
 
Optimal Monetary Policy in a Micro-founded Model 

with Parameter Uncertainty 
 

 
Takeshi Kimura†and Takushi Kurozumi‡ 

Bank of Japan 
 

December 11, 2003 
 

Abstract 

In this paper, we structurally model uncertainty with a micro-founded model, and 
investigate its implications for optimal monetary policy. Uncertainty about deep 
parameters of the model implies that the central bank simultaneously faces both 
uncertainty about the structural dynamic equations and about the social loss function. 
Considering both uncertainties with cross-parameter restrictions based on the 
micro-foundations of the model, we use Bayesian methods to determine the optimal 
monetary policy that minimizes the expected loss. Our analysis shows how 
uncertainty can lead the central bank to pursue a more aggressive monetary policy, 
overturning Brainard’s common wisdom. As the degree of uncertainty about inflation 
dynamics increases, the central bank should place much more weight on price stability, 
and should respond to shocks more aggressively. In addition, when the central bank is 
uncertain about output dynamics, an aggressive policy response can be justified by the 
positive correlation between policy multiplier and transmission of natural rate of 
interest shock as well as the effect of loss-function uncertainty. We also show that 
combining a more aggressive policy response with a highly inertial interest rate policy 
reduces Bayesian risk. 
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1. Introduction 
 

With the New Keynesian Phillips curve, many recent studies have provided rich 

implications for the conduct of monetary policy. The New Keynesian Phillips curve 

can be derived from a variety of supply-side models.1 For example, it can be described 

as the staggered price determination that emerges from a monopolistically competitive 

firm’s optimal behavior in Calvo’s (1983) model. Roughly speaking, firms set nominal 

prices based on the expectations of future marginal costs. However, the New 

Keynesian Phillips curve has been criticized for failing to match the short-run 

dynamics exhibited by inflation.2 Specifically, inflation seems to respond sluggishly 

and display significant persistence in the face of shocks, while the New Keynesian 

Phillips curve allows current inflation to be a jump variable that can respond 

immediately to any disturbance.  

In order to solve this empirical defect of the New Keynesian Phillips curve, 

several studies have proposed a hybrid Phillips curve while keeping a 

micro-foundation.3 This Phillips curve is a modified inflation adjustment equation 

which incorporates endogenous persistence by including the lagged inflation rate in the 

New Keynesian Phillips curve. That is, it nests a purely forward-looking Phillips curve 

as a particular case, and allows for a fraction of firms that use a backward-looking rule 

to set prices. Increasing attention has been recently given to the estimation of the 

hybrid Phillips curve. However, the estimation results vary greatly among studies.4 

That is, there has not been any empirical consensus about what fraction of firms follow 

a rule of thumb. This implies that the central bank faces uncertainty about the degree of 

inflation persistence, which the existing literature has identified as one of the most 

critical parameters affecting the performance of monetary policy.5  

                                                        
1 See Roberts (1995). 
2 See, for example, Fuhrer (1997), Mankiw (2001), and Estrella and Fuhrer (2002). 
3 See Galí and Gertler (1999), Amato and Laubach (2003), Steinsson (2003), and Giannoni and 
Woodford (2003). 
4 See, for example, Fuhrer (1997), Galí and Gertler (1999), Rudebusch (2002), Roberts (2001), Galí et 
al. (2001), Kimura and Kurozumi (2004), and Giannoni and Woodford (2003). 
5 When inflation dynamics can be described as the purely forward-looking New Keynesian Phillips 
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       In this study, we first investigate how the central bank should conduct monetary 

policy under uncertainty about inflation persistence. We use Bayesian methods to 

determine the optimal monetary policy that minimizes the expected social welfare loss, 

given a prior distribution on some uncertain parameters. This approach, initially started 

by Brainard (1967), has recently been followed by Estrella and Mishkin (1999), Hall et 

al. (1999), Martin and Salmon (1999), Svensson (1999), Sack (2000), among others. 

These studies support Brainard’s results that optimal policy should be less aggressive 

in the face of parameter uncertainty.6 One notable exception is Söderström (2002), 

who finds that uncertainty about inflation persistence leads the central bank to pursue a 

more aggressive monetary policy.7 His analysis is based on a backward-looking model 

of Svensson (1997) type with the Old Keynesian Phillips curve, and he assumes that 

the coefficient on lagged inflation in that Phillips curve is allowed to take values 

different from unity in order to introduce parameter uncertainty.  

Instead of a backward-looking model, we use a micro-founded forward-looking 

model with the hybrid Phillips curve. Because of a micro-foundation, we can 

structurally model parameter uncertainty. For example, when the central bank faces 

uncertainty about some structural deep parameters of price-setters, this implies that the 

central bank is uncertain about both inflation persistence and the slope of the Phillips 

curve. But, the central bank can impose cross-parameter restrictions on both 

uncertainties by using information based on the micro-foundation of the model. The 

micro-foundation suggests that weights of a social loss function are directly related to 

structural deep parameters. Therefore, uncertainty on some deep parameters makes the 

central bank face uncertainty about social loss-function weights as well as uncertainty 

about inflation dynamics. But, again, with the information based on the 

micro-foundation, the central bank can impose cross-parameter restrictions between 
                                                                                                                                                                    
curve, price-level targeting performs very well. (See Vestin, 2000). But, Walsh (2003a) suggests that, 
when current inflation is affected by both expected future inflation and lagged inflation, the 
performance of price-level targeting deteriorates significantly as the weight on lagged inflation 
increases. Similarly, Rudebusch (2002) finds that nominal income targeting does well when inflation is 
forward-looking but poorly when it is more backward-looking. 
6 See Walsh (2003b) for a recent survey about monetary policy under uncertainty. 
7  Craine (1979) also shows that uncertainty about the dynamics of the economy leads to more 
aggressive policy, albeit in a univariate model. 
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uncertainty about loss-function weights, uncertainty about inflation persistence, and 

uncertainty about the slope of the Phillips curve.8 

In such a setting, we show how uncertainty can lead the central bank to pursue a 

more aggressive monetary policy, overturning Brainard’s conservatism principle. Two 

conditions that are necessary for Brainard’s conservatism principle are violated in our 

analysis. First, our model is forward-looking and dynamic, whereas the model of 

Brainard (1967) is static. This distinction is important in the presence of uncertainty 

about inflation persistence. As discussed by Söderström (2002), when the dynamics of 

inflation are uncertain, the variances of inflation and output gap increase with the 

distance from target. Thus, when inflation and output are further away from target, the 

uncertainty about their future development is greater. Then, it pays to make sure 

current inflation is very stable by reacting more aggressively to shocks. Second, and 

especially relevant for our analysis, the traditional applications of Brainard’s 

conservatism principle rely on the assumption that the central bank has a fixed loss 

function with known weights on the variability of a specific set of target variables. 

However, when the central bank faces uncertainty about structural deep parameters, 

this assumption is highly misleading. The micro-foundation of the model suggests that 

the weights of social loss function are non-linear functions of the structural deep 

parameters, and when this is the case, the expected weights of loss function change 

drastically as the degree of uncertainty about deep parameters increases. In the case of 

uncertainty about inflation-dynamics, the central bank should place higher weight on 

price stability than in the absence of uncertainty, and respond more aggressively to 

shocks to stabilize inflation. 

     We next examine the time path of optimal monetary policy. Throughout our 

analysis, we assume that the central bank is able to act under commitment. Previous 

literature suggests that under parameter certainty the central bank should adopt a 

highly inertial interest rate policy in order to stabilize inflation, when private agents are 

forward-looking. We confirm that such a principle still holds under parameter 

                                                        
8  Levin and Williams (2003) incorporate the same aspect into an analysis of uncertainty about 
loss-function weights. 
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uncertainty, and show that combining a more aggressive policy response with a highly 

inertial interest rate policy reduces Bayesian risk. This result is completely opposite to 

the result suggested by previous literature. With a backward-looking model, 

Söderström (2002) finds that the central bank should return to a neutral stance soon 

after the bank initially responds to the shocks aggressively, since the strong initial 

move has neutralized a larger part of the shock. However, such a policy response is not 

desirable, when private agents are forward-looking. If the central bank commits to 

initially respond to shocks aggressively, but then soon returns to a neutral stance, the 

bank cannot stabilize the current output gap and thus inflation very much. Instead, by 

exploiting the expectations of the private sector and committing to an aggressive and 

inertial policy, the central bank can stabilize the economy more effectively under 

uncertainty. 

