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ABSTRACT. We describe an algorithm for calculating second order approximations to the
solutions to nonlinear stochastic rational expectations models. The paper also explains
methods for using such an approximate solution to generate forecasts, simulated time paths
for the model, and evaluations of expected welfare differences across different versions
of a model. The paper gives conditions for local validity of the approximation that allow
for disturbance distributions with unbounded support and allow for non-stationarity of the

solution process.

1. INTRODUCTION

It is now widely understood how to obtain first-order accurate approximations to the
solution to a dynamic, stochastic general equilibrium model (DSGE model). Such solutions
are fairly easy to construct and useful for a wide variety of purposes. They are likely to be
accurate enough to be a basis for fitting the models to data, for example.

However, for some purposes first-order accuracy is not enough. This is true in particular
for comparing welfare across policies that do not have first-order effects on the model’s
deterministic steady state, for example. It is also true for attempts to study asset pricing
in the context of DSGE models. It is possible to assume directly that nonlinearities are
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themselves small in certain dimensions as a justification for use of first-order approxima-
tions in these context§Voodford (2002 is an example of making the necessary auxiliary
assumptions explicit. But the usual reliance on local approximation being generally locally
accurate does not apply to these contexts.

It is therefore of some interest to have an algorithm available that will produce second-
order accurate approximations to the solutions to DSGE'’s from a straightforward second-
order expansion of the model’s equilibrium equations, and this is an active area of recent
research.

Kenneth Judd pioneered this field by using perturbation methods in solving various types
of economic modéefsJin and Jud¢2002) describe how to compute approximations of arbi-
trary order in discrete-time rational expectations models. They aim at providing a complete
set of regularity conditions justifying the local approximations, and they discuss methods
for checking the validity of the approximations. Others also have studied perturbation
methods of higher than first order includii@pllard and Juillard2000), /Anderson and
Levin (2002, andSchmitt-Grote and Urib&2002).

Kim and Kim (20038 andSutherland2002) have developed a bias correction method
that produce the same results as the second order perturbation method for certain welfare
calculations, while requiring less computational effort than a full perturbation solution.

Several papers have applied the second-order perturbation method to dynamic general
equilibrium modelsKim and Kim (2003l used the second-order solution method to ana-
lyze welfare effects of tax policies in a two-country framework. In particular, they calculate
the optimal degree of response for various tax rates to TFP shocks faced by each country.
Welfare gains of tax policies are measured by conditional welfare changes from the bench-
mark caseKollmann (2002 has analyzed the welfare effects of monetary policies in open
economies using the software that has been developed along with this papBergmi

and Tchakard¢2002) have used it to examine the welfare effects of exchange rate risk.

1Judd(1999. For continuous time models s€aspar and Jutd997) as well.
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This paper describes the algorithm for computing a second order approximation and
shows how to apply it to calculating forecasts and impulse responses in dynamic models
and to evaluating welfare in DSGE models. It points out some necessary regularity con-
ditions for application of the method and discusses the sense in which the approximate
solutions are locally accurate.

While much of the paper parallels others in this rapidly growing literature, this paper
makes some new contributions. The rest of the literature in most cases begins from a for-
mulation of the problem in which a partition of variables in the model into “states” and
“controls” or “co-states” is assumed known. While in smaller models such a partition is
often obvious, in larger models it can be unclear how to partition the variables into states
and controls. The Matlab progragensys.m , implementing the approach described in
Sims (2007), accepts model specifications that do not partition the variable list into pre-
determined and non-predetermined variables; instead it partitions disturbances into prede-
termined and non-predetermined categories. This approach is more natural in systems de-
rived from equilibrium models, in which equation disturbances often fall neatly into these
categories. In such models translating the list of predetermined disturbances into a corre-
sponding list of predetermined variables (or, where necessary, new predetermined variables
that are linear combinations of the original model’s variables) may not be easy. This paper
extends that approach to second-order approximafions.

The “state-free” approach gensys.m has the disadvantage that its output, while com-
pletely characterizing the dynamics in terms of the original variables, includes only its own
artificial decomposition into states and co-states, which may be opaque. For some purposes
it is important to have an intuitively appealing decomposition into states and co-states. We
discuss how to do this, with the aid of another progrgstate.m , that uses the output
of gensys.m orgensys2.m to test proposed state vectors and and to provide guidance

as to what a valid state vector must look like.

4King and Watson(1998 andKlein (2000 describe solution algorithms that handle the essentially the

same class of models [&ms (2007), but presume that the list of predetermined variables is given.
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Where the sense in which accuracy of local expansions is claimed has been made explicit
in the literature, it has for the most pdsi and Judd?002 most prominently) focused on
accuracy of the function mapping state variables to co-states. It has also tended to assert as
regularity conditions almost-sure boundedness of stochastic disturbances and stationarity
of the dynamic model being studied. These assumptions allow strong claims to be made
about approximation accuracy, but they are disquieting for most DSGE modeling applica-
tions. Models with unit roots, or even mild explosiveness, are not uncommon in macroeco-
nomics, and models with near-unit roots are the rule. Often disturbance distributions with
unbounded support seem more realistic than any particular truncation to bounded support.
If perturbation methods break down, or are at the edge of their domain of applicability, for
such models, they might seem to be unattractive for many of the models to which they have
in fact been applied.

