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1 Introduction

Considerable attention has been devoted to understanding the basis of the run-up in the

US stock market in the late 1990s, when price-dividend ratios reached levels unseen since

the early part of the century. The natural framework in which to study the drivers of this

financial indicator—and indeed of most ratios of asset price to a measure of income flow—is

the dividend discount model. This framework suggests that elevated ratios are a consequence

of an increase in the growth rate of productivity, a drop in the rate of return required by

investors or, what many observers believe was the major explanation of the bull run of the

1990s, an expectational bubble.

However, the temptation to analyse stock market movements through the lens of this

model often leads to a fallacy of composition, namely making misleading inferences at an

aggregate level from a partial equilibrium setting. This fallacy arises for two reasons. First,

although the rate at which profits are discounted is typically exogenous for an individual

firm, it is not so at the aggregate level, as the prevailing rate will depend on the desired

intertemporal consumption profile of consumers, who are the ultimate owners of the firms.

The higher the expected growth rate of future consumption, the higher the required return

must be for investors to save. Second, the dividend discount valuation formula in its simplest

form fails to take into account the fact that firms must finance capital deepening by reduc-

ing dividends. A lower required return increases the firms’ investment opportunities which

are funded by retained earnings at the expense of the residual claimants. In other words,

dividends, returns and growth rates are all inter-related. Hence the warrant for a general

equilibrium model of asset pricing with production.

Kiley (2000) argued against the widespread interpretation (at the time) of the bull run

as stemming from an exogenous drop in the equity premium. He analysed the asset pricing

implications of a drop in the rate of return required by investors, both in a calibrated neoclas-

sical growth model and in the dividend discount model. He concluded that the latter model

will overstate the equity valuation effects by a substantial amount: the drop in the required

return that justifies valuation levels in the dividend discount model falls short of explaining

them in a general equilibrium setting. Moreover, such a drop in the required return has the-

oretical implications for fundamentals, especially investment, which do not seem to be borne
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out in the data. Investment in the 1990s, despite its cyclical pick-up, does not appear as

responsive as expected given the increased opportunities generated by the drop in the return

(Bond and Cummins (2000, 2001) provide empirical support to Kiley on this point).

This result begs the question: how far does plausibility in calibration have to be stretched

in order to justify observed valuations with a general equilibrium model that retains the

rational agents hypothesis? This paper attempts to flesh out the asset pricing consequences—

qualitative and quantitative—of introducing imperfectly competitive product markets into

such a framework. There are two main reasons why this exercise may yield interesting

conclusions for the present purpose of explaining valuation movements.

First, there exists a large body of literature, stemming from Hall’s (1990) seminal analysis

of pro-cyclical Solow residuals, which has ground through both the theory of imperfect com-

petition and increasing returns to scale (see among many others Rotemberg and Woodford

(1999), Farmer (1999) and references therein) and the empirics of scale effects and industry

markups (for example, Domowitz, Hubbard and Peterson (1988), Baxter and King (1991),

Caballero and Lyons (1992), Basu and Fernald (1995, 1997), or lately, Altug and Filiztekin

(2001)). As this literature makes clear, the paradigm of imperfect competition adds three

dimensions to the standard general equilibrium model. Markups and fixed costs affect the

equilibrium values of the system as well as the transition path to the system’s new steady-

state. They may also enhance the impact of other exogenous parameters on macroeconomic

variables. Third, they may change the predicted direction of this impact. Therefore, it seems

reasonable that, if there exists any link between valuation and fundamentals, it should be

sensitive to the specification of the competitive environment.