     To confirm that our results do not depend on the specific model, we conduct the 

robustness analysis with alternative models which explain inflation inertia. The hybrid 

Phillips curve in our main analysis is based on Galí and Gertler (1999) and Amato and 

Laubach (2003). We apply our analysis to the alternative hybrid Phillips curves (and 

hence alternative loss functions) suggested by Steinsson (2003) and Giannoni and 

Woodford (2003). 9  Steinsson (2003) proposes a more general specification of 

rule-of-thumb price setting than our baseline model. On the other hand, Giannoni and 

Woodford (2003) propose an indexation approach to explain inflation inertia, which 

differs from the rule-of-thumb approach. With these alternative models, we again find 

that optimal policy response under uncertainty becomes more aggressive than under 

certainty equivalence.  

Finally, we apply our Bayesian approach to the case of uncertainty about output 

dynamics. In this analysis, we use a modified IS curve which nests a purely 

forward-looking IS curve as a particular case, and allows for a fraction of consumers 

that use a backward-looking rule to decide their spending. We assume that central bank 

is uncertain about the degree of endogenous persistence of output, which depends on 

the weight of the rule-of-thumb consumers. We again find a more aggressive policy 

                                                        
9 We are grateful to Andrew Levin for suggesting this robustness analysis. 
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response is needed under uncertainty about output dynamics, and show that such an 

aggressive response can be justified by the positive correlation between policy 

multiplier and transmission of natural rate of interest shock as well as the effect of 

loss-function uncertainty. The positive correlation between policy multiplier and 

transmission of shocks is also based on the micro-foundation of the model, and this 

correlation has been ignored in most of the existing literature that confirms Brainard’s 

conservatism principle. 

The outline of the remainder of the paper is as follows. Section 2 presents the 

model of the economy. Section 3 poses the problem of optimal monetary policy under 

uncertainty about structural deep parameters of price-setters. Section 4 presents the 

simulation results of the model and quantitative analysis of optimal policy. Section 5 

examines the robustness of our results with alternative models explaining inflation 

inertia. Section 6 poses the problem of optimal monetary policy under uncertainty 

about structural deep parameters of consumers. Section 7 offers conclusions. 

 

 

2. A Simple Optimizing Model for Monetary Policy Analysis 
 

In this section, we review a simple optimizing model with known parameters that 

underlies the structural equations and the social welfare function. The model is closely 

related to models discussed in Woodford (1999,2003), Giannoni (2000,2002), Amato 

and Laubach (2003), and Steinsson (2003). We first describe the IS equation, and then 

turn to the Phillips curve. Finally, we describe the social welfare function.  

 

2.1. IS curve 
There is a continuum of consumer-producers, each of them indexed by the product 

 of which it is the monopolistic producer. Household i’s objective is to 

maximize 
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where )1,0(∈β  is the household’s discount factor,  is household i’s consumption 

of the usual Dixit-Stiglitz aggregate,  is the corresponding price index,  is the 

amount of money balances held at the end of period t, and is the household’s 

supply of its good. The vector-valued random disturbance ξ in (1) represents taste 

shifters affecting the utility of consumption, 

i
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)u ξ⋅ , the utility of real money 

balances, (  ; )tχ ξ⋅ , and the disutility of supply, (  ; )tv ξ⋅ . For each value of ξ, the 

functions (  ;u )tξ⋅  and (  ; )tχ ξ⋅  are assumed to be increasing and concave, while 

(  ;v )tξ⋅  is increasing and convex. 

     Expenditure minimization and market clearing imply that the demand for each 

good i is given by 
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Here,  denotes the price that household i charges per unit of its product, θ 

denotes the elasticity of substitution between products, and denotes the aggregate of 

individual household’s output. 

)(ipt
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     Each household maximizes (1) over the sequence , subject to its budget 

constraint. In formulating the household’s budget constraint, we assume that financial 

markets are complete so that risks are efficiently shared. Then, it follows that all 

households face an identical intertemporal budget constraint, and choose identical 

state-contingent plans for consumption and money balances.   
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     Taking a log-linear approximation of the first-order condition characterizing the 

optimal consumption and combining it with the goods market clearing condition lead 

to the following IS equation. 
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Here,  denotes the output gap, where is the percent deviation of 

aggregate output from its steady-state level, and  is the “natural rate of output”, the 

level of output that would obtain if prices were completely flexible.
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10 Natural rate of output can be defined as follows:  
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rate of the aggregate price index, i.e. )/log( 1−≡ ttt PPπ , and  is the nominal interest 

rate.
ti

11  is the “natural rate of interest”, the real interest rate that would obtain if all 

prices were flexible, and that would correspond to the equilibrium nominal interest rate 

in the case of price stability. The parameter measures the intertemporal elasticity of 

substitution in consumption. The term  represents variation in spending that is not 

caused by changes in the real interest rate, such as disturbances to the marginal utility 

of consumption caused by fluctuations in 
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2.2. Phillips Curve 
Monetary policy has real effects in this model because prices do not respond 

immediately to perturbations. Specifically, we assume as in Calvo (1983) that each 

period only a fraction α−1  of suppliers is offered the opportunity to choose a new 

price, while the remaining suppliers have to maintain whichever price they charged 

before. Suppliers are drawn randomly and independent of their own history, in 

particular, regardless of the time elapsed since the last change. In addition, following 

Galí and Gertler (1999) and Amato and Laubach (2003), we allow for a fraction of 

agents that use a simple rule of thumb to make their decisions, and depart from the 

standard Calvo framework. The rule-of-thumb behavior by a fraction of agents can be 

justified by the existence of optimization costs. Optimization costs lead a fraction of 

agents to deviate from behaving optimally each period, and to use a simple rule of 

thumb as an alternative to optimization.  

     We assume that at the beginning of each period those agents who offered the 

opportunity to reset their price learn whether they are choosing a new price by solving 

their optimization problem, or by using the rule of thumb instead. Specifically, 

whenever a supplier finds itself changing its price, with probability λ  it will set the 
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11 More specifically, all log-linearizations are taken around a steady state with zero inflation. Hence, πt 
is by definition the percent deviation from its steady-state value, while it denotes the percent deviation 
of the interest rate from its steady-state value associated with zero inflation.  
12 See footnote 10. 
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price optimally, and with probability λ−1  it will set the price at , following the 

simple rule of thumb 
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where  is the aggregate of the prices newly chosen in period t by both optimizing 

and rule-of-thumb price setters. The rule (5) has the property that it relies on prices 

chosen by optimizing price setters in the previous period. 
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     Since every supplier faces the same demand function (2), all optimizing suppliers 

chosen in period t to adjust their price will choose the same price, , which 

maximizes the expected present discounted profits 
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The first term in brackets represents the household’s utility of consumption in period 

t+j if it chooses price  in the current period. It is the product of marginal utility of 

consumption at date t+j and total revenues from sales at price . The second term 

represents the household’s disutility of providing the amount of goods demanded at 

period t+j. The discount factor for these streams of utility is adjusted for the fact the 

price chosen at date t remains in effect at date t+j with probability . Log-linearizing 

the first-order conditions to the above problem and using the law of motion of the price 

level, we obtain the following hybrid Phillips curve. 
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Here, the parameter ω measures the elasticity of the disutility function v.13 In the case 

                                                        
13 See footnote 10. 
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that all price setters are optimizing, i.e. λ=1, (7) reduces to the so-called “New 

Keynesian Phillips Curve” 
 

tttt xE κπβπ += + ][ 1 . (11)

     Changes in the parameter λ affect two elements of the model. First, smaller values 

of λ increase the degree of endogenous inflation persistence by increasing bγ  and 

decreasing fγ . That is, the importance of the lagged inflation relative to expected 

inflation increases. Second, smaller values of λ reduce the sensitivity of current 

inflation to fluctuations in the current output gap by reducing κ~ . This is because fewer 

price setters take the expected future output gaps into account when resetting their 

prices. 

 

2.3. Social Welfare Function 

Following Amato and Laubach (2003) and Woodford (2003), we can derive a 

second-order Taylor series approximation to the representative household’s welfare. 

