
Forecasting Long- and Short-Horizon Stock

Returns in a Uni�ed Framework

Chunsheng Zhou �

Federal Reserve Board

Washington, DC 20551

Tel: (202) 452-3328

E-mail: czhou@frb.gov

January 24, 1996

First Draft: August 28, 1995

Second Draft: October 20, 1995

�An early draft of this paper was circulated under the title `Forecasting Stock Returns and Stock Prices.'

The views expressed herein are those of the author and do not necessarily re
ect those of the Board of

Governors of the Federal Reserve System. The author would like to thank John Campbell, John Cochrane,

Owen Lamont, Craig MacKinlay, Matt Pritsker and Pat White for helpful comments and discussions and

Yongshan Duanmu and Ruth Wu for research assistance.

1



Forecasting Long- and Short-Horizon Stock Returns in a Uni�ed Framework

Abstract

If stock prices do not follow randomwalks, what processes do they follow? This ques-

tion is important not only for forecasting purpose, but also for theoretical analyses and

derivative pricing where a tractable model of the movement of underlying stock prices

is needed. Although several models have been proposed to capture the predictability

of stock returns, their empirical performances have not been evaluated. This paper

evaluates some popular models using a Kalman Filter technique and �nds that they

have serious 
aws. The paper then proposes an alternative parsimonious state-space

model in which state variables characterize the stochastic movements of stock returns.

Using equal-weighted CRSP monthly index, the paper shows that (1) this model �ts the

autocorrelations of returns well over both short and longer horizons and (2) although

the forecasts obtained with the state-space model are based solely on past returns, they

subsume the information in other potential predictor variables such as dividend yields.

2



Considerable evidence has shown that stock returns are predictable and stock prices do

not follow random walks. If stock prices do not follow random walks, what processes do they

follow? This question is important not only for forecasting purpose, but also for theoretical

analyses where a tractable model of the movement of underlying stock price is needed. For

example, to solve an optimization problem of dynamic portfolio selection and consumption

decision (such as in Merton's ICAPM), we have to know the movement of stock prices;

to price a option, we need to specify the stochastic process of the underlying stock price.

Unfortunately, little progress has been made in this aspect. Some popular models, though

proposed based on the observation of historical data, have never been tested empirically.

For this reason, the academic analysis of predictability has not yet generated a profound

impact on �nancial practice and the Random Walk assumption still dominates.

This article tries to �ll this gap. It �rst evaluates the existing popular models using a

standard data set: CRSP monthly returns. The evaluation results suggest that these models

have serious shortcomings. Popular models are usually too restrictive to capture long and

short horizon properties together. Speci�cally, models which capture the properties of long-

horizon returns typically do not have prediction power for short-horizon returns and do

not �t high frequency data; while models which can �t high frequency data generally do

not capture the characteristics of long-horizon returns. This paper proposes a more 
exible

state-space model in which two state variables characterize the stochastic behavior of stock

returns (prices). Although the model is highly parsimonious, it forecasts stock returns over

both short and longer horizons surprisingly well.

The approach used in this paper is di�erent from several others which have been popular

in the literature for detecting and/or characterizing the predictability of asset returns. The

�rst approach, which I will call the general regression approach, regresses asset returns on

some plausible predictors such as dividend yields, interest rates, and some macroeconomic

variables (Breen, Glosten and Jagannathan 1989, Culter et al. 1989, Fama and French

1988a, Fama and Schwert 1977, Ferson 1991, Keim and Stambaugh 1986, and Zhou 1995).

This approach is typically used to predict asset returns for the next period but is not used
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to characterize the stochastic movements of expected returns (e.g. the relationship between

today's expected returns and tomorrow's expected returns).

Auto-regression is another popular approach (Bekaert and Hodrick 1992, Campbell 1991,

Campbell and Ammer 1993, Campbell and Hamao 1992, Fama and French 1988a, Kandel

and Stambaugh 1988), including univariate regressions and vector auto-regressions (VARs).

This approach regresses realized asset returns on their own lags, and possibly, some other

predetermined variables.

One practical problem with this approach is that realized asset returns consist of at

least two components: expected returns and unexpected innovations. The two components

may have rather di�erent relations with future returns, but the auto-regression approach

does not distinguish between these components. For this reason, the predictions based on

this approach may be sub-optimal or even conditionally biased. The next section discusses

this in detail.

Another problem associated with this approach (and the general regression approach

too) is the lack of a structural interpretation. For example, dividend yields help to predict

stock returns according to this approach, but the approach does not reveal causality between

these variables.

The third approach is what I call the direct testing approach (Lo and MacKinlay 1988

and Poterba and Summers 1988). This approach uses some kind of statistical measures like

variance-ratio tests to test if stock prices follow \random walks." However, this approach

does not tell us what processes prices follow if the \random walk" hypothesis is rejected.

The work of Conrad and Kaul (1988) is also relevant to this paper. Conrad and Kaul

use a state-space approach to study time-variation of expected returns. They focus on

the predictability of high frequency weekly returns and they use a less 
exible model than

proposed in this paper. As a result, their model does not �t the low frequency data and

especially, does not generate the typical pattern of negative autocorrelations of stock returns

over longer horizons (say one year). The next section will discuss their model in details.

The rest of this paper is organized as follows. The next section evaluates a few popular
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models of expected stock returns which have not been well examined empirically. Section 2

provides a new state-space model of stock returns to �t the return process over both long

and short horizons. Section 3 contains concluding remarks.