In this paper we argue that boundedness of shocks and stationarity of the model are
not essential to the validity of perturbation methods. For their main applications so far,
perturbation methods can be shown to produce results that are in a natural sense locally
accurate, without the invocation of the dubious stationarity and boundedness assumptions.

There is little explicit discussion in the literature of how to use higher order perturbation
approximations in constructing simulations, forecasts, and welfare evaluations. We show
that some apparently obvious approaches to these tasks in fact result in an accumulation of
“garbage” high-order terms that can make accuracy deteriorate. We lay out an algorithm
that always produces stationary second-order accurate dynamics whenever the first-order
dynamics are stable.

The Matlab code that was built along with this paper is availatigtpt//eco-072399b.
princeton.edu/yftp/gensys2/ , Where the current version of this paper will also

be found.


http://eco-072399b.princeton.edu/yftp/gensys2/
http://eco-072399b.princeton.edu/yftp/gensys2/
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2. THE GENERAL FORM OF THEMODEL

We suppose a model that takes the form

(1) K (W ,W_1,0&)+MNon =0,

nx1 nx1 mx 1 px1
whereEni 1 = 0 and Ei&g 41 = 08 The equations hold fot = 0,...,c, as does the
Et&.1 = O condition. The disturbances are exogenously given, whilg is determined
as a function ot when the model is solved, if the solution exists and is unique. Note that
because there is no assumption at all abpjtit is a free vector that is likely to make
certain linear combinations of the equations tautological at the initial date.

The scale factoo is introduced to allow us to shrink the distribution &ftoward zero
as we seek a domain of validity for our local approximation. The distributicg ibelf is
assumed to be constant across tinaad invariant to changes m, so that in particular it
has a fixed covariance matréx.

The equation system could be written equivalently as

(2) QiK(W,Wt—1,0&) =0

3) Et[QoK (Wit1, W, 0&+1)] =0,

whereQ; is any matrix such tha@1M = 0 and[Q}, Q5] is a full rank square matrix. The
“forward-shift” of the expectational block reflects the absence of any restrictiop.on

We assume that the solution will imply that remains always on a stable manifold,
defined byH (w, o) = 0 and satisfying

(4) { H (w,0)=0,HW+1,0)=0as. and QiK(W+1,W,081) =0a.s}

ngx1l nx1

= E[Q2K(Wey1, W, 081)] =0.

3This form is more general than it might seem. S&ms(2007) for examples showing how models with

explicit expectations operators, including lagged expectations, can be cast into this form.
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We consider expansion of the system about a deterministic steadywstate a point
satisfyingK(w,w,0) = 0. We do not need to assume the steady state is unique, so the
situation arising in unit root models, where there is a continuum of steady states, is not
ruled out.

We also assume that the nonlinear syst@rs formulated in such a way that its first-
order expansion characterizes the first-order behavior of the deterministic solution. That s,

we assume that solving the first-order expansio@@paboutw,
(5) Kidw = —Kodw 1 — Kgog + My,

as a linear system results in a unique stable saddle path in the neighborhood of the deter-
ministic steady state. If so, this saddle path characterizes the first-order behavior of the
system. We assume further thit(w, 0) is of full row rank, so that the first-order character

of the saddle path is determined by the first-order expansidah@)f

The systen(I)) has the second-order Taylor expansion alout

(6) Kujdwjr = —Kaijdwj i1 — Kgijoej +Mijnjt
— 3 (Kyaijk Wit AWk + 2Ky 2k AWj W ¢ 1 + 2Kq 31 AWt Tkt
+ Koaijk AW 1 10Wk 1 -+ 2Kogijk AW 110k + Kaajk 02t &t
where we have resorted to tensor notation. That is, we are using the notation that
(7) AijkBmnjg=Cikmng < Cikmng= ) &ijkbmnjq-
]

wherea, b, c in this expression refer to individual elements of multidimensional arrays,
while A B,C refer to the arrays themselves. As special case, for example, ordinary matrix

multiplication isAB = AjjBjx and the usual matrix expressié&‘BA becomesA;; BjiAxm.

“This assumption oHl is not restrictive so long as there is a continuous, differentiable saddle manifold.
However there are models — some asset pricing models, for example — in which the first order approxima-
tion does not deliver determinacy, but higher-order terms do. The algorithms suggested here cannot handle

models of this type.
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Note that we are distinguishing the arry;; of first derivatives from the arralfmnijk of

second derivatives only by the number of indexing subscripts the two arrays have.

3. REGULARITY CONDITIONS

Because we are taking first and second derivatives and because we are expanding about
the steady state, it is clear that we require existence of first and second derivativis of
atw. We have also directly assumed that the first order behavitr méarw determines
H(-,0). In order to make our local expansiondiw, o€, ande work, we will need that
H(w, 0) is continuous and twice-differentiable in both its arguments.