Specifically, social welfare can be expressed in the form of a loss function 
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As in most studies, social welfare losses depend on the variability of both inflation and 

output gap. In addition, in our model, the variability of the change in inflation and the 

variability of nominal interest rates also create welfare losses.  

     The presence of the change in inflation in the loss function results from the fact 

that a fraction 1-λ of price setters is learning about the optimal price by observing the 

average prices set in the previous period. Note that the weight on the social loss caused 

by the variability of the change in inflation, , is a non-linear function of the 

parameter λ. Therefore, as the parameter λ declines, this weight increases non-linearly. 
π∆w

The presence of the interest rate in the loss function results partly from transactions 

frictions. Friedman (1969) has argued that high nominal interest rates involve welfare 

costs of transactions. Whenever the deadweight loss is a convex function of the 
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distortion, it is desirable to reduce not only the level but also the variability of the 

nominal interest rate. As Woodford (2003) suggests, such a loss criterion can be 

obtained as a second-order approximation to the household’s utility function (1) in 

which real balances are included.14 In addition, the variability of the nominal interest 

rate should be included in the loss function when one takes into account the fact that 

the nominal interest rate faces a zero lower bound. Rotemberg and Woodford (1997) 

emphasize that for a sufficiently variable process { , perfect stabilization of the 

output gap requires interest-rate variability sufficiently high so that a positive 

steady-state rate of inflation is necessary to avoid the zero lower bound on nominal 

interest rates, and that such a steady-state inflation is welfare reducing due to its effects 

on relative price dispersion. 
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3. Optimal Monetary Policy under Parameter Uncertainty 
 

3.1. Uncertainty about Inflation Persistence and Loss Function 
Recently, a lot of empirical attention has been given to the hybrid Phillips curve (7).  

However, the empirical estimates of the degree of inflation persistence, that is, the 

parameter bγ  and fγ , have been subject to controversy. Fuhrer (1997) statistically 

rejects the importance of forward-looking behavior (suggesting 1=bγ ), although he 

acknowledges that inflation dynamics without forward-looking behavior are 

implausible. Rudebusch (2002) estimates bγ  to equal 0.71, and Roberts (2001) 

suggests a range for bγ  of between 0.5 and 0.7. Although Rudebusch and Roberts 

statistically reject the purely backward-looking Phillips curve, their estimates suggest 

the weight of backward-looking behavior is larger than that of forward-looking 

behavior. In contrast, the estimates of Galí et al. (2001) for bγ  are between 0.03 and 
                                                        
14 In this case, the weight on the social losses caused by the variability in the nominal interest rates, wi, 
is given by 
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where ηi is the elasticity of money demand with respect to the interest rate, and v is steady-state 
velocity of money. 

 10



0.27 with Euro area data, and about 0.35 with US data, suggesting that the weight of 

forward-looking behavior is greater than that of backward-looking behavior. Kimura 

and Kurozumi (2004) also estimate bγ  to equal 0.35 with Japan’s data. At the extreme, 

Galí and Gertler (1999) conclude that inflation persistence is rather unimportant and 

that the purely forward-looking Phillips curve is a reasonable first approximation to 

data (suggesting 0=bγ ).  

tΩ
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     These different estimation results imply that the central bank is uncertain about 

what fraction of price-setters follow a rule of thumb. Here, we assume that the central 

bank knows the structure of the economy, the natural rate of output , the natural rate 

of interest , and all the structural deep parameters except λ. Since the information on 

the parameter λ is not included in the central bank’s information set , i.e. , 

neither are the following parameters. 
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That is, when the central bank is uncertain about what fraction of agents follow a rule 

of thumb, the bank faces two different types of uncertainty: 1) uncertainty about 

inflation dynamics (13); 2) uncertainty about the social welfare function (14). As 

shown in (13)(14), the microeconomic foundations of the model allow us to 

structurally model uncertainty, which means that cross-parameter restrictions between 

two different types of uncertainty can be imposed through the unknown parameter λ. 

Although in this section we focus the parameter uncertainty about λ only, it can provide 

a very rich analysis on monetary policy under uncertainty. 

     We assume that the central bank has a prior belief on the distribution of the 

parameter λ: 
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Here, the parameter λ is assumed to be an i.i.d. random variable. Furthermore, the 
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realizations of the parameter λ are assumed to be drawn from the same distribution in 

each period, so issues of learning are disregarded in our analysis. With the prior belief 

(15) and its own information set , the central bank conducts monetary policy 

under both uncertainty about inflation dynamics and uncertainty about loss function. 

CB
tΩ

 

3.2. Optimal Policy Plan under Uncertainty 
Throughout our analysis, we assume that the central bank is able to act under 

commitment. As a lot of previous literature suggests, commitment policy allows the 

central bank to achieve good performance by taking advantage of the effect of credible 

commitment on the way the private sector forms expectations of future variables. The 

objective of the central bank is to minimize the social welfare loss (12) with its own 

information set and its prior belief on the distribution of the parameter λ.    CB
tΩ

     In order to illustrate why certainty equivalence no longer holds in our model, it is 

instructive to take expectations of social welfare loss (12) conditional on  and to 
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2

,

 

where ][ ππ ∆∆ ≡ wEw CB
t . The third equation shows that the expected value of social 

welfare depends on not only the future deviations of the expected state variables from 

their targets, but also their variances. The central bank’s prior belief leads to the 

                                                        
15 At time t, under uncertainty about the parameter λ, the central bank tries to set its interest rate 
instrument with its prior belief. In our setting, then, inflation, output gap and interest rate are 
simultaneously and instantaneously determined at time t. In this sense, endogenous variables at time t 
are included in the central bank’s information set CB

tΩ . 
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conditional variances of the inflation rate and output gap as follows. 

 ...})1{(][ 2
1

112
1 pitxV tttt

CB
t ++−+−= −

−−−
+ κπαπβαβνπ λ  (17)

            V x  2
1 1[ ] [ ] . .CB CB

t t t tV t i pσ π−
+ += + . (18)

The notation t.i.p. stands for terms that are independent of monetary policy. When the 

parameter λ is known, i.e. , the conditional variances of endogenous variables are 

independent of the state of the economy, thus, independent of monetary policy. 

Therefore, although the expected value of social welfare depends on the conditional 

variances of endogenous variables, optimal policy cannot affect these variances. 

Consequently, optimal policy is independent of the degree of uncertainty in the 

economy, so policy is certainty equivalent. In contrast, when the parameter λ is 

uncertain, i.e. , the conditional variances of the inflation rate and output gap 

depend on the state of the economy, so they can be affected by monetary policy. 

Optimal monetary policy will then minimize not only the future deviations of the 

expected state variables from their targets, but also their variances. Thus, certainty 

equivalence ceases to hold, and optimal monetary policy depends crucially on the 

degree of uncertainty on rule-of-thumb behavior.  

0=λv

0>λv

   There is another reason why certainty equivalence ceases to hold. The expected 

weight that the central bank should place on the variability of the change in inflation, 

i.e. [CB
tw E w ]π π∆ ≡

π

∆ , depends on the degree of uncertainty. This is because the weight 

 is a non-linear function of the parameter λ.       ∆w

 1 1 1[ ] 1CB CB CB
t t tw E w E Eπ π

λ
αλ α λ∆ ∆

−     ≡ = =         
−  (19)

As shown in the next section, given a mean of λ, larger values of v  generally 

increases 
λ

π∆w . That is, as the degree of uncertainty on rule-of-thumb behavior 

increases, the central bank should place higher weight on the variability of the change 

in inflation than the weight in the absence of uncertainty. 

We finally turn to the determination of an optimal policy plan. The objective of 

the central bank is to minimize (16) with respect to the endogenous variables subject to 

conditional variances (17)(18) and the following constraints.  
 

)][(][ 1
1

1
n

tt
CB
ttt

CB
tt rEixEx −−−= +

−
+ πσ , 

(20)
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tt

CB
tftbt xE κγπγπγπ κ++= +− ][ 11 , 

(21)

where 
)}1(1){1(

1
βαλα

λγ
−−−+

−
≡b , 

      
)}1(1){1( βαλα

αβγ
−−−+

≡f ,  

              
)}1(1){1( βαλα

λαγ κ −−−+
≡ . 