1 Evaluating Existing Popular Models

This section evaluates several popular models empirically. For the sake of comparability

with previous literature, I use a standard data set: the Center for Research in Securities

Prices (CRSP) equal-weighted monthly returns in this study. The data set runs from 1926

to 1994, but I reserve the �rst year to construct the dividend-price ratios so that my sample

period is from January 1927 to December 1994. All returns are transformed in logarithms

and are multiplied by 100 to express them in percent per month. To obtain real returns,

I de
ate the nominal returns by the monthly Consumer Price Index reported by Ibbotson

Associates.

Since the CRSP data set has been well documented, I will not discuss this data set

in detail. For the sake of comparison, I just report some relevant summary statistics{the

�rst-order auto-correlations of stock returns over various horizons in Table I. In the table,

k represents the period length (in months), and rt;t+k denotes k-period compounded return

(in logarithm) from time t to time t + k.

For all four series, the auto-correlations are typically positive over short periods and

become negative over longer horizons. This is a very important stylized fact of U.S. stock

market. Culter et al. (1988) calls it the `characteristic autocorrelation function' of stock

returns.

1.1 Model I

This subsection considers the simplest model for the time-variation in expected returns.

That is, the expected returns follow a �rst-order auto-regressive process as described in the

following state-space representation.
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Model I:

rt = �t�1 + �t;

�t = ��t�1 + �t:

In the above expressions, rt is realized log return from time t � 1 to t, �t�1 is the

corresponding expected log return conditional on market participants' information at time

t � 1,1 �t � i.i.d. N(0; �2� ), �t � i.i.d. N(0; �2�), and j�j < 1.

�t and �t may or may not be correlated with each other. A non-zero correlation means

that an innovation in current stock price will a�ect the expectations of future stock returns.

Empirically, we �nd very little evidence that �t and �t are correlated. The likelihood ratio

tests (�2(1)� 1) suggest that the zero correlation between �t and �t cannot be rejected even

at a very high signi�cance level (say 20%). For this reason, we will assume Corr(�t; �t) = 0

to simplify our investigations.

In this paper, we assume that economic agents know the true values of model parameters

such as �, ��, and �� unless there are other explicit speci�cations.

Model I is attractive in several aspects. First, it has a very simple form. Second, like the

random walk, AR processes have been well studied. Third, the model is very similar to some

popular single-factor term structure model. (See Vasicek (1977)). If interest rates (expected

returns to riskfree bonds) follow some kind auto-regressive process, it seems natural to model

the expected returns of other assets in this way. As for the basic characteristics of model I,

please see Conrad and Kaul (1988) and Campbell (1991) for discussions.

Model I was �rst used in the empirical study by Conrad and Kaul (1988). Conrad

and Kaul (1988) focus on the predictability of stock returns at a very short horizon. Using

weekly returns of 10 sized-based portfolio returns, they show that the assumption of constant

expected returns is strongly rejected.

The purpose of this subsection, however, is rather comprehensive. Besides the perfor-

mance of the model at short horizons, we are also interested in the performance of the model

at longer horizons. The results of this subsection will provide a basis for the comparison

1We assume that �t�1 is known by market participants but not by econometricians.
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between model I and some other models.

The estimation results for Model I are reported in Table II. The estimates of auto-

regression parameter � lie between 0 and 1 and are signi�cantly di�erent from 0 and 1. The

estimates capture the positive auto-correlations of stock returns at short horizons. Actually,

the small estimates of the standard deviation �� reported in the table suggest that expected

returns �t are very close to realized returns rt.

To assess the performance of Model I, and other models, we use the following criteria:

(1) conditional forecast unbiasedness at various horizons, that is, an intercept close to zero

and a slope coe�cient close to one for the regression of returns over any time horizon

on the corresponding forecasted returns; (2) high goodness-of-�t; (3) forecasts that �t the

important properties of the observed data such as autocorrelations of stock returns; (4) high

informational e�ciency, that is, the forecasts incorporate important information available

to investors such as dividend yields, past stock returns, and past model forecast errors.

Now we evaluate how well Model I meets these criteria.

First, let's test the relationship between ex post returns rt;t+k and the corresponding ex

ante forecasts Et(rt;t+k) by a simple linear regression

rt;t+k = b0 + b1Et(rt;t+k) + ut;t+k: (1)

If Et(rt;t+k) is a conditionally unbiased forecast of rt;t+k, we will have b0 = 0 and b1 = 1.

Table III reports the regression results of equation (1) over horizons k from as short as

one month to as long as 10 years. For the longer-horizon returns, the observations in the

data overlap. The standard errors in the table have been adjusted for this overlap using

the method of Hanson and Hodrick (1980).

The most striking aspect of the Table is that Model I has reasonable one-period ahead

prediction power for stock returns, but has no prediction power at all for stock returns over

longer horizons (say over six months.) TheR2 of the one month returns is close to 3 percent.2

The R2's for longer-horizon returns, however, are almost zero. Moreover, the estimated

2This value is much smaller than the values obtained by Conrad and Kaul (1988) for weekly returns but

is consistent with those values typically found in studies with monthly data.
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slopes become considerably negative and forecast errors ut;t+k become signi�cantly auto-

correlated (the auto-correlations of forecast errors are not reported here to save space) for

longer-horizon returns.

Table IV presents the implied auto-correlations for the model. Comparing the results

in this table with those in Table I, we see that the model can reasonably match the �rst

order auto-correlation of monthly returns, but is absolutely incapable of matching auto-

correlations of long-horizon stock returns.