It may seem that these are all standard assumptions on the degree of differentiability
of the system neaw. Consider what emerges, though, when we split the system into
expectational and non-expectational components £8)#@). If we replace[B) with its

second-order expansion and take some expectations explicitly, we arrive at

(8) Ex[Qz(Kaijdw;tp1 + Kaijdwit + 3 (Kagiji AWt 10Wh 41 + 2Kazijic AW ¢ 10k

+ Koajkdw; 1dwict + Kz Qjko?))] =0,

and find ourselves needing to assert dtas finite second moments, which is not a local
property. That is, if; does not have second moments, shrinkingvill not make o
have finite second moments. The same point appli€d)tm its original nonlinear form.

If it is to be differentiable inw; and g, we will in general need to impose restrictions on
the distribution ofg;. Jin and Judd2002 have an example of a model in which some
apparently natural choices of a distribution &rimply that E;[Q2K (W11, W, O&1)] iS

discontinuous iro at g = 0, even thougt has plenty of derivatives at the steady state.

4. SOLUTION METHOD

The solution we are looking for can be written in the form

9) w =F*(Ww_1,0&,0).
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Because we know the saddle manifold characterizeti bgxists and thaH;(w, o) has
full row rank ny, we can used to expresq, linear combinations of's in terms of the
remainingns = n—ny. Let theng linear combinations oWw's chosen as “explanatory”
variables in this relation be

(10) Vi= D w.

NsXnN

Then the solutiorf9) can be expressed equivalently, in a neighborhoow, @fs

(11) Yt = PF*(W_1,0&,0) = F(Y%t—1,%—1,0&,0)
(12) % =h(w,0),
nyx1

where (12 is just the solved version of thd = 0 equation that characterizes the stable
manifold. Here of coursg, like y, is a linear combination of’s.

The appearance a&f_1 in (1I) may seem redundant, since along the solution path we will
havex; = h(y, 0), but at the initial date the laggedvector might not satisfy this restriction.

This is likely in a growth model with multiple types of capital, for example, where there
may be optimal proportions of capital of different types, but no physical requirement that
the initial endowments are in these proportins.

The solution method for linear rational expectations systems descritf&dnsn(2007)
begins by applying linear transformations to the list of variables and to the equation system
to produce an upper triangular block recursive system. In the transformed system, the
unstable roots of the system are all associated with the lower right bjpdkes not appear
in the upper set of equations in the sys@and the upper part of the equation system is
normalized to have the identity as the coefficient matrix on current values of the upper part

of the transformed variable matrix. In other words, by applying to the equation system the

5See sectiofi below for further discussion of this point.
61t may not be possible in fact to eliminatg from the upper part of the system. When it is not, the

solution is not unique. The programs signal the non-uniqueness and deliver one solution, in whj&h the

are set to zero in the upper block of this system.
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same sequence of linear operations as applied in the earlier paper to a lineal system
can transforml@) to
dyit =Gyijdxjt + GzijdVj—1+ Gaij &jt + 3 <G1]jjdejthkt + 2G5k dVvjrdvit—1

(13)
+ 2G5k AVjt &t + Go2ijkdVj t— 10V t—1 + 2G5k dVj t 18kt + Gaaijk Ejt Ekt)

Jijdxi = Joijdxj 11+ Jaij &t + M Nt + 3 (Jllijdejthkt +2J10ijkdVjt dVit—1
(14)
+ 2313k AVijt &kt + Jo2ijdVj t— 1AM t—1 + 2003k AVj 118kt + 33k Ejt 8kt> ,

wherev; = (y{ X{)’, i.e. they andx vectors stacked up.

Now they andx introduced above may seem to have no connection tpdinelx in terms
of which we wrote the solutioiL1)-(12). But that solution has second-order expansion

dyir = FaijdVvj 1+ Faijjt + Fai02

(15)
+3 <F1]jjdej t—10Vict—1 + 212k AVj t— 18k + Foaijk Ejt 8kt>

(16) dx¢ = $Mygijdyjedyke + Moo?.

Of course ifx were chosen as an arbitrary linear combinatiow'sf there would in general

be a first-order term inly; on the right-hand side dfL6). However, we can always move
such terms to the left-hand side and then redefiteeinclude them. We will now proceed

to show that thelyanddxin (15)-(16) are indeed those if13)-(14), and that indeed we can
construct the coefficient matrices in the former from knowledge of the coefficient matrices
in the latter.

The terms ino in (15)-(16) deserve discussion. As can be seen f@mthe appearance
of expectations operators in our system makes it depend on the distributggmof just
on realized values of. But there is only one term i) that is first-order irdw 1. All
the other terms are second-order, or dependwnor g2, noto. Therefore if there were
a component of);K;dw 1 that depended oo (rather thano?), that term could not be

zero as the equation requires. Hence we can be sure that there is no term ligeiar in

"and implemented in the Matlab functigensys.m
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the second order expansion @+(3), and thus none ifl5)-(16). This then also rules out
any term of the forno - o€ 1 also, since such a term could enter only through the cross
products indw , 10& 1 or through thedw, 1dw 1 terms, and without a first-order term in
o in dw. 1, these cross products can generat@no s, 1 terms.