 

The equations (20) (21) are obtained by taking expectations of IS curve (3) and Phillips 

curve (7) conditional on the central bank’s information set .CB
tΩ 16 As shown in 

Appendix A, by deriving the first-order conditions with respect to tπ ,  and i , we 

obtain the law of motion for the interest rate implicit in the optimal plan, i.e. the 

interest rate rule which would implement the optimal plan:  

tx t

 

110918

2716514231211

][      

][][

−+

−−+−−+

+++

++++++=

ttt
CB
t

tttt
CB
tttt

CB
tt

xAxAxEA
AAAEAiAiAiEAi ππππ

 
.
 

(22)

Here, Ai (1≤ i ≤ 10) is the parameter which depends on the structural deep parameters 

and the central bank’s prior belief (i.e. λ  and ). This policy “rule” nests several 

types of rules, which previous studies derive, as a special case. For example, when all 

the structural parameters are known, (22) reduces to the rule that Amato and Laubach 

(2003) derive, whose form is the same as (22) but each parameter A

λv

i is different from 

(22). In addition, when all price setters are optimizing, i.e. λ=1, (22) reduces to the 

following simple rule: 

 )( 1952312 −−− −+++= tttttt xxAAiAiAi π , (23)

which Giannoni (2000) derives.  
                                                        

tx

16 Taking expectations of Phillips curve (7) conditional on the central bank’s information set  
leads to  

CB
tΩ

1 1 1[ ] [ ] [ ( )] [ , ( )] [ ]CB CB CB CB CB
t t b t t f t t t t f t t tE E E E Cov E Eπ γ π γ π γ π κ− + += + ⋅ + + % . 

The third term on the right-hand side can be rearranged as follows. 

[ ] [ ]

1 1

1

1[ , ( )] ,

1    1

CB CB b
t f t t t f t t t

f f f

CB CB CB CB CB CB CB CBb
t t f t t t b t f t t t t f t

f f

Cov E Cov x

E E E E E x E E E

γ κγ π γ π π
γ γ γ

γ κπ γ π γ γ κ γ
γ γ

+ −

−

 
= − − 

  
         

         = − ⋅ − − ⋅ − − ⋅                            

%

%
%

fγ






 

Substituting this conditional covariance into the above equation and then rearranging the resulting 
equation yields (21).  
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4. The Effects of Uncertainty about Inflation Dynamics on Optimal 
Policy 

 

In this section, we examine how the degree of uncertainty affects the optimal policy 

response for a given mean of the parameter λ. We report results for 

25.0 ,5.0 ,75.0][ =≡ λλCB
tE . Before proceeding to analyze the properties of optimal 

policy under uncertainty, we discuss how we calibrate the model.  

 

4.1. Calibration and Central Bank’s Prior Belief 
IS curve (3) and Phillips curve (7) contain five known structural parameters (α, β, σ, ω, 

θ), for which values must be specified. These parameters are chosen to equal those 

used by Woodford (2003), which he obtained based on the estimation results of 

Rotemberg and Woodford (1997). That is, α=0.66/quarter, β=0.99/quarter, σ=0.157, 

ω=0.473, and θ=7.88. Furthermore, the social loss function (12) depends on the weight 

on nominal interest rate variability, wi. We choose alternative values for wi, 0.236 and 

0.077, to assess the robustness of our results. The weight wi=0.236 reflects the concern 

for interest rate variability in Rotemberg and Woodford’s model, which is due to the 

zero lower bound on nominal interest rates. The weight wi=0.077 is the implied weight 

on welfare losses resulting from interest rate variability due to monetary transactions 

frictions, as calibrated by Woodford (2003). With regard to the natural rate of interest 

, we assume that its process follows a stationary first-order autoregressive process, 

with mean of zero, standard deviation of 0.93%/quarter and serial correlation 

coefficient of 0.35. This specification is again equal to Woodford’s value.  

n
tr

Since we allow the parameter λ to lie anywhere in the interval [0,1], we assume 

that the central bank’s prior belief about λ formed with a beta distribution, whose 

probability densities of continuous random variables take on values in the interval [0,1]. 

The density function of a beta-distributed random variable λ is given by 

 1 1
1 1 1

0

1( ) ( ; , ) (1 )
(1 )

a b

a b
f f a b

d
λ λ λ

λ λ λ
λ− −

− −
= = −

−∫
 ,  (24)

where a>0, b>0. The mean is [ ] /( )E a a bλ = + , and the variance is 
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2[ ] /( 1)( )V ab a b a bλ = + + + . This functional form with a two-parameter family of 

density is extremely flexible in the shape it will accommodate. (See Figure1.) It is 

symmetric if a=b, asymmetric otherwise, and can be hump-shaped or U-shaped.17  

λ

When the central bank’s prior belief on the parameter λ is based on the beta 

distribution with mean  and variance , the expected weight on the social loss 

caused by the variability of the change in inflation is given as follows.
λv

18 

 
2

(1 )[ (1 ) ][ ]
[ (1 ) (1 )

CB
t

vw E w
v

λ
π π

λ

λ λ λ
]α λ λ λ∆ ∆

− − −
≡ =

− − +
 (25)

The expected weight w π∆

v

depends crucially on the degree of uncertainty. As shown in 

Figure2, larger values of  increase λ w π∆ , given a mean of λ. In the following analysis, 

we set the upper limit of the variance  as λv 2 (1 ) /(1 )λ λ λ− +  in order to keep the 

expected weight w π∆  positive.19  

 

4.2. Initial Policy Response 
Rational expectations equilibrium (REE) with optimal monetary policy is a triplet of 

stochastic processes for inflation, the output gap, and the interest rate, such that it is a 

bounded solution to the system consisting of IS curve (3), Phillips curve (7), and 

optimal policy plan (22), together with the central bank’s expectations of the output 

gap and inflation based on (20) (21). Here, we conduct the simulation, assuming as in 

previous literature that λ  is consistent with its true value λ , i.e.λ λ= . 

     As the first step, we analyze the initial policy response to a natural rate of interest 

shock. The initial policy response can be given by the following parameter  in the 

minimal-state-variable REE process of the nominal interest rate:
1a

20  

                                                        
17 The beta distribution reduces to the uniform distribution over [0,1] if a=b=1.  
18 When the parameter λ is formed with beta distribution, whose probability densities is (24), the mean 
of its inverse is [1/ ] ( 1) /( 1)E a b aλ = + − −

[ ] /(E a

. Then, substituting this mean into (19) and eliminating the 
parameters a and b by using )a bλ = +  and V a , we obtain (25).  2[ ] /( 1)( )b a b a bλ = + + +
19 In the case of 0.5,  λ = where  reaches its upper limit (0.288), the beta distribution reduces to the 
uniform distribution. 

λv

20  As McCallum (1983,2003a,b) suggests, the minimal-state-variable (MSV) REE is the unique 
equilibrium of “well formulated” linear rational expectations models. Since our model satisfies 
requirements for the well formulated models, interest rate process (26) is unique, which justifies the 
comparison of interest rate processes under certainty equivalence and under uncertainty considered 
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1 2 1 3 2 4 1 5 1 6

n
t t t t t t ti a r a a a x a i a iπ π 2− − − −= + + + + + −  .  (26)

We examine how the degree of uncertainty affects the initial policy response  for a 

given 
1a

[ ]CB
tE λ λ≡ .Simulation result, shown in Figure 3, suggests that the initial policy 

response becomes more aggressive as the degree of uncertainty about λ increases. That 

is, Brainard’s conservatism principle does not hold: when the central bank faces 

parameter uncertainty, the optimal response coefficients are larger than under certainty 

equivalence, so optimal monetary policy is more aggressive. This is true for all values 

of λ  and wi .   

     In order to investigate the background of this result, we decompose the total effect 

of uncertainty on the initial policy response into two factors. One is the effect of 

uncertainty about loss function on the policy response; another is the effect of 

uncertainty about inflation dynamics on the policy response. To decompose the total 

effect into these two factors, we calculate the initial policy response with fixed weight 

in the social loss function, i.e. (1 ) /w π λ αλ∆ = − . This presumption means that the 

central bank cares about the effect of the uncertainty about inflation dynamics, but 

ignores the effect of uncertainty about loss function in spite that the bank faces both 

uncertainties. Then, the difference between policy response under total uncertainty and 

policy response with fixed weight in the social loss function shows the effect of 

loss-function uncertainty. The difference between policy response with fixed weight in 

the social loss function and policy response under certainty equivalence shows the 

effect of uncertainty about inflation dynamics.  