To test the information content of extracted expected returns, we regress the realized

one-month returns on the corresponding extracted expected returns and predetermined

dividend-price ratios simultaneously in the following model:

rt = �0 + �1Et�1(rt) + �2dpt + ut; (2)

where dpt are demeaned log dividend-price ratios. The dividend-price ratio for each date is

de�ned as the total dividends paid over past three months over the current stock price and is

extracted from the di�erences between cum-dividend returns and ex-dividend returns from

CRSP monthly index. The choice of dividend yields here is mainly based on the �ndings

in other work that dividend yields have considerable power to predict future stock returns

(see, for example, Fama and French 1988 and Campbell 1991).

If Model I is a complete model of expected returns, then �1 = 1 and �2 = 0. The

�ndings reported in Table V are again unfavorable to Model I. Di�erent from what is found

by Conrad and Kaul for weekly returns, the regressions here show that dividend-price ratios

are still signi�cantly related to stock returns even when the extracted expected returns are

included as regressors.

To summarize, we �nd that Model I, a simple AR(1) model of expected returns, has

reasonable capacity to capture the movements of stock returns over short-horizons but does

a poor job in characterizing the movements of expected stock returns over longer-horizons.

As a matter of fact, besides what are reported above, there is another serious problem with

the model. Expected returns in Model I, according to Table II, are almost as volatile as

realized returns and are very likely to become negative. Although some theoretical models
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such as Merton (1973), Breeden (1979), and Cox, Ingersoll, and Ross (1985) do not rule

out negative expected returns, the over volatile expected returns and high probability of

negative expected (nominal) returns and negative expected market equity premia are still

hard to be accept theoretically.

1.2 Model II

In the above subsection, we have shown that Model I, a �rst-order auto-regressive model,

does not match the properties of historical data. Now we turn to some other alternative

models.

Model II assumes that log prices have two components: one permanent component plus

one transitory component, as suggested by Fama and French (1988), Poterba and Summers

(1988), and Summers (1986). Since the ability of the model to �t the actual data has not

been documented in the literature, this subsection is going to evaluate the model empirically.

Let pt denote the logarithm of detrended asset price at time t. This model can be

written as

pt = qt + zt;

qt = qt�1 + �t;

zt = �zt�1 + �t; (3)

where �t � i.i.d.N(0; �2�), �t � i.i.d.N(0; �2�), and j�j < 1. � and � are assumed to be

mutually independent.

Ignoring any dividend yields, we can easily �nd that asset returns can be expressed in

the following state-space form

Model II:

rt � �pt = �zt + �t;

zt = �zt�1 + �t:

Model II looks very similar to Model I. The only di�erence is that in Model I, the

expected return �t is speci�ed as an AR(1) process, while in the current model, �zt follows
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an ARMA(1,1) process

�zt = ��zt�1 + �t � �t�1: (4)

.

Based on the model speci�cation (Model II), we have

�z(k) � Corr(zt+k � zt; zt � zt�k)

=
2�k

� �2k � 1

2� 2�k
; (5)

�(k) � Corr(rt;t+k; rt�k;t) = Corr(pt+k � pt; pt � pt�k)

= �z(k) �
2(1� �k)�2�=(1� �2)

2(1� �k)�2�=(1� �2) + k�2�
: (6)

It is easy to show that �z(k) approaches �0:5 and �(k) approaches �1=(2+k �s) for large

k, where s = (1��2)�2� =�
2

�. If the stock price does not have a random-walk component, i.e.,

if �� = 0, �(k) equals to �z(k) and approaches �0:5 eventually. Otherwise, �(k) will diverge

from �z(k) gradually and approach 0 for large k. This implies that if the random walk

component is present, the autocorrelations of asset returns at long horizon will disappear

gradually and �(k) will have a typical U-shape. This fact has also been documented by

others (see, for example, Fama and French 1988a).

We now use model II to characterize cum-dividend returns in this subsection, though it

is originally derived for returns without allowing for dividends.3 The parameter estimates

of the model for various return series are reported in Table VI. We can �nd from the Table

that � for each equal-weighted return series is close to but less than one. The small standard

deviations suggest that all �'s are precisely estimated and are signi�cantly di�erent from

zero and one. The relative large standard deviation �� also tells us that the stationary

components in stock prices are very important.

Table VII shows the regression results of ex post returns on the corresponding ex ante

expected returns based on Model II. Comparing this Table with the related Table obtained

from model I, we �nd that the new results are much better than those in Table III for

3The results for stock index with dividends and those for stock index excluding dividends are almost the

same. The reason is that the variation in dividends is relatively small.
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longer-horizon returns. The R2 values for returns over 4 to 5 years can be as high as 30-

40 percent. Table VIII shows that the model can well capture the long-horizon negative

auto-correlations of stock returns.

For short period returns, however, Model II is not so appealing. The R2's for one month

returns are so small that we must exclude Model II as an e�ective model for characterizing

return movements at short periods. Tables VIII and IX show the same problem of Model

II for explaining predictability of short-horizon returns. The implied auto-correlations of

short-horizon returns are slightly negative but the data suggest positive autocorrelation,

the forecast errors for short-horizon returns are signi�cantly and positively auto-correlated,

and moreover, after including dividend yields dp as an explanatory variable, the expected

returns Et�1(rt) extracted from Model II become insigni�cant in explaining realized return

variations.

