of the

sampling distribution of each estimator. 

Table 6:  We provide nine percentiles of the distributions of the coefficient of variation of

acreage ("Acreage CV"), the coefficient of variation of price ("price CV"), and the serial

correlation coefficient of price ("price persistence") across 64 crop/region combinations.  For

visual reference, the 25th, 50th and 75th percentiles are shown in boldface.



Figure 1:  The coefficients of variation for acreage (CVA) are ratios of its sample standard

deviation to the sample mean, for each of 68 crop/region combinations, as discussed in the

text.  We graph the distribution of the 68 values of CVA, as estimated by a histogram.  The

area in each bin is the proportion of the 68 observations falling in that bin.  The position of

the leftmost bin is an artifact of the algorithm used to select histogram bin width; all of the

coefficients of variation underlying the histogram are positive.

Figure 2:  The coefficients of variation for price (CVP) are ratios of its sample standard

deviation to the sample mean, for each of 68 crop/region combinations, as discussed in the

text.  We graph the distribution of the 68 values of CVP, as estimated by a histogram.  All

observations fell in the one bin graphed.  The position of the bin is an artifact of the

algorithm used to select histogram bin width; all of the coefficients of variation underlying

the histogram are positive.

Figure 3: is the first-order autoregressive coefficient governing price dynamics, given in

equation (22) in the text.  We graph the distribution, as estimated by a histogram, of estimates

of for 68 crop/region combinations.