     Since we obtain the same results regardless of values of wi , we show only the 

result in the case of wi =0.236. Figure 4 shows that both types of uncertainties, those 

about loss function and inflation dynamics, lead to a more aggressive policy 

response. The reason why loss-function uncertainty results in a more aggressive 

policy is because this uncertainty causes the increase in the expected weight on the 

variability of the change in inflation, as shown in Figure 2. The increase in this 

                                                                                                                                                                    
here to examine the effects of the uncertainty on optimal monetary policy. See McCallum (2003b) for 
details of the well formulated models. Also see McCallum (2003b) for the relationship between MSV 
and determinate REE.  
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expected weight does not generate any new tradeoffs between stabilization of the 

three target variables ( tπ , tπ∆ , tx ), because price stability still achieves the minimum 

of their variances simultaneously. Therefore, the only effect of the increase in 

[CB
tw E w ]π π∆ ≡ ∆  is to decrease the relative weight in interest rate stabilization. Then, 

it is desirable for the central bank to achieve price stability by responding more 

aggressively to shocks at the cost of the variability of the interest rate. The reason 

why uncertainty about inflation dynamics leads to a more aggressive policy is 

because such a policy can reduce uncertainty about the future development of target 

variables. As shown in equations (17) and (18), when the dynamics of inflation are 

uncertain, the conditional variances of inflation and output gap increase with the 

distance from target. Then, it pays to make sure current inflation is very stable by 

reacting more aggressively to shocks.  

      With a backward-looking model, Söderström (2002) finds that uncertainty about 

inflation dynamics leads the central bank to pursue a more aggressive monetary policy. 

We confirm his finding with a micro-founded forward-looking model. In addition, our 

analysis suggests that when the central bank faces uncertainty about inflation dynamics, 

it simultaneously faces loss-function uncertainty, and then it responds to shocks much 

more aggressively by placing much higher weight on price stability. 

 

4.3. Dynamic Policy Response 
The introduction of parameter uncertainty also has interesting implications for the 

dynamic response of monetary policy. Figures 5-6 show the impulse responses to a one 

standard deviation increase in the natural rate of interest, for 0.5λ =  and 

0.25λ = with wi =0.236. As shown in the Figures, the optimal policy response of the 

nominal interest rate is very persistent, exploiting expectations for stabilization 

purposes as described by Woodford(1999, 2003) by inducing a long-lived sequence of 

expected negative output gap. The importance of such a highly inertial policy is 

remarkably invariant to the degree of uncertainty vλ  as well as to changes in λ  and 

wi . (We do not report the figures for 0.75λ =  and wi =0.077, since the main results do 

not change.) 
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     We can confirm more rigorously the desirability of highly inertial interest rate 

policy by investigating the optimal policy plan (22). As shown in Figure 7, as the mean 

of the parameter λ decreases, the coefficients on the two lags of the interest rate in (22), 

i.e. A2 and A3, decrease while the coefficients on the lead-lag of the interest rate, i.e. A1, 

increases. But, the sum of A2 and A3 are still high even when λ  is very low, which 

implies that the inertial policy is desirable. Indeed, Amato and Laubach (2003) find, in 

the case of parameter certainty, that optimal policy plan (22) can be replicated by 

simple policy rule (23) with A2+A3>1 even when λ  is as low as 0.2. In addition, what 

is very important is that, as shown in Appendix A, the coefficients on the two lags of 

the interest rate, A2 and A3, are invariant to the degree of uncertainty. That is, a highly 

inertial interest rate policy is desirable under parameter uncertainty.  

     This finding is completely opposite to that of Söderström (2002). With a 

backward-looking model, he finds that the central bank which faces uncertainty on 

inflation dynamics should return to a neutral stance soon after the bank initially 

responds to the shocks aggressively, since the strong initial move has neutralized a 

larger part of the shock. However, such a policy response is not desirable when private 

agents are forward-looking. If the central bank commits to initially responding to 

shocks aggressively but then returns to a neutral stance soon, the bank cannot stabilize 

the current output gap and thus inflation very much. Instead, by exploiting the 

expectations of the private sector and committing to the inertial policy, the central bank 

can stabilize the economy more effectively. Therefore, when the central bank faces 

parameter uncertainty, it is desirable for the bank to combine an aggressive policy 

response with a highly-inertial policy.  

 

4.4. Variance Frontier 
Finally, we show the expected social loss and the variance frontier. After taking the 

unconditional expectation of (12), the expected social loss becomes 

 ( ) [ ] [ ] [ ] [t x t t iE W V w V x w V wV iπ ]tπ π∆= + + ∆ + , (27)

where the measure of variability for any variable z is used here defined by    
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∑  (28)

Except for discounting, this measure corresponds to the unconditional variance of zt. 

     As shown in Figure 8, the weight on interest rate variability in the social loss 

function introduces a tradeoff between inflation and output gap variability on the one 

hand, and interest rate variability on the other. Since the central bank responds to a 

natural rate of interest shock more aggressively as the degree of uncertainty increases, 

this results in the lower variances of inflation and output gap and the higher variances 

of the interest rate.21 When the degree of uncertainty is very high, say,  reaches its 

upper limit 
λv

2 (1 ) /(1 )λ λ− + λ

                                                       

, the central bank tries to completely stabilize the output 

gap and inflation. This is because the expected weight that the bank should place on 

price stability becomes infinity. But, under such a highly uncertain situation, the 

central bank must pay the very high cost of the variability of the interest rate to 

stabilize the economy. As a result, as shown in Figure 9, in spite of the decrease in the 

variances of inflation and output gap, the expected social loss rises drastically as the 

degree of uncertainty approaches the upper limit.  

 

 

5. Alternative Models with Uncertainty about Inflation Dynamics 
 

In this section, we consider the robustness of our results to confirm that they do not 

depend on any specific model. In the previous sections, we used the hybrid Phillips 

curve (7), which is based on Galí and Gertler (1999) and Amato and Laubach (2003). 

Besides that model, however, there are alternatives to explain inflation inertia. For 

example, Steinsson (2003) proposes a more general specification of rule-of-thumb 

price setting than ours. Instead of (5), he assumes that rule-of-thumb agents set their 

prices to equal the geometric mean of the prices chosen in the previous period by both 

optimizing and rule-of-thumb price setters, adjusted for the previous period’s output 

 
21 Figure 8 shows the result in the case of wi =0.236. Although the variance of nominal interest rate 
increases in the case of wi =0.077, the fundamental feature of the variance frontier remains same. 
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gap as well as for the previous period’s inflation rate. (In (5), rule-of-thumb price 

setters update their prices using only the previous inflation rate, but not the previous 

output gap.) The hybrid Phillips curve which Steinsson (2003) derives nests both the 

New Keynesian Phillips curve and the Old Keynesian Phillips curve as a particular 

case. The approach of Giannoni and Woodford (2003) is different from the 

rule-of-thumb approach. They assume, as in Christiano et al. (2001), that prices are not 

held constant between the dates at which they are re-optimized, but instead are 

automatically adjusted on the basis of the most recent quarter’s increase in the 

aggregate price index, by a percentage that is a fraction of the percentage increase in 

the index. Then, Steinsson (2003) and Giannoni and Woodford (2003) respectively 

derive the social loss function based on a second-order approximation of the 

representative household’s welfare in their models. (See Appendix B for the details.) 

     Although the forms of the hybrid Phillips curves and social loss functions differ in 

details among alternatives, there are two important common features, which are also 

held by our model in the previous sections. First, the weight of rule-of-thumb price 

setters (in the case of Steinsson) and the degree of indexation (in the case of Giannoni 

and Woodford) affect the degree of inflation persistence. Second, the weight of price 

stability in the social loss function is a non-linear function of the weight of 

rule-of-thumb price setters or the degree of indexation. In this setting, when the central 

bank is uncertain about the weight of rule-of-thumb agents or the degree of indexation, 

the bank faces both loss-function uncertainty and inflation-dynamics uncertainty. 

Then, as the degree of uncertainty increases, the expected weight of price stability in 

the loss function increases, and the conditional variances of the target variables 

increase. These lead the central bank to pursue a more aggressive monetary policy. 