In summary, Model II does a good job of forecasting long-horizon returns, but is not


exible enough to match the behavior of expected returns at short horizons.

2 A New State-space Model

To capture the positive auto-correlations of short-horizon returns and negative auto-correlations

of long-horizon returns, this section extends Model II to a more general model, Model III.

In Model III, the transitory component zt of price not only depends on its own past value

zt�1, but also relies on another underlying state variable xt�1. Formally, Model III can be

written as:

pt = qt + zt;

qt = qt�1 + �t;

zt = �zt�1 + 
xt�1 + �t;

xt = �xt�1 + �t; (7)

where xt is some kind of state variable, �t � i.i.d.N(0; �2
�
), and � and � are constants

such that j�j � 1 and j�j < 1. All other variables are the same as those in Model II. For
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simplicity, we assume that noise terms �, � and � are mutually independent.

We can rewrite the above state-space model in terms of stock returns:

Model III:

rt = zt � zt�1 + �t;

zt = �zt�1 + 
xt�1 + �t;

xt = �xt�1 + �t:

At �rst glance, Model III is a simple variation of Model II. However, as we shall see below,

the inclusion of the additional state variable xt provides the model additional 
exibility to

�t the return process over both long and short horizons.

The intuition of Model III is quite straightforward. Similar to Model II, log stock

price has two components: a random walk and a transitory part. Unlike Model II, the

transitory part of stock price, zt, is now no longer a univariate AR(1) process; it also

depends on some state variable x, which can be interpreted in many ways, preferences,

fashions, fads, economic states, etc. One-period stock returns now can be expressed as

rt+1 = �(1 � �)zt + 
xt + �t+1 + �t+1. It is easy to see that at short horizon, xt may

play a very important role in characterizing the movements and the auto-correlations of

stock returns, especially when � is very close to 1. Since xt is positively auto-correlated if

� > 0, it is not surprising that short horizon returns can be positively correlated. At long

horizon, xt become less important in a�ecting auto-correlations of stock returns and the

properties of Model III are similar to those of Model II. Therefore, although Model III is

parsimonious, it has very rich dynamics at both short and long horizons. Figures 1 and

2 illustrate several possible �rst-order auto-correlation curves implied by Model III. These

�gures show that Model III is able to capture a wide range of auto-correlation patterns.

For a technical discussion of the properties of Model III, please see the Appendix.

If xt is an unobservable state variable, it cannot be identi�ed in state-space model III

without a restriction on parameters. For this reason, we will normalize variable xt so that

�2
�
= 1.
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Figure 1: First-order Auto-correlations of k-period Returns Generated by Model

III. The �gure plots autocorrelation curves �(k) = Corr(rt;t+k; rt�k;t) based on the following

parameter values: �� = 1, �� = 2, �� = 0, � = 0:7.
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Figure 2: First-order Auto-correlations of k-period Returns Generated by Model

III. The �gure plots auto-correlation curves �(k) = Corr(rt;t+k; rt�k;t) based on the follow-

ing parameter values: �� = 1, �� = 2, �� = 1, � = 0:7.
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To evaluate Model III more carefully, we will apply the model not only to the data in

full sample period 1927{1994, but also to the data in postwar period 1946{1994. Since we

�nd that the results for the postwar period are very similar to those for the full sample

period, in the following discussions, we are going to focus on the results for the full sample

period.

Table X shows the estimated parameters. The large values of 
 demonstrate that state

variable x plays a very important role in characterizing stochastic movements in stock

returns. As we know, Model III nests Model II with two more free parameters 
 and �. If

we use likelihood ratio test, we will always strongly reject Model II with values of a �2(2)

statistic larger than 25. (The test statistics are not reported in tables.)

The regression results of ex post returns on extracted expected returns are presented in

Table XI. We can �nd that the R2's for longer-horizon returns are similar to those in Table

VII. However, the R2's for short-horizon returns are typically larger than those fromModels

I and II. A four percent R2 for one-month returns is much higher than the corresponding

R2's obtained from previous models and is also higher than the typical R2 values obtained

by VAR models with several variables. Table XI also shows that the constant intercepts

are close to zero and that the slopes of expected returns in regression is very close to one.

This is exactly what we expect from a good model. Actually, the slopes here are closer to

1.0 than slopes in any previous models. Their standard errors are also much smaller.

Table XII shows again that Model III is a good forecasting model. The estimated serial

correlations of forecast errors ut;t+k are consistently very close to zero and are almost always

smaller than the standard errors of the estimated auto-correlations.

Table XIII presents the implied autocorrelations of the model. The implied autocorrela-

tions match the sample autocorrelations in Table I very well for both short-horizon returns

and longer-horizon returns. To illustrate this point more clearly and more intuitively, we

also present several plots here. Figures 3 and 4 exhibit implied auto-correlations and cor-

responding sample auto-correlations for both nominal and real return series. We see that

implied auto-correlation curves and sample auto-correlation curves are very close to each
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Figure 3: Implied and Sample First-order Auto-correlations of k-period Stock

Returns. The �gure plots autocorrelation curves �(k) = Corr(rt;t+k; rt�k;t) based on Model

III and CRSP Equal-Weighted Nominal Returns (1927{1994).

other and that implied auto-correlations always lie in the 95% con�dence intervals of sample

autocorrelations.

The information e�ciency of extracted expected returns is reported in Table XIV. We

see that the dividend yields almost fully lose their predicting power for returns after the

extracted expected returns are included in regressors. This �nding is exciting, but is not

very surprising given the already high R2's for one-month returns.