Second, the natural valuation indicator to use in a framework with production is average

q, the ratio of stock price to the firm’s capital base. This ratio has the virtue of making

explicit the dividend process.1 Moreover, it serves precisely as the link between valuation

and fundamentals in a general equilibrium model. From the dynamic optimisation problem

of a firm with convex costs of capital adjustment, average q can proxy the shadow price

of capital, marginal q, the unobservable but critical variable which completely summarizes

investment behavior. However, this equivalence, demonstrated by Hayashi (1982), occurs

1Rewriting it q = V
D

. D
K

, it captures not only movements in the price-dividend ratio V
D

, but also in the
corporate payout rate D

K
(expressed per unit of capital).
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only under some stringent assumptions, namely homogeneity of the profit and adjustment

cost functions. Introducing imperfect competition is a straightforward way of relaxing these

assumptions. Although Hayashi showed analytically how the equivalence breaks down when

firms exert market power, he did so while maintaining the assumption of constant returns

to scale. Rather, this paper emphasizes that the dissociation between marginal and average

q actually depends on the ratio of the degrees of prevailing market power and returns to

scale, and exploits this fact in a calibration exercise. Intuitively, the value of equity should

reflect not only the firm’s capital base but also its monopolistic advantage in extracting

rents. In other words, this paper questions the traditional assumption in the business cycle

literature, that there are no pure monopoly profits. The possible existence of pure profits

implies that although marginal q may be a sufficient statistic for investment, its proxy may

capture changes in the competitive environment, thus blurring the statistical link between

valuation and fundamentals.

Uncoupling these two measures of capital value is not a novel idea. Summers (1981) is

an early example, where the wedge comes from tax purposes.2 Changes in tax rates in RBC

models have powerful effects on real activity by inducing substitutions across goods and time

that affect labor supply and investment choices (see Prescott (2002) for a recent exposition

of this point). Viewed from optimality conditions that equate marginal rates of substitution

to after-tax relative prices, tax changes operate like technology shocks.3 From the slightly

different angle of monopolistic competition, however, markups are analogous to tax rates,

but of a potentially much more volatile form. This is the driving idea of the paper: to use

markups to investigate whether the observed data for average q is consistent with investment

behavior witnessed in the past few years. In short, what Kiley (and countless others) have

called a bubble may have been the rational response of agents to a combination of technology

and markup shocks moving in a given direction.

The paper is organized as follows. The second section sets up the model with imperfect

2More recent examples are Licandro (1992) and Fagnart, Licandro and Portier (1999), where the wedge
arises from variable capacity utilisation, and the emphasis is on the role of excess capacity on magnification
and persistence of technology shocks in the business cycle.

3Interestingly, Kiley mentions in his paper, as a passing comment, that taxes could indeed drive a more
complicated dynamic system for stock values and shadow prices of capital, but that the tax code has not
changed sufficiently in the past ten years to justify a calibrated analysis of its impact on the stock market.
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competition. The third section analyses the quantitative implications of a drop in the return

required by investors and of a change in prevailing markups on asset prices in the calibrated

model. The fourth section extends the model with an entry condition which governs the long-

run behaviour of monopoly franchises. The fifth section discusses extensions and concludes.

2 A General Equilibrium Model with Imperfect Competition
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Figure 1: Average q - ratio of equity to net worth (solid) and of market value to tangible assets
(dotted) (US quarterly data)

Figures 1 and 2 plot the time series for average q in the non-financial non-farm business

sector and the ratio of gross non-residential private fixed investment to the gross domestic

output of non-farm business.4 The value of average q in the late 1990s was historically

4Data for average q is taken from the Flow of Funds accounts of the Federal Reserve Board. The solid
line is the ratio of market value of equities outstanding (line 34 on table B.102) to the replacement value of
net worth (line 31). The dotted line is the ratio of the market value of the firm, which is the sum of credit
market instruments (line 21) and the market value of equities outstanding (line 34), divided by the value of
reproducible assets, the best guess of which is tangible assets (line 2). These two measures are quite clearly
very similar (apart from the level shift), and are both widely-used indicators on Wall Street (see Robertson
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Figure 2: Nominal investment-output ratio (US quarterly data)

unprecedented, while investment behavior (relative to output) remained within its post-war

range. The magnitude of q in the late 1990s and the divergence between these two series

throughout the sample period are the two stylized facts of interest in this paper.