Indeed, Figure 10 shows that, in both alternative models, the initial policy response to a 

natural rate of interest shock becomes more aggressive than under certainty 

equivalence. Although the degree of aggressiveness of policy response differs among 

alternatives, these results are clearly opposite to Brainard’s common wisdom.22  

                                                        
22 In the model of Giannoni and Woodford (2003), the degree of aggressiveness of policy response is 
fairly smaller than those of alternative models. This is because, in Giannoni and Woodford’s model, the 
coefficient on the lagged inflation rate in the hybrid Phillips curve increases only up to 1/(1+β) even in 
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We can also confirm that, in the alternative models, a highly inertial interest rate 

policy is desirable under uncertainty. As shown in Appendix B, the coefficients on the 

two lags of the interest rate in each optimal policy plan are invariant to the degree of 

uncertainty. In addition, these coefficients are very high even when the weight of 

rule-of-thumb price setters or the degree of indexation is high. 

 

 

6. The Effect of Uncertainty about Output Dynamics on Optimal 
Policy 

 

Finally, in this section, we apply our Bayesian approach to the case of uncertainty 

about the output dynamics. Söderström (2002) finds, with a backward-looking model, 

that the central bank should respond to shocks less aggressively when the bank is 

uncertain about output dynamics. We examine whether his finding holds in a 

forward-looking model or not. We use a modified IS curve which nests the purely 

forward-looking IS curve (3) as a particular case, and allows for a fraction of 

consumers that follow a rule of thumb to decide their spending. Assuming that central 

bank is uncertain about the weight of rule-of-thumb consumers, we examine the effect 

of uncertainty on optimal monetary policy. 

 

6.1. IS curve and Loss Function with Rule-of-Thumb Consumers 
Following Amato and Laubach (2003), we assume that at the beginning of each period, 

each household learns whether it is able to choose consumption optimally, or whether 

instead it chooses consumption based on a simple rule of thumb. Let ψ  denote the 

                                                                                                                                                                    
the case of full indexation. On the other hand, in the hybrid Phillips curve of Steinsson (2003) and ours, 
the coefficient on the lagged inflation rate converges to 1 as the weight of rule-of-thumb agents 
increases. (See Appendix B1.) This implies that the model of Giannoni and Woodford nests only more 
limited types of Phillips curve than that of Steinsson and ours. Therefore, even when the degree of 
uncertainty about indexation increases up to the upper limit, the central bank does not face a highly 
serious uncertainty about inflation dynamics and loss function. However, taking into account the fact 
that the empirical results of the hybrid Phillips curve varies with studies very significantly, as discussed 
in section 3.1., Giannoni and Woodford’s model does not seem to describe well enough the degree of 
uncertainty which the central bank faces in the real world. 
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probability that a household is able to optimize, which is independent of the 

household’s history. Thus, by the law of large numbers, in each period a fraction ψ  of 

households choose consumption optimally. Since financial markets are assumed to be 

complete so that risks are efficiently shared, all households that have the opportunity to 

choose consumption optimally make the same choice, which we denote by .The 

remaining fraction 

o
tC

ψ−

1( −=

n
tr

1  chooses its consumption in period t, , following the 

simple rule of thumb 

r
tC

2
≡δ

=ψ

 
1−= t

r
t CC . (29)

Here,  is aggregate per capita consumption in period t, which is given by 

. 
tC

o
tC r

tt CC )1( ψψ −+≡

     In this setting, combining the first-order condition characterizing the optimal 

choice  with the goods market clearing condition, Amato and Laubach (2003) 

derives the following IS equation. 

o
tC

 )][(~][) 1
1

11
n

tttttttt rEixExx −−−+ +
−

+− πσδδ ,  (30)

 where . )]~~()1([~
111 tt

n
t

n
t

n
tt ggyyyE −−−−+≡ +−+ δδσ (31)

The parameter ψ  enters (30) and (31) through the following relationships. 
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ψ
−

≡
2

~ . (32)

In the case where all households are able to choose optimally, i.e. 1 , (30) reduces 

to the standard intertemporal IS equation (3). Changes in ψ  affect several elements of 

the model. First, smaller values of ψ  increase the degree of endogenous persistence in 

the output gap, as captured by δ  converging to 0.5 from above as ψ  goes to 0. 

Second, smaller values of ψ  dampen the impact of gaps between the real and natural 

interest rates on the output gap, as captured by 1~−σ  converging to 0 from above as ψ  

goes to 0. Third, smaller values of ψ  reduce the effect of disturbance (through the 

natural rate of interest) on current output.   
tg

Then, following Amato and Laubach (2003) and Woodford (2003), we derive a 

second-order Taylor series approximation to the representative household’s welfare in 

the presence of rule-of-thumb agents (but absent rule-of-thumb price setters). 
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Specifically, social welfare can be expressed in the form of a loss function 
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1

. 

(33)

Since a fraction 1-ψ of households is choosing consumption following the rule of 

thumb (29), fluctuations in output (not only in the output gap) create welfare losses. As 

ψ declines, such losses increase through an increase in the weight , which is a 

non-linear function of ψ. As discussed in the section 2.3., the presence of the interest 

rate in the loss function results from transactions frictions and the non-negativity 

constraint of nominal interest rates.  

yw∆

 

6.2. Optimal Monetary Policy under Uncertainty about Rule-of-Thumb 
Consumers 

Here, we assume that the central bank knows the structure of the economy, the natural 

rate of output , the marginal utility of consumption shock gn
ty t, and all the structural 

deep parameters except ψ. Since the information on the parameter ψ is not included in 

the central bank’s information set Ω , i.e. CB
t

CB
tΩ∉ψ , neither is the following 

information. 

 CB
tΩ∉

−
≡

ψ
δ

2
1 ,   CB

tΩ∉
−

≡ −− 11

2
~ σ

ψ
ψσ ,   CB

ttt gg Ω∉
−

≡
ψ

ψ
2

~ , (34)

 1 CB
y xw w t

σ ψ
σ ω ψ∆

−
≡ ∉Ω

+
. (35)

That is, when the central bank is uncertain about what fraction of consumers follow a 

rule of thumb, the bank faces two different types of uncertainty: 1) uncertainty about 

output dynamics (34); 2) uncertainty about the social welfare function (35). Since both 

uncertainties are correlated with each other through the unknown parameter ψ, the 

central bank takes into account the cross-parameter restrictions between different types 

of uncertainty. Under these uncertainties, the central bank conducts optimal policy 

with its own information set and the following prior belief: CB
tΩ
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 [ ] [ | ]CB CB
t tE Eψ ψ ψ≡ Ω ≡  , V V[ ] [ | ]CB CB

t t vψψ ψ≡ Ω ≡ . (36)

See Appendix C for the details of optimal policy plan.  

Here, again, we assume that the central bank’s prior belief on the parameter ψ is 

formed with beta distribution. Using the same calibrated parameters as those in the 

section 4.1, we analyze the initial policy response to a marginal utility of consumption 

shock gt. We assume that the process of gt follows a stationary first-order 

autoregressive process, ttgt gg ερ += −1 , where ρg=0.35 and εt is i.i.d. means zero 

disturbance with standard deviation of 8.34. This specification is equal to Amato and 

Laubach (2003). Fixing λ at 1 in the Phillips curve (7), that is, assuming that all price 

setters are optimizing, we report results for 25.0 ,5.0 ,75.0=ψ . We conduct the 

simulation, assuming as in previous literature that ψ  is consistent with its true value 

ψ, i.e. ψψ = . 

The simulation result, shown in Figure 11, suggests that the initial policy response 

becomes more aggressive as the degree of uncertainty about ψ increases. That is, 

Brainard’s conservatism principle does not hold in the case of uncertainty about 

aggregate demand structure, either. This is true for all values of ψ  and wi .  