In summary, the results in this section suggest that Model III meets all four criteria for

good models. This �nding is striking: with only the past returns, a parsimonious state space

model characterizes the movements in returns at both short and longer-horizons excellently.
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Figure 4: Implied and Sample First-order Auto-correlations of k-period Stock

Returns. The �gure plots autocorrelation curves �(k) = Corr(rt;t+k; rt�k;t) based on Model

III and CRSP Equal-Weighted Real Returns (1927{1994).
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3 Concluding Remarks

This paper compares various models for characterizing stochastic movements in asset returns

and prices. It shows that the existing popular models typically have serious 
aws. The paper

then proposes a parsimonious model (Model III) with two state-variables to characterize

the stochastic behavior of asset returns. Using equal-weighted CRSP monthly returns, we

�nd this model outperforms other models.

The major �ndings of this paper are (1) the time-variation of expected returns can be

well characterized by the structural state-space model III, which captures the autocorrela-

tions of returns excellently over both short and long horizons; (2) although the forecasts

obtained with state-space model III based solely on past returns, they subsume the informa-

tion in other potential predictor variables such as dividend yields; (3) the state-space model

III not only predicts the short-horizon returns quite well, but also predicts longer-horizon

returns very successfully; and (4) the extracted expected returns can explain a substantial

proportion of the variation in realized returns. At a horizon of 2 to 3 years, this proportion

reaches about 20 to 25 percent; at a horizon of 8 years, the proportion can be as high as

60 percent. The paper also shows that Model III, a parsimonious model in which two state

variables characterize the stochastic behavior of stock returns outperforms other models

such as VAR, a �rst-order auto-regression model of expected returns, and the model in

which the transitory component follows a simple AR(1) process.

Similar results can also be obtained for value-weighted returns. However, value-weighted

returns are generally less predictable than equal-weighted returns.

The �ndings of this article may have interesting implications for Intertemporal CAPM,

asset allocation, and even option pricing because they depend on expected returns and risks.

A better understanding of the behavior of stock returns (and therefore related risks) at long

and short horizons should help in our evaluating of these models. Future research is needed

to explore these implications.

18



Appendix: A Technical Analysis of Model IV

The appendix discusses the properties of Model IV in Section 6 technically.

Model IV:

rt = zt � zt�1 + �t;

zt = �zt�1 + 
xt�1 + �t;

xt = �xt�1 + �t:

First, let's consider the case where j�j < 1. By de�nition, the correlation of zt+k � zt

and zt � zt�k , the �rst-order auto-correlation of k-period change in zt, is

�z(k) =
Cov(zt+k � zt; zt � zt�k)

Var(zt+k � zt)
: (8)

The numerator covariance is

Cov(zt+k � zt; zt � zt�k) = ��
2

z + 2Cov(zt+k; zt)� Cov(zt+2k; zt); (9)

and the variance in the denominator is

Var(zt+k � zt) = 2�2z � 2Cov(zt+k ; zt): (10)

On the other hand, we can prove by recursion that

Cov(zt+k; zt) = �k�2z + 
(
k�1X

i=0

�i�k�1�i)Cov(zt; xt): (11)

As a result,

�z(k) =
��2z + 2�k�2z � �2k�2z + 
(2

Pk�1
i=0 �

i�k�1�i
�
P

2k�1
i=0 �i�2k�1�i)Cov(zt; xt)

2�2z � 2
(
Pk�1

i=0 �
i�k�1�i)Cov(zt; xt)

(12)

where

Cov(zt; xt) =
�
 � �2x + Cov(�t; �t)

1� ��
: (13)

It is now straightforward to verify that Cov(zt+k ; zt) approaches zero and Var(zt+k�zt)

approaches 2�2z for large k whenever j�j < 1 and j�j < 1. This means that �z(k) approaches

�0:5 for large k as in Model III.
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If the changes in the random walk and stationary components are independent, we have

�(k) � Corr(rt;t+k; rt�k;t) = Corr(pt+k � pt; pt � pt�k)

= �z(k)
Var(zt+k � zt)

Var(zt+k � zt) + Var(qt+k � qt)

= �z(k)
2�2z � 2Cov(zt+k ; zt)

2�2z � 2Cov(zt+k ; zt) + k�2�
: (14)

The asymptotic property of �(k) for large k in the current model is the same as that in

Model III if j�j < 1 and j�j < 1. If �� = 0, �(k) is the same as �z(k) and approaches �0:5.

Otherwise, since

Cov(zt+k ; zt) = �k�2z + 
(
k�1X

i=0

�i�k�1�i)Cov(zt; xt)

approaches zero and k�2� goes to in�nity as k !1, the random walk component dominates

for large k and �(k) approaches 0.

If � = 1, we can prove that

Var(zt+k ; zt) = k(�2� + 
2�2x) + 2
2(
k�1X

i=1

(k � i)�i)�2x; (15)

and that

Cov(zt+k � zt; zt � zt�k) = 
 �
(1� �k)2

1� �
�Cov(z; x) > 0: (16)

This ensures that �z(k) > 0 and �(k) > 0 for any horizons k.

20



References

[1] Bekaert, G. and R.J. Hodrick(1992): \Characterizing Predictable Components in Ex-

cess Returns on Equity and Foreign Exchange Markets," Journal of Finance 47, 467-

509.

[2] Breeden, D.(1979): \An intertemporal asset pricing model with stochastic consumption

and investment opportunities," Journal of Financial Economics 7, 265-296.