Observe thatlx in (13-(14) must be zero to first order (except foe= —1), because
otherwise there would be an explosive component in the first order part of the solution,
contradicting the stability assumption. Therefdfejs exactlyG, from (13). Clearly also

F, = G3. Therefore we have a complete first-order solutiondpanddxin hand:

(17) dyt = Fidv_1+ P

(18) dx = 0.

We find the second order terms in the following steps. First §bditforward in time by
one (so that the left-hand sideds;. 1) and substitute the right-hand side @Bj, shifted
forward in time by 1, for thalx_ 1 on the left. Then substitute the right-hand-side€od),
shifted forward by 1, for all occurrences df4. 1 in the resulting system. Finally apply
the E; operator to the result. In doing this, we are dropping all the second order terms in
the solution fordy anddx when these terms themselves occur in second order terms. This
makes sense because cross products involving terms higher than first order are third order
or higher, and thus do not contribute to the second order expansion. Note that this means
that, sincedx is zero to first order, if13)-(14) all the second-order terms v can be
written in terms ofdy alone. We will abuse notation by using the sa@andJ labels for

the smaller second-order coefficient matrices that appdytone that we use iL3)-(14)
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for the second order terms involving the fulvector. In this way we arrive at

(19) Jujj (% (Mu1jkeFikr 0¥t F1esdYst + MagjkeFakr FarsQrs02) + My 02)
= Joij (%Mlljked}/ktd)/a + My 02) +3 (Jljjjk (Frjr Ficsdyre dyst
+ Fojr FoksQrs0%) + 2J12ijk Fajr Ayr Ayt + 20131k Fojr Q0
+322ijkdyjtdykt+Jsa'ijjk02> ,

Where we have safar(g) = Q.
For this equation to hold for allyando? values, we must match coefficients on common

terms. Therefore, looking at tltBt - dy: terms, we conclude that
(20) J1ijM11jkt Fakr Fes = Joij Maajes + Jnaijk Frjr Fiks + 2d12ijsFajr + J22ijk -

This is a linear equation, and every element of it is known excepttigr.. The transfor-
mations that produced the block-recursive system with ordered roots guarantie,that
ordinary2 x 2 matrix, has all its eigenvalues above the critical stability value. Itis therefore

invertible, and we can multipl{20) through on the left b)Jz‘l, to get a system in the form
(22) AM*FL® F = M*+B.

In this equationM* is the ordinaryns x nZ matrix obtained by stacking up the second and
third dimensions oM1..., A= Jz‘lJl, andB is everything else in the equation that doesn’t
depend orM*. If the dividing line we have specified between stable and unstable roots is
1+ 9, then our construction of the block-recursive system has guarantee.dgﬂﬂathas

all its eigenvalues< 1/(1+ ), while at the same time it is a condition on the solution
that all the eigenvalues & be < 1+ &. To guarantee that a second-order solution exists,
we require that the product of the largest eigenvaluE,of F;, which is the square of the
largest eigenvalue d¥;, be less than the inverse of the largest eigenvallfb:@sz‘lJl. If

0 = 0 this condition is automatically satisfied. Otherwise, there is an extra condition that
was not required for finding a solution to the linear system: the smallest unstable root must

exceed the square of the largest stable root.
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Assuming this condition hold€2]) has the form of a discrete Lyapunov or Sylvester
equation that is guaranteed to have a solution. Because of the special structueeraf
it would be very inefficient to solve this system with standard packages (like Matlab’s
lyap.m ), but it is easy to exploit the special structure with a doubling algorithm to obtain
an efficient solution foM*.

With Mz1... in hand, it is easy to see froifl9) that we can obtain a solution fdv,
by matching coefficients oo?. The only slightly demanding calculation is a required
inversion ofJ, — J;. But sincnglJl has all its eigenvalues less than one, this- J; is
guaranteed to be nonsingular.

The next step is to ugdg) to substitute for the first-order termih¢ on the right of [[3)
and (17)-(18) to substitute for all occurrences dft anddx in second-order terms on the
right in the resulting equation. This produces an equation etlon the left, and first and
second-order terms ity _1 andg and terms iro? on the right. WithM11 andMs in hand,
it turns out that it is only a matter of bookkeeping to read off the valuds -, andF;

by matching them to the collected coefficients in this equﬂion.

5. ANALYZING THE STATE REPRESENTATION
Thegensys.m program produces as output, among other things, a first-order expansion
of (9, as

(22) dw = Fdw_1+F,0¢&.

To find a conventional state-space representation of such a system, we can form a singular
value decomposition

(23) FiFs)=u V| 7

00

S S

8This bookkeeping is not trivial to program, but it is probably best for those who need to program it to

consult the program, rather than take up space here with the bookkeeping.
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where[U V] and[R § are orthonormal matrices ardl is diagonal. Any state vecta

that has the property tha is determined by in this system will have to be of the form

z = 6U'w. The only wayw;_1 affects currenty is viaRjw_1. While R| can be the same

row rank adJ, it can also be less, so that a smaller “state” vector summarizes the past than
is needed to characterize the current situation. Also, the ralRk cin be below its number

of non-zero singular values. In this case it may be possible to fmthat , after the system

has run a few periods, summarizes the past and/or characterizes the current situation yet is
of lower dimension than the rank &f.