     There are three reasons for this result. First is the effect of uncertainty about loss 

function; second is the effect of uncertainty about output dynamics; third is the effect 

of the positive correlation between policy multiplier and transmission of natural rate of 

interest shock. The first two reasons are the same as in the case of uncertainty about 

rule-of-thumb price setters. Loss-function uncertainty results in a more aggressive 

policy, because this uncertainty causes the increase in the expected weight on the 

variability of the change in output, i.e. , and hence relatively reduces the 

weight on the variability of interest rate w

][ y
CB
t wE ∆

i.23 The reason why uncertainty about output 

dynamics leads to a more aggressive policy is because such a policy can reduce 

                                                        
23 When the central bank’s prior belief on the parameter ψ is formed with a beta distribution, the 
expected weight on the variability of the change in output is given by 
 

2

(1 )[ (1 ) ]1[ ] 1
[ (1 ) (1 )

CB CBx x
y t y t

vw w
w E w E

v
ψ

ψ

ψ ψ ψσ σ
σ ω ψ σ ω ]ψ ψ ψ∆ ∆

− − −  
≡ = − =  + + − −   +

. 
 

As the degree of uncertainty vψ increases, the central bank should place higher weight on the variability 
of the change in output.  
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uncertainty about the future development of target variables. As shown in Appendix C, 

when the dynamics of output are uncertain, the conditional variance of output (gap) 

increases with the distances from its target. Then, it pays to make sure current output is 

very stable by reacting more aggressively to shocks. 

The positive correlation between policy multiplier and the transmission of natural 

rate of interest shock is an additional factor that results in a more aggressive policy 

response. Here, the policy multiplier measures the effect of policy on the output gap, 

and is given by the coefficient of the forth term on the right-hand side of the following 

rearranged IS curve.  

 ])[(~~][)1( 1
11

11 +
−−

+− −−++−= ttt
n

ttttt EirxExx πσσδδ   (37)

The transmission of natural rate of interest shock measures the effect of its shock on the 

output gap, and is given by the coefficient of the third term on the right-hand side. 

Since, both the policy multiplier and the transmission of shock depend on the 

parameter CB
tΩ∉−1~ σ , they are positively correlated by definition.24 To gain insight 

into the reason why the positive correlation between them results in a more aggressive 

policy response, consider the simple static problem of minimizing the expected square 

value of variable Y X mCζ= − , where X is a stochastic shock, C is the control variable, 

ζ is the transmission of shock, and m is the policy multiplier. When the central bank 

can observe X but faces uncertainty about ζ and m, the optimal control is given by  

 
2

[ ] [ ] [ , ]
( [ ]) [ ]

E m E Cov mC
E m V m

ζ ζ∗  +
=  + 

X

X

. (38)

Note that in the absence of uncertainty, the optimal policy is . Parameter 

uncertainty leads to the classical attenuation result when the covariance between the 

policy multiplier and the transmission of shock is zero, that is,

( / )C mζ∗ =

[ ,Cov m] 0ζ = . When 
                                                        
24 The positive correlation between them results from the existence of rule-of-thumb consumers. 
Because the rule-of-thumb consumers set their spending as the previous aggregate per capita 
consumption, and respond to neither the interest rate nor preference shock in the current period, the 
increase in the weight of rule-of-thumb consumers leads to the decline in both the policy multiplier and 
the transmission of shock. This can be confirmed by rearranging (37) as follows:  
 

1 1 1

(1 )1 1 [ ] ( [ ])
2 2 (2 ) (2

g
t t t t t t ty y E y i E

ψ ρψ ψ π
ψ ψ ψ σ ψ− + +

−−
= + − − +

− − − − ) tg ,  
 

where ρg is the serial correlation in the marginal utility of consumption shock gt.   
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[ , ] 0Cov mζ > , however, this leads to a less-attenuation or a more aggressive policy 

response than that with certainty. 

ψσ )1( −=∆yw

In order to examine how the above three effects contribute to the aggressive 

policy response, we decompose the initial policy response into three factors. Figure 12 

shows the result. (Since the main results do not change regardless of values of ψ and 

wi , we show only the result in the case of 5.0=ψ  and wi =0.236.)  The bold line 

shows the initial policy response under total uncertainty. The solid (thin) line shows the 

policy response under uncertainty with the fixed weight of loss function, i.e. 
ψωσ )/( +xw . This presumption implies that the central bank ignores the 

effect of loss-function uncertainty. The dashed line shows the policy response under 

uncertainty with the fixed weight of loss function and the fixed transmission of 

shock.25 This means that the policy multiplier is independent of the transmission of 

shock and that the central bank cares only about the effect of output-dynamics 

uncertainty. Then, the difference (A) in Figure 12 shows the effect of uncertainty about 

loss function, and the difference (B) shows the effect of the positive correlation 

between policy multiplier and transmission of shock. The difference (C) shows the 

effect of uncertainty about output dynamics. As clearly shown in Figure 12, all three 

effects result in a more aggressive policy response than under certainty equivalence.  

Our finding is opposite to that of Söderström (2002), who finds, with a 

backward-looking model, that the central bank should respond to shocks less 

aggressively when the bank faces uncertainty about the IS curve. The reason for the 

difference between our finding and that of Söderström results mainly from our 

consideration about loss-function uncertainty and the positive correlation between 

policy multiplier and transmission of shock, which are suggested by the 

micro-foundation of the model. Söderström does not take into account these two points 

in his analysis. 

 

                                                        
25 In this calculation, we assume that the central bank is certain about the transmission of shock, i.e., 

(1 ) /(2 )gψ ρ− −ψ  in the rearranged IS curve shown in footnote 24, but uncertain about the coefficients of 
the other three terms on the right hand side. 
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7. Conclusion 
 

This paper has examined the implication of optimal monetary policy under parameter 

uncertainty in a micro-founded forward-looking model. The result of our analysis is 

completely opposite to Brainard’s common wisdom, which seemed to capture the way 

actual policy makers viewed their decisions (Blinder 1998). Our analysis suggests that 

when the central bank is uncertain about inflation-dynamics, the bank should take into 

account the loss-function uncertainty and respond more aggressively to shocks by 

placing much higher weight on price stability. Such an aggressive policy response also 

can be justified by an action necessary to reduce uncertainty about the future 

development of target variables. We also confirmed that when the central bank faces 

parameter uncertainty, it is desirable for the bank to combine an aggressive policy 

response with a highly-inertial policy. As first shown in Rotemberg and Woodford 

(1999) and Woodford (1999), a highly inertial interest rate policy allows the central 

bank to affect the private sector’s expectations appropriately. We showed that such an 

inertial policy is desirable under parameter uncertainty.  

      In practice, in addition to the uncertainty about the structure of aggregate supply 

(inflation dynamics), central banks also face uncertainty about the structure of 

aggregate demand. That is, they are uncertain about the degree of output persistence, 

policy multiplier, and transmission of demand shocks. Then, again, the central bank 

should take into account the loss-function uncertainty, because the weights of a social 

loss function are directly related to unknown deep-parameters with regard to aggregate 

demand. We found that uncertainty about the structure of aggregate demand also leads 

to a more aggressive policy response, which can be justified not only by the effect of 

loss-function uncertainty, but also by the possible positive correlation between policy 

multiplier and transmission of shocks. 

      The difference between our results and those of previous literature which 

confirms Brainard’s conservatism principle results mainly from our consideration 

about the cross-parameter restrictions between different types of uncertainties. That is, 

cross-parameter restrictions between uncertainty about loss function and uncertainty 

 28



about the structural equations, and those between policy multiplier and transmission of 

shocks. These cross-parameter restrictions, which are based on the micro-foundation 

of the models, have been largely ignored in most previous literature. Our results 

suggest that accounting for them is critical for investigating the effect of uncertainty on 

optimal monetary policy. Although further work is required to determine the 

robustness of the model, we believe that the insights we pointed out deserve attention 

in discussions of practical policy conduct. 
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Appendix A. Optimal Plan under Uncertainty on Rule-of-Thumb Price Setters 

The objective of the central bank is to minimize (16) with respect to the endogenous 

variables subject to conditional variances (17)(18) and constraints (20)(21). The 

associated Lagrangian then takes the form 
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where ,x tφ and ,tπφ  are Lagrange multipliers on (20)(21) in period t, respectively. The 

first-order conditions with respect to πt, xt, and it are, in every period t≥ 0,  

,0]}[][)1){(1(

})1){(1)(1(

][)][()(

1
1

1
121

1
11121

1,
11

1,1,
1

,11

=+−+−++−

+−+−+−+++−

−−+−−−+

+
−

+
−−

∆
−

−
−−−−

∆
−

−
−−

+−
−

+∆−∆

t
CB
ttt

CB
tx

tttxtx

t
CB
tbtfttt

CB
tttt

xEEwwv

xwwv

EEww

κπαπβασα

κπαπβαβασβφσβ

φγβφβγφππβπππ

πλ

πλ

πππππ

 (A2)