[3] Breen, W., L.R. Glosten, and R. Jagannathan(1989): \Economic signi�cance of pre-

dictable variations in stock index returns," Journal of Finance 44, 1177-1190.

[4] Campbell, J.Y.(1987): \Stock returns and the term structure," Journal of Financial

Economics 18, 373-400.

[5] Campbell, J.Y.(1991): \A variance decomposition for stock returns," Economic Jour-

nal 101, 157-179.

[6] Campbell, J.Y. and J. Ammer(1993): \What moves the stock and bond market? A

variance decomposition for long-term asset returns," Journal of Finance 48, 3-37.

[7] Campbell, J.Y. and Y. Hamao(1992): \Predictable stock returns in United States and

Japan: A study of long-term capital market integration," Journal of Finance 47, 43-69.

[8] Campbell, J.Y. and R. Shiller(1988): \The dividend-price ratio and expectations of

future dividends and discount factors," The Review of Financial Studies 1, 195-228.

[9] Cochrane, J.H.(1988): \How big is the random walk component of GNP?" Journal of

Political Economy 96, 893-920.

[10] Cochrane, J.H.(1992): \Explaining the variance of price-dividend ratios," The Review

of Financial Studies 5, 243-280.

[11] Conrad, J. and G. Kaul(1988): \Time-variation in expected returns," Journal of Busi-

ness 61, 409-425.

21



[12] Cox, J., J. Ingersoll, and S. Ross(1985): \An intertemporal general equilibrium model

of asset prices," Econometrica 53, 363-384.

[13] Culter, D.M., J.M. Poterba, and L.H. Summers(1989): \What moves stock prices?"

Journal of Portfolio Management 15, 4-12.

[14] Fama, E.F. and K.R. French(1988a): \Permanent and temporary components of stock

prices," Journal of Political Economy 96, 246-273.

[15] Fama, E.F. and K.R. French(1988b): \Dividend yields and expected stock returns,"

Journal of Financial Economics 22, 3-25.

[16] Fama, E.F. and G.W. Schwert(1977): \Asset returns and in
ation," Journal of Finan-

cial Economics 5, 115-146.

[17] Ferson, W.E.(1989): \Changes in expected security returns," Journal of Finance 44,

1191-1217.

[18] Ferson, W.E. and R.A. Korajczyk(1995): \Do arbitrage pricing models explain the

predictability of stock returns?" Journal of Business 68, 309-349.

[19] Hanson, L.P. and R.J. Hodrick(1980): \Forward exchange rates as optimal predictors of

future spot rates: An econometric analysis," Journal of Political Economy 88, 829-853.

[20] Hanson, L.P. and K.J. Singleton(1983): \Stochastic consumption, risk aversion, and

the temporary behavior of asset prices," Journal of Political Economy 96, 246-273.

[21] Jegadeesh, N.(1990): \Evidence of predictable behavior of stock returns," Journal of

Finance 45, 881-898.

[22] Kandel, S. and R. Stambaugh(1988): \Modeling expected stock returns for long and

short horizons," Rodney L. White Center Working Paper, No. 42-88, Wharton School,

University of Pennsylvania.

[23] Keim, D.B. and R.B. Stambaugh(1986): \Predicting returns in the stock and bond

markets," Journal of Financial Economics 17, 357-390.

22



[24] Lo, A.W. and A.C. MacKinlay(1988): \Stock market prices do not follow random

walks: Evidence from a simple speci�cation test," The Review of Financial Studies 1,

41-66.

[25] Merton, R.(1973): \An intertemporal capital asset pricing model," Econometrica 41,

867-888.

[26] Poterba, J.M. and L.H. Summers(1988): \Mean reversion in stock prices: Evidence

and implications," Journal of Financial Economics 22, 27-59.

[27] Roll, R.(1988): \R2," Journal of Finance 43, 541-66.

[28] Summers, L.H.(1986): \Does the stock market rationally re
ect fundamental values?"

Journal of Finance 41, 591-601.

[29] Vasicek, O.(1977): \An equilibrium characterization of the term structure," Journal

of Financial Economics 5, 177-188.

23



Table I: Summary Statistics of Equal-Weighted Monthly CRSP Returns. The

table reports the �rst-order auto-correlations of stock returns at various time horizons.

The standard errors of auto-correlations are adjusted for the overlap of observations on

longer-horizon returns with the method of Hanson and Hodrick (1980).

k (Months) 1 6 12 24 36 48 60 120

Panel A: 1927{1994

Nominal 0.164 0.030 -0.030 -0.172 -0.290 -0.465 -0.482 -0.347

(S.E.) (.035) (.070) (.103) (.133) (.123) (.113) (.121) (.194)

Real 0.166 0.021 -0.068 -0.235 -0.325 -0.480 -0.506 -0.208

(S.E.) (.035) (.070) (.101) (.129) (.129) (.125) (.127) (.251)

Panel B: 1946{1994

Nominal 0.166 -0.047 -0.100 -0.208 -0.053 -0.197 -0.411 -0.707

(S.E.) (.041) (.084) (.116) (.152) (.190) (.239) (.240) (.316)

Real 0.182 -0.019 -0.072 -0.219 -0.064 -0.141 -0.314 -0.463

(S.E.) (.041) (.084) (.115) (.150) (.185) (.238) (.249) (.299)

Table II: Estimates of Model I (Full Sample)

Model I

rt = �t + �t

�t = ��t�1 + �t

� �� ��

(SE) (SE) (SE)

Nominal .166 .728 7.27

(.034) (.030) (.180)

Real .168 .729 7.29

(.034) (030) (.180)

24



Table III: Estimates of Regressions of Realized k-period Returns on Correspond-

ing Forecasted Returns: rt;t+k = b0 + b1Et(rt;t+k) + ut;t+k (Full Sample).