The prograngstate.m takes as inpuf;” andF;’, together with an optional candidate
matrix ¢ of coefficients that might form a state vectorzas= gw;. The program checks
whetherg lies inU’s or R;’s row space and returtt$ andR; for further analysis.

Once a state/co-state representation of the fermWw; has been settled on, whetks
non-singular and the= (y' X')’ vector is partitioned into state and costate, it is straightfor-
ward to convert a first or second-order approximate solution from one co-ordinate system

into the another.

6. THE LOCAL ACCURACY OF THE APPROXIMATION

Once we have a second-order accurate approximation to the dynamics, in tH@&5prm

(@16), we can make a claim to local accuracy of the following form:
(24) dt1 = F(dv, 0&11,0) +0p([ldw, 0]%),

whereop means “order in probability” ané is the second-order approximation to the
dynamics. That is, the error in the approximation is claimed to converge in probability to
zero, at a more rapid rate thdawv, o||?, when||dv, o||? goes to zero. This rate is the
weakest kind of claim that can be made for a Taylor expansion. If we are willing to claim
that third derivatives exist at the deterministic steady state, then we can replace the error
term withOp(||d\, o). This claim does not depend on strict boundedness of the support
of the distribution ofe;, because we are only claiming our local accuracy with a certain

(high) probability. Whatever the distribution ef, o& converges in probability to zero as
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o — 0, allowing us to make this claim. Of course this is all dependent on the underlying
assumption that the original nonlinear model has dynamics differentiable of sufficiently
high order ino in the neighborhood of deterministic steady state, and on the existence and
continuity of the expectations that occur in the statement of the model.

This one-step-ahead “local accuracy in probability” claim obviously can be extended
to a corresponding claim to accuramysteps-ahead for any finite We have made no
appeal to stationarity of the system in making these claims. Of course the sizendbthe
which accuracy remains good at a given levebowill in general be smaller for systems
that are not stationary. But the qualitative nature of the accuracy claim is no different for
non-stationary systems.

This type of finite-time-span, accuracy-in-probability claim is exactly what is appropriate
for purposes of fitting a model to data — which always cover a finite time span — or for
purposes of simulating the model from given initial conditions over a finite span of time. It
is also exactly appropriate for the correct calculation of expected welfare, when welfare is
constructed as a discounted sum of period utilities. The discounting means that accuracy
of the approximation is unimportant after some time horizon in the future.

Finite-time-span, accuracy-in-probability claims will not justify estimating unconditional
expectations of any functions of variables in the model via simulation. To make the effects
of initial conditions die away, such simulations must cover long spans of time. If the
second-order approximation is non-stationary, expectations calculated from simulations of
it will of course not converge. If the true nonlinear model is non-stationary, then the true
unconditional expectations will in general not exist, even though it is possible that the local
second-order approximation is stationary, so again in this case it will not be possible to
estimate unconditional expectations from simulated paths.

When both the true nonlinear model and the second order approximate model are station-
ary and ergodic, and the true unconditional expectation in question is a twice-differentiable
function of o in the neighborhood off = 0, then it is possible to estimate the expectation

from long simulations of the approximate model, with the estimates accurate locatly in
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in the usual sense. This is true even though it may be (e.g. because of unbounded support
of &) that with probability one the path of the model repeatedly enters regions where the
local approximation is inaccurate. This is possible becauge-as0 the fraction of time

spent in these regions goes to zero, for both the true and the approximate model.

However it will often be preferable to estimate an expectation by using the second-order
approximation analytically, expanding the function whose expectation is being taken as a
Taylor series and applying the methods of the next section.

It goes without saying that no theoretical result about local or asymptotic global accu-
racy for approximate solutions can prove that in a particular model, with particular shock
variances, one method or another is more accurate than another or accurate enough for
some specific purpose. The emphasigionvand Jud¢2002) on checking model validity is
therefore appropriate. There is no uniquely best measure of solution accuracy, but by now
a variety of stringent checks have been proposed. The methods that have been applied most
widely (but not widely enough) are based on evaluating the conditional expecta{@rain
a collection of values of the lagged state vector. There are important practical questions as
to how to select the collection of state vector values at which one evaluates the expectation
and as to what metric to use in measuring the vector of deviations from the theoretical zero
values for these expectations. Jin and Judd suggest deterministically fixing a collection
of state variable values and a set of “relative error” metrics for the expectational errors,
based on economic interpretation of the model being solded.Haan and Mard¢1994)
suggest another approach, in which the state variable values are generated stochastically
via simulation and the metric for evaluation of expectational errors is based on statistical
detectability of the errors in a sample of relevant length. Each of these approaches has
pitfalls, but is worth consideration.