,0})1){(1( 1
1121

1,
1

,,

=+−+−+++

−+−

−
−−−

∆
−

−
−

tttx

txtxttx

xv

xw

κπαπβασλλκβ

φβφκφγ

πλ

πκ  (A3)

,0,
1 =+ −

txtiiw φσ  (A4)

together with initial conditions 01,1, == −− πφφx . Combining the first-order conditions (A2) 

(A3)(A4) to eliminate all Lagrange multipliers yields optimal policy plan (22), where the 

coefficients are as follows. 
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Appendix B. Alternative Models with Inflation Inertia  

B1. Steinsson (2003) model 

Instead of (5), Steinsson assumes that rule-of-thumb agents set their prices according to 

the following rule: 
δ


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
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−
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1 . (B1)

When δ=0, this rule nests (5) as a special case. Phillips curve is then given by 

1 1[ ]CB
t b t f t t c t b tE xπ γ π γ π κ κ− += + + + 1x − , (B2)

where bc αβκκγκ κ −≡ ,  
)}1(1){1(

)1)(1(
βαλα

λαδκ
−−−+

−−
≡b ,  

and the other coefficients are the same as those in our model. In the case that all price 

setters are optimizing, i.e. λ=1, (B2) reduces to the New Keynesian Phillips Curve (11). On 

the other hand, taking the limit as 0→λ , (B2) becomes  
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The unique bounded solution of (B3) is 

 11 )1( −− −+= ttt xαδππ , (B4)

which is the so-called “Old Keynesian” Phillips curve. 

     In Steinsson’s model, the social loss function is given by 
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Taking expectations of the loss function (B5) conditional on the central bank’s 

information set  leads to CB
0Ω
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From IS curve (3) and Phillips curve (B2), it follows that the conditional variance of the 

output gap takes the same form as (18) and that of inflation is given by 
2 1 1 1 2

1 1[ ] [( 1 ) { (1 )} (1 ) ] . .CB
t t t t t tV xλπ ν β α β π α π κ βδ α δα α− − − −

+ −= − + − + + − − − +  (B7)

     The objective of the central bank is to minimize (B6) with respect to the endogenous 

variables subject to conditional variances (18)(B7), constraint (20), and the following 
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constraint (B8). 
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and the other coefficients are the same as those in our model. The associated Lagrangian is 

given by 
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where  and  are Lagrange multipliers on (20)(B8) in period t, respectively. The 

first-order conditions with respect to π
tx ,φ t,πφ

t, xt, and it are, in every period t≥ 0, 
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together with initial conditions 01,1, == −− πφφx . Combining the conditions (B10)(B11) 

(B12) to eliminate all multipliers yields the law of motion for the interest rate implicit in 

the optimal plan. The interest rate rule which would implement the optimal plan takes the 

form 
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where the coefficients are as follows. 
1

1 (1 )b bB βγ γ −≡ + % , 1 1
2 (1 ) ( )f b b b b b cB γ γ κ γ κ γ κ− −≡ − + +% ,  

1 1
3 (1 )(1 )f c bB β γ κ σ γ− −≡ + + + % 1− , 2 1

4 (1 )f bB γ β γ− −≡ − + % . 

 

B2. Gianonni and Woodford (2003) model 

Giannoni and Woodford assume that each period a randomly chosen fraction α−1  of all 

prices are reconsidered, and that these are set optimally; but the price of each good i that is 

not reconsidered is adjusted to the indexation rule 

11 )1()(log)(log −− −+= ttt ipip πλ , (B14)

where ]1,0[∈λ  denotes the degree of automatic indexation to the most recently available 

inflation measure. In this setting, Giannoni and Woodford then derive the following 

Phillips curve and social loss function. 

tttftbt xE κπγπγπ ~][ 11 ++= +− , (B15)
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where 
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and the other coefficients are the same as those in our model.  

Taking expectations of social loss function (B16) conditional on  yields CB
0Ω
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 (B18)

From the IS curve (3) and the Phillips curve (B15), it follows that the conditional variance 

of the output gap takes the same form as (18) and that of inflation is given by 
1 2

1 1[ ] ( ) . .CB
t t t tV tλπ ν π β π−

+ −= − + .i p  (B19)

The optimal plan then minimizes social welfare function (B18) with respect to the 

endogenous variables subject to conditional variances (18)(B19), constraint (20), and the 

following constraint (B20). 
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The associated Lagrangian is given by 
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where  and  are Lagrange multipliers on (20)(B20) in period t, respectively. The 

first-order conditions with respect to π
tx ,φ t,πφ

t, xt, and it are, in every period t≥ 0, 
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together with initial conditions 01,1, == −− πφφx . Combining the conditions (B22)(B23) 

(B24) to eliminate all multipliers yields the following interest rate rule that implements the 

optimal plan. 
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Appendix C. Optimal Plan under Uncertainty on Rule-of-Thumb Consumers 

Taking expectations of social loss function (33) conditional on  leads to CB
0Ω
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where ][ y
CB
ty wEw ∆∆ ≡ . From Phillips curve (11) and IS curve (30), it follows that the 

conditional variance of inflation is independent of monetary policy, and that those of 
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output and the output gap are given by 
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 1 1[ ] [ ] . .CB CB
t t t tV x V y t i p+ += +  (C3)

The optimal policy plan then minimizes social loss function (C1) with respect to the 

endogenous variables subject to conditional variances (C2)(C3) and the following 

constraints. 
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The equations (C4) (C5) are obtained by taking expectations of IS curve (30) and Phillips 

curve (11) conditional on the central bank’s information set .CB
tΩ 26 

Then, the associated Lagrangian is given by 
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where ty ,φ  and  are Lagrange multipliers on (C4)(C5) in period t, respectively. The 

first-order conditions with respect to π
t,πφ

t, yt, and it are, in every period t≥ 0,  
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26 Taking expectations of IS curve (30) conditional on the central bank’s information set leads to  CB
tΩ
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The third term on the right-hand side can be rearranged as follows. 
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Substituting this conditional covariance into the above equation and then rearranging the resulting 
equation yields (C4). 
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together with initial conditions . Combining the conditions (C7)(C8)(C9) to 

eliminate all multipliers yields the following interest rate rule that implements the optimal 

plan. 
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where the coefficients are as follows. 
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Figure 1. Beta Distribution
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Figure 2. Social Welfare Weight on Variability of Change in Inflation
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Figure 3. Initial Policy Response to a Natural Rate of Interest Shock

Uncertainty about Rule-of-Thumb Price Setters
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Figure 4. Decomposition of Effect of Uncertainty on Initial Policy Response
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Under Uncertainty on Rule-of-Thumb Price Setting (E [λ]=0.5)
Figure 5. Impulse Response to a Natural Rate of Interest Shock
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(Note) Inflation and the interest rate are expressed in annualized percentages, 
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Output gap

Inflation rate

Figure 6. Impulse Response to a Natural Rate of Interest Shock
Under Uncertainty on Rule-of-Thumb Price Setting (E [λ]=0.25)
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Figure 7. Coefficients on Lagged Interest Rate in Optimal Policy Plan
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Uncertainty about Rule-of-Thumb Price Setters
Figure 8. Variance Frontier
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Figure 9. Expected Social Loss
Uncertainty about Rule-of-Thumb Price Setters
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Figure 10. Initial Policy Response to a Natural Rate of Interest Shock
in Alternative Models
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(Note1) Parameters are calibrated to equal those used in Section 4.1. The central bank’s prior 
belief on the parameter λ  is assumed to be formed with a beta distribution. The figure shows the 
case of w i =0.236 and λ=0.5.  In Steinsson's model, we set δ =0.052, following Steinsson (2003).  
See Appendix B for details. 
(Note2) Initial policy response shows the parameter on r t

n  in MSV REE process of interest rate, 
which is multiplied by 4×sd[r t

n ] in order to adjust the scale. (annualized percentage)
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Figure 11. Initial Policy Response to a Marginal Utility of Consumption Shock
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Figure 12. Decomposition of Effects of Uncertainty on Initial Policy Response
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