Model I

k (Months) 1 6 12 24 36 48 60 120

Panel A: Nominal Returns

R2 0.027 0.000 0.005 0.000 0.000 0.001 0.004 0.002

b0 -0.000 0.019 0.044 -0.114 -0.458 -0.153 1.118 9.825

(.256) (1.67) (3.44) (6.30) (8.57) (9.23) (8.36) (9.83)

b1 1.001 0.179 1.328 -0.433 -0.500 -1.228 -2.116 -1.364

(.211) (.516) (.753) (1.08) (1.19) (1.38) (1.49) (1.06)

Panel B: Real Returns

R2 0.028 0.000 0.004 0.001 0.001 0.003 0.005 0.003

b0 -0.000 0.000 -0.010 -0.299 -0.833 -0.810 -0.001 4.568

(.257) (1.67) (3.38) (5.88) (7.76) (8.34) (7.84) (12.8)

b1 1.001 0.153 1.179 -0.801 -0.887 -1.667 -2.278 -1.651

(.208) (.507) (.732) (1.03) (1.09) (1.24) (1.30) (.900)

Table IV: Implied Auto-correlations of Stock Returns. The implied statistics are

functions of the estimated parameters of the model (Full sample).

Model I

k (Months) 1 6 12 24 36 48 60 120

Nominal 0.164 0.030 0.015 0.007 0.005 0.004 0.003 0.001

Real 0.166 0.030 0.015 0.007 0.005 0.004 0.003 0.001
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Table V: Estimates of Regressions of Realized One-month Returns on Forecasted

Returns and Dividend Yields: rt = �0 + �1Et�1(rt) + �2dpt + ut (Full Sample).

Model I

�0 �1 �2 R2

(SE) (SE) (SE)

Nominal -0.000 1.005 1.522 0.032

(.256) (.210) (.731)

Real -0.002 1.003 1.616 0.033

(.256) (.208) (.733)

Table VI: Estimates of Model II (Full Sample)

Model II

rt = �zt + �t

zt = �zt�1 + �t

� �� ��

(SE) (SE) (SE)

Nominal 0.983 7.377 0.179

(.007) (.182) (.033)

Real 0.982 7.392 0.100

(.007) (.280) (19.52)
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Table VII: Estimates of Regressions of Realized k-period Returns on Correspond-

ing Forecasted Returns: rt;t+k = b0 + b1Et(rt;t+k) + ut;t+k (Full Sample).

Model II

k (Months) 1 6 12 24 36 48 60 120

Panel A: Nominal Returns

R2 0.005 0.042 0.086 0.166 0.219 0.285 0.345 0.393

b0 0.137 1.021 2.065 3.628 4.354 5.801 7.713 13.43

(.267) (1.73) (3.60) (6.55) (8.91) (10.3) (10.7) (10.1)

b1 1.059 1.173 1.360 1.506 1.480 1.543 1.521 1.061

(.500) (.478) (.548) (.546) (.526) (.487) (.426) (.294)

Panel B: Real Returns

R2 0.006 0.050 0.103 0.194 0.249 0.311 0.371 0.406

b0 0.192 1.447 3.000 5.471 6.805 9.004 11.55 15.65

(.273) (1.76) (3.59) (6.25) (8.27) (9.51) (10.0) (12.5)

b1 1.067 1.194 1.392 1.505 1.436 1.469 1.457 1.019

(.466) (.444) (.501) (.481) (.452) (.419) (.378) (.299)

Table VIII: Implied Auto-correlations of Stock Returns. The implied statistics are

functions of the estimated parameters of the model (Full sample).

Model II

k (Months) 1 6 12 24 36 48 60 120

Nominal -0.008 -0.048 -0.092 -0.167 -0.229 -0.279 -0.319 -0.435

Real -0.009 -0.053 -0.100 -0.180 -0.244 -0.295 -0.336 -0.447
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Table IX: Estimates of Regressions of Realized One-month Returns on Forecasted

Returns and Dividend Yields: rt = �0 + �1Et�1(rt) + �2dpt + ut (Full Sample).

Model II

�0 �1 �2 R2

(SE) (SE) (SE)

Nominal 0.109 0.842 1.141 0.008

(.268) (.522) (.772)

Real 0.155 0.867 1.259 0.010

(.274) (.482) (.766)
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Table X: Estimates of Model III

Model III

rt = zt � zt�1 + �t

zt = �zt�1 + 
xt�1 + �t

xt = �xt�1 + �t

� 
 � �� ��

(SE) (SE) (SE) (SE) (SE)

Panel A: 1927{1994

Nominal 0.183 7.203 0.973 0.821 0.299

(.050) (.407) (.011) (1.53) (2.00)

Real 0.973 7.181 0.186 0.017 1.145

(.008) (.176) (.034) (.022) (.037)

Panel B: 1946{1994

Nominal 0.181 5.145 0.974 0.017 0.010

(1.20) (.721) (2.04) (1.19) (1.01)

Real 0.978 5.206 0.195 0.226 0.004

(.009) (.143) (.040) (.384) (1.51)
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Table XI: Estimates of Regressions of Realized k-period Returns on Correspond-

ing Forecasted Returns: rt;t+k = b0 + b1Et(rt;t+k) + ut;t+k.