Though there is no widely understood alternative to this “Euler equation residual” family
of accuracy checks at this point, there is probably room for further work in this area. For
many purposes, the most relevant measure of accuracy is the accuracy of the solution’s

approximation to the mapping from _1, &, ando to w; corresponding td9). This is not
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measured directly by the size of the Euler equation errors, but no more direct measure of

the accuracy of this mapping is at this point available.

7. FORECASTING AND SIMULATION

Forecasts steps ahead;; [dw 5] andVar[dw 5| are the building blocks for the calcu-
lation of impulse response functions as well as welfare.

We build the forecasts from the second-order accurate dynamic model givEBby
(@16), modified here to reflect our assumption that the initial conditions satisfy the equations
of the model and that therefode¢_1 = O to first order. We abuse notation by using the
sameF’s here, for the pieces of the originl matrices corresponding tdy's, as we did

for the originalF matrices in[5)-(16) that corresponded to the fudv = [dy,dx] vector.

dyt = Fujdyjr 1+ F2 o)1 + F30?
(25) + SF1akdYj 110Vt 1 + Fiojk0dyj 18kt + 3Pk 02 1kt

(26) dx = $Mygjdy; Ay +Moo?

We would then like to calculate, to second order accurgdgy . s] andVar[y;.s|.

To begin with, note that, since the conditional meandwf s is of second order, the vari-
ance term&s = Var (Vi+s) are correct to second order accuracy when computed from the
first-order terms in the expansi@@B) alone and that, to second-order accur&ay; (X+s) =
0 sincedx itself is of second order.

Fors=1, itis easy to see fron2E)-(26) that we have

¥ 1 = Ee[dyta] = Frjdyj s + Fso?

(27) o2
+ 3F11jkdyj dyie + ?FZijij

(28) A%t 1 = Ee[d%1] = SMaaji (09 1109k e+1 + Zajk) +Mao?.

The expression i@28) for determiningg; [dx . 1] from the conditional mean and variance of
dy+1 works equally well for determining; [dx.s| from the conditional mean and variance

of dy.sfor s> 1. The straightforward approach to determindyg, s anddX; . s is to apply
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@) recursively, computingi¥is from dyi.s_ 1 and&,_1, etc. This procedure is in fact
second-order accurate, but it introduces higher order terms into the expansion. For example,
since(fytﬂ contains quadratic terms thy, and @74) makesdy; . » quadratic indy; .1, in a

simple recursive computatiaty; . » becomes quartic idy. These extra high-order terms

do not in general increase accuracy of the approximation, as they do not correspond to
higher order coefficients in a Taylor series expansion of the true dynamic system, and in
practice often lead to explosive time paths dgy. s.

To see what goes wrong, consider the simple univariate model

Yt = PYr—1+ aytz_1+ &,

where|p| < 1anda > 0. Though this model is locally stable about its unique deterministic
steady state of = 0, it has a second steady-state,(at- p)/a. If x exceeds the other
steady state, it will tend to diverge. This is likely to be a generic problem with quadratic
expansions — they will have extra steady states not present in the original model, and some
of these steady states are likely to mark transitions to unstable behavior.

Since the unique local dynamics are stable in a neighborhood of the steady state, it will be
desirable to choose amongst the second order accurate expansions one that implies stability.
Deriving sufficient conditions on the supportgfto guarantee non explosiveness under the
iterative schemé27)-(28) is in general a non-trivial task and therefore it is useful to have
available an algorithm which generates non-explosive forecasts and simulations without
imposing explicit conditions on the support®f The mere fact that the generated forecasts
are stable of course does not imply superior accuracy in general, especially when shocks
are not bounded. However, stationarity will in general imply that, for a given neighborhood
% of the steady state and a given time horiZbnwe can restrict in such a way as to
make the probability of leaving/ in time T arbitrarily small.

Obtaining a stable solution based @7) can be achieved by pruning out the extraneous
high-order terms in each iteration by computing the projections of the second order terms

based on éirst-orderexpansiongy; 1 of E¢[dw1], as follows:
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dYiss = F1jdY 1451+ F30?

) + 11k (0 tos- 10Vt ss 1+ 2k jk) + %ZFzzijjk
(30) dRers = SMiajk (Y 1+ sk trs+ s k) +Mp0?

(31) dyts = F1jdyjtis a1

(32) 5ij s = 0%FakQueFajr + FikSkes 1F1je

Using these equations recursively results idya, s series which, by construction, is
quadratic indy for all s. Furthermore, when the eigenvalueskafare less than one in
absolute value, the first order accurate solutlgn s is stable and hence so is the squared
process(dy; t+sdykt+s). It follows thatdy; must be stable as wéll. Note that theFy,
component of the second order expansion — the coefficients of the interactions between
dyt_; andg — do not enter this recursion at all.