The general equilibrium model used by Kiley (2000) is a discrete-time, stochastic version

with labor-leisure choice of the deterministic, continuous time model developed in Abel and

Blanchard (1983). I return to the latter model, however, and combine it with the Rotemberg

and Woodford (1995) version of monopolistic competition, as it is easier to manipulate for the

simple calibration exercise this paper will pursue. By doing so, two questions arise which will

be dealt with in time. The first is in the modelling of the equity premium (which technically

does not appear in a deterministic model), and the second is the implication of labor supply

decisions on the dynamics of the system in the presence of increasing returns.

The model assumes a continuum of producers-consumers over [0, 1] who maximize utility

and Wright (2002a) for a fuller discussion of the conceptual issues underlying these definitions). Data for the
nominal investment-output ratio is taken from Tables 1.7 and 5.4 of the quarterly NIPA tables, available at
http://www.bea.doc.gov/bea/dn/nipaweb/AllTables.asp.
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of consumption for given constraints on their spending patterns. The production side of the

economy consists of two sectors, a monopolistically competitive sector producing differenti-

ated goods, which are sold to a competitive sector which produces a final good. This good is

used in turn for final consumption and production of intermediate inputs. Firms buy materi-

als, invest, hire labor, pay wages, sell their product and make a profit which they distribute

to consumers in proportion to their share holdings. The competitive sector produces the final

good from intermediate inputs purchased from the household firms at given prices. Labor

is supplied inelastically. Individual optimal conditions are derived and aggregated to the

economy-wide level by restricting attention to symmetric equilibria. Since consumers and

firms care only for the composite good, and capital and labor markets are assumed to be

perfectly competitive, one can study the behavior of a single household as representative of

that of the aggregate economy.

2.1 Consumer behavior

Formally, the consumer solves the following problem

max
{c(t)}

∫ ∞

0
e−ρtu (c (t)) dt

subject to

ḃ(t) +
∫ 1

0
v(t, z)ẋ(t, z)dz + c(t) =

∫ 1

0
d(t, z)x(t, z)dz + w(t)n(t) + r(t)b(t) ,

where b is real bond holdings, r the interest they carry, wn the wage bill, v(z) is the real

value of firm z’s equity, x(z) is the share of that equity held by the consumer, and d(z) is

the real dividend paid. Labor is assumed to be supplied inelastically, and does not come

into the agent’s decision problem. The utility function is CRRA with coefficient of risk

aversion γ : u(c(t)) = c(t)1−γ−1
1−γ . The following first order conditions are obtained from the

Hamiltonian:

γ
ċ (t)
c (t)

= r (t)− ρ , (1)

v̇ (t, z) + d (t, z)
v (t, z)

= r (t) , (2)
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to which is associated the standard transversality condition

lim
s→∞R (t, s) v (s, z) = 0 ,

where R (t, s) ≡ exp
(− ∫ s

t r (u) du
)

is the compound discount rate between time t and s.

The first equation is the standard consumption Euler equation. The second is the arbitrage

equation between rates of return of the two assets. Solving this last differential equation

yields

v (t, z) =
∫ ∞

t
R (t, s) d(s, z)ds . (3)

That is, the value of firm z is the present discounted value of its future dividends.

2.2 Firm behavior

2.2.1 Final good production

Each household z produces a single good y (z).5 This good is used as an intermediate input

for the production of a composite good y using the following technology

y =
[∫ 1

0
y(z)θdz

] 1
θ

, θ < 1 .

In turn, this good is sold back to households and firms as consumption c and production

goods (investment i and materials m), that is

y =
∫ 1

0
(c (z) + i (z) + m(z)) dz = c + i + m .

In other words, the technology in the final good sector is simply Dixit and Stiglitz’s (1977) ag-

gregator; it does not involve capital or labor, and exhibits constant returns to scale. Potential

profits are determined by

py −
∫ 1

0
p (z) y (z) dz ,

5For expositional convenience, this subsection drops time-