Model III

k (Months) 1 6 12 24 36 48 60 120

Panel A: Nominal Returns, 1927{1994

R2 0.036 0.042 0.092 0.167 0.221 0.288 0.348 0.370

b0 0.152 0.923 1.962 3.360 4.046 5.492 7.415 13.32

(.256) (1.69) (3.57) (6.54) (8.92) (10.4) (10.9) (10.3)

b1 1.010 0.787 0.969 1.087 1.114 1.211 1.234 0.930

(.184) (.313) (.376) (.392) (.392) (.377) (.342) (.267)

Panel B: Real Returns, 1927{1994

R2 0.037 0.050 0.108 0.192 0.248 0.312 0.372 0.395

b0 0.224 1.405 3.027 5.361 6.669 8.856 11.37 15.34

(.258) (1.72) (3.56) (6.23) (8.26) (9.52) (10.1) (12.6)

b1 1.015 0.820 1.002 1.092 1.084 1.150 1.176 0.901

(.180) (.297) (.351) (.351) (.342) (.328) (.305) (.268)

Panel C: Nominal Returns, 1946{1994

R2 0.038 0.059 0.103 0.182 0.244 0.331 0.455 0.612

b0 0.095 0.636 1.377 3.016 4.391 6.105 7.782 9.665

(.214) (1.45) (2.80) (4.84) (6.70) (8.17) (9.14) (6.50)

b1 1.018 0.915 0.962 1.008 1.021 1.110 1.340 1.525

(.213) (.363) (.400) (.393) (.394) (.388) (.378) (.344)

Panel D: Real Returns, 1946{1994

R2 0.042 0.053 0.094 0.172 0.234 0.314 0.419 0.600

b0 0.122 0.923 2.051 4.574 6.816 9.351 12.19 18.85

(.217) (1.54) (3.02) (5.18) (7.07) (8.72) (9.98) (10.8)

b1 1.028 1.006 1.072 1.121 1.114 1.169 1.369 1.500

(.041) (.082) (.116) (.155) (.189) (.244) (.276) (.316)
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Table XII: The Auto-correlations of Forecast Errors. The table presents estimates of

�rst-order auto-regressions of forecast errors ut;t+k: ut;t+k = �0 + �1ut�k;t + et;t+k

Model III

k (Months) 1 6 12 24 36 48 60 120

Panel A: Nominal Returns, 1927{1994

�0 0.000 -0.035 -0.266 0.336 4.849 7.232 7.284 7.863

(.255) (1.61) (3.40) (6.18) (6.47) (7.83) (8.45) (6.34)

�1 -0.001 0.061 0.086 0.043 0.008 -0.036 0.009 -0.176

(.035) (.069) (.104) (.142) (.132) (.139) (.151) (.187)

Panel B: Real Returns, 1927{1994

�0 -0.001 -0.049 -0.330 0.084 3.825 5.073 3.903 0.448

(.256) (1.61) (3.35) (5.98) (7.03) (8.92) (10.1) (14.4)

�1 -0.002 0.053 0.054 -0.004 -0.026 -0.076 -0.023 0.041

(.035) (.069) (.104) (.140) (.145) (.163) (.183) (.295)

Panel C: Nominal Returns, 1946{1994

�0 -0.013 0.189 0.621 1.515 1.729 1.381 1.271 -0.734

(.213) (1.41) (2.69) (4.74) (6.63) (8.72) (10.3) (8.03)

�1 0.001 0.000 0.021 -0.011 0.117 0.038 -0.068 -0.172

(.041) (.083) (.119) (.159) (.197) (.249) (.274) (.346)

Panel D: Real Returns, 1946{1994

�0 -0.014 0.273 0.848 1.926 2.004 1.731 1.753 -3.642

(.215) (1.44) (2.76) (4.91) (6.79) (9.02) (11.0) (9.75)

�1 -0.002 0.016 0.038 -0.030 0.104 0.059 -0.037 -0.100

(.041) (.082) (.116) (.155) (.189) (.244) (.276) (.316)
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Table XIII: Implied Auto-correlations of Stock Returns. The implied statistics are

functions of the estimated parameters of the model.

Model III

k (Months) 1 6 12 24 36 48 60 120

Panel A: 1927{1994

Nominal 0.164 -0.043 -0.123 -0.230 -0.304 -0.356 -0.393 -0.467

Real 0.165 -0.045 -0.127 -0.236 -0.311 -0.365 -0.403 -0.481

Panel B: 1946{1994

Nominal 0.166 -0.041 -0.120 -0.226 -0.300 -0.354 -0.393 -0.477

Real 0.181 -0.027 -0.100 -0.197 -0.268 -0.322 -0.363 -0.463

Table XIV: Estimates of Regressions of Realized One-month Returns on Fore-

casted Returns and Dividend Yields: rt = �0 + �1Et�1(rt) + �2dpt + ut

Model III

�0 �1 �2 R2

(SE) (SE) (SE)

Panel A: 1927{1994

Nominal 0.148 0.981 1.077 0.038

(.257) (.185) (.733)

Real 0.215 0.981 1.134 0.040

(.259) (.182) (.735)

Panel B: 1946{1994

Nominal 0.074 0.933 0.972 0.041

(.214) (.220) (.670)

Real 0.099 0.946 0.893 0.044

(.217) (.213) (.685)
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