The same issues arise if the aim is to generate simulated time paths, rather than simply
conditional expectations and variances of future variables. For this purpose, we can intro-
duce the notatimdyffS anddyt(i)S for first and second order accurate simulated time paths,
respectively. A recursive, non-explosive, “pruned” simulation scheme is then given by

dy(+s_F11d jt+s— 1+F210£JI+S+F30
(33)

+ 2F11.jkd JHS 1dY;(<t+S 1+0F121ky§ t)+s 1&kt+st+ 5 FZZJKSJ t+s€kt+s
(34) dxZ= 1M11,kdy§ t+sd kt+s+M20

(35) dyis=Fuidy} o 1 +F2 08 s,

where theF1» terms that could be ignored in forming conditional expectations have neces-
sarily returned for generation of accurate simulations. By preventing buildup of spurious

higher-order terms, we make stability of the simulation over a long time path more likely,

%The same matrix eigenvalue conditions are at issue here as in ddstidiscussion of existence of the

solution to 21)
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while at the same time preserving second-order accuracy of the mapping from initial vari-
able valuegx, X, shocksg . 1,. .., &+s, ando to the simulated valueyéi)l, ey 5_?5.

It can help in understanding these recursions to append the bétor dyd) to dy?

and use matrix notation:

dys dy”

(36) = @1 _|_ @2 02+ E‘t+l
(dyt(—lk)l ® d%-]i-)l) Ay @ dy?)

with

o
(37) o— | 2F)

0 (F1® Fl)

i 1,0
(38) 0, = Fs+ 3F22 jk Qi

| (R@F)vedQ)

0’(g®&— (ReR)vedQ))

TheF;; in the definition of© (37) is a matrix with number of rows equal to the length of
y and with the second and third dimensions of the array vectorized into a row vector — so
it is anns x nZ matrix. Note that®; is upper block triangular and is stable exactly when
the eigenvalues df; are less than one in absolute value. Note also that, to second order

accuracy,

g’Q 0
0 O

Var(ét) =

Calculations of conditional and unconditional first and second moments can therefore be
carried out using36) as if it were an ordinary first order VAR. This can be an aid to
understanding, or to computation in small models, though for larger systems it is likely to
be important for computational efficiency to take account of the special structure ®f the

matrices in[86).
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8. WELFARE

One can easily produce cases where the second-order approximation is necessary to get
an accurate evaluation of certain aspects of the model. Utility-based welfare calculation is
one case. For example, calculating welfare effects of various monetary and fiscal policies
or welfare effects of changes in economic environment such as financial market structure
should include second-order or even higher-order terms in order to get an accurate mea-
sure.Kim and Kin1 (20034 present an example of how inaccurate the linearized solution
can be in calculating welfare using a two-country model. Using the linearized solution,
welfare of autarky can appear to be higher than that of the complete markets, solely because
of the inaccuracy of the linearization method. Another application in which second-order
approximation is important is examination of asset price behavior in DSGE’s. Linearized
solutions will imply equal expected returns on all assets. Second order solutions will gen-
erate correct risk premia, though generally to analyze time variation in risk premia will
require higher than second-order accuracy.

Equation(36) makes it relatively straightforward to see how to carry out a second-order
accurate welfare calculation. Welfare is defined as a discounted sum of expected utility. Let

the period utility function be given by : R"s — R20 Then the utility conditional on an

100f course often in growth models utility is a function of consumption, which is not a conventional state
variable. To use the formulation we develop here, then, consumptiooMaiable) has to be replaced by the
corresponding component bfy, o). Also, because we work entirely in termsygfwe are not covering the
case where the initial distribution of does not lie on the saddle path. The methods we describe here can be

expanded to cover this case and to allote enteru, at the cost of some increase in the burden of notation.
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initial distribution ofyg with mean and variancgu,2) is

U(u,%) =Eo tiBtU(Yt)] ~
“ %% iﬁt(muwvdfu%veqa2u<y7>’<dy§”®dy§”>>] =
U2 = 12+ [0 SveoTPug)y]

If we are interested only in unconditional expectedve can arrive at the correct formula

by multiplying (41) through byl — 8 and taking the limit ag — 1, giving us

(42) E[u(y)] =u@ + [0uE)  3vedT2u(g)y| (1 - O1) 0,02,

Note that in(41) we make no use, explicitly or implicitly, df;». Also note that though

the matrixl — B©4 appears in the formula inverted, the utility calculation only requires

Cu(f) vedC2u@)] (-1,

whose computation is only an equation-solving problem, not a full invef<idarther-
more, this part of the computation does not need to be repeatgdaasl > are varied.
Finally, note thati42) uses only(l — ©;)~10,, regardless of the form af. This is again

an equation-solving problem. So if we are interested only in unconditional expectations,
even in unconditional expectations of many different functianshe computation of a

full second-order correction may be much simpler than calculation of the full second-order

expansion of the dynamics.

11Though for am x n matrix A both solvingAx = b for x and computingd—* areO(n?) operations, the

latter is substantially more time consuming. In Matlab inversion takes roughly twice the time.
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It is these simplifications, applied to particular models, that are the insights provided by
the papers that have put forward “bias-correction” methods for making second-order accu-
rate expected welfare computations in DSGE mode€im(and Kim, 20034 [Sutherlanfl
2002).

We should note that there is a situation in which second-order accurate evaluations of
welfare can avoid entirely the need for a second-order expansion of the model solution.
If Ou(y) = 0, as would be true if the deterministic steady-state gdts the value that
maximizesu(y), then only the lower blocks 0B, and ©, enter the solution, as can be
seen from{41) or (42). As can be seen frorf87) and B9), these blocks contaiR; and
F> only, not any terms from the second-order solution. Of course in most problems with
discounting, even an optimal solution will not maximize static weli&g in the steady
state, so this result will not apply. Also, even where the solution has been computed to
maximize static period welfang the result depends on having a second order expansion of
u in terms of the state vectgr When the problem has been formulated (as in usual growth
models) with a non-state variable (e.g. consumption) appearing in the utility function, the
second-order expansion of the utility function in termy afiay require use of the second-

order solution foix as a function oj/.[jz

8.1. Conditional vs. Unconditional welfare. From the discussion in the preceding sec-
tion it is apparent that evaluating expected welfare based on uncondiidmgl)] is a
more straightforward task than evaluating the conditional expectation of discounted ex-

pected utility at a given dat€ It is therefore not surprising that many existing papers have

1?'Rotemberg and WoodforL997) is an example of a context where use of the first-order solution for
welfare analysis is justified by special regularity conditions. The paper evaluated welfare using unconditional
expectation of period utility. Regularity conditions required to justify use of the first-order solution in the
paper’s model include an assumption that some other policy change perfectly offsets second-order effects of
monetary policy on the mean level of output and an assumption that monetary policy is the only source of

inefficient fluctuations in prices.
1?WoodforcI(ZOOE) discusses the differences between unconditional and conditional welfare in calculating

welfare effects of monetary policies.
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used unconditional welfare for evaluating policies. Examples indideida, Gai, and
Gertlef (1999, [Rotemberg and Woodfor997 1999, [Sutherland2002) andKollmann
(2002.

There are strong objections in principle to use of the unconditional welfare criterion. We
know that it takes time for one steady state to reach another steady state and unconditional
welfare neglects the welfare effects during the transitional period. It is therefore generally
not in fact optimal, in problems with discounting, to use policies that maximize the uncon-
ditional expectation of one-period welfare. This is not a new point — it is the same point as
the non-optimality of driving the rate of return to zero in a growth model — and it has been
recognized in the DSGE literature in, e€lkdm and Kim (2003, andWoodford(2002).

Because unconditional welfare can often be computed easily, using the “bias correc-
tion” shortcut, it is important to note that using unconditional welfare can give nonsen-
sical results.Kim and Kim (20038 construct a two-country DSGE model and compute
risk-sharing gains from autarky to the complete-markets economy using a second-order
approximation method. Welfare is defined as conditional welfare and the results show that
there are positive welfare gains from autarky to the complete-markets economy. But the
unconditional welfare measure can for certain parameter values produce the paradoxical
result that autarky generates a higher level of welfare than the complete markets.

The use of conditional welfare does not imply that results necessarily are tied to some
particular initial state. One can condition on a distribution of values for the initial state.
The critical point is that when comparing two policies or equilibria one should use the same
distribution for the initial state for each. When there is no time-inconsistency problem the
optimal policy will have the property that no matter what initial distribution is specified for
the state, it will produce a higher conditional expectation of welfare than any other policy.
However, when comparing a collection of policies that are not optimal, one may find that
rankings of policies vary with the assumed distribution of the initial state.

When there is a time-inconsistency problem, the optimal policy generally depends on the

initial conditions, even if we restrict attention to policy rules that are a fixed mapping from
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state to actions. Using a conditional expectation as the welfare measure does not avoid
this problem. One attempt to get around this issue is the suggestion ifGreugnoni and
Woodford (2002 that policy should follow the rule that would prevail under commitment

in the limit as the initial conditions recede into the past. This “timeless perspective” policy
can be implemented by treating the Lagrange multipliers on private sector Euler equations
as “states”, and then maximizing conditional expected discounted utility. The timeless per-
spective policy is a useful benchmark, but it cannot resolve the fundamental problem of
time inconsistency. A policy-maker who can make believable commitments will not want
to choose the timeless-perspective solution, while one that cannot make believable com-
mitments cannot implement the timeless-perspective solution. As a normative suggestion,
the timeless perspective depends on the idea that it will be easier to convince the public
of a commitment to the timeless-perspective policy than of commitments to other types of
policies, but this is likely to depend on the nature of the policy optimization problem and

on the particular initial conditions faced at the time the policy is implemented.

9. CONCLUSION

Use of perturbation methods to improve analysis of DSGE models is still in its early
stages. Programs that automate computations for models higher than second order are
just beginning to emerge. Methods of dealing with the kinds of singularities that show
up in economic models — for example the indeterminacy of asset allocations in standard
portfolio problems when variances are zero — are still not widely understood. And we have
only begun to get a feel for where these methods are useful and what their limitations are.
Real progress is being made, however, in an atmosphere that is both competitive enough
to be stimulating and cooperative enough that researchers located around the world are
benefiting from each others’ insights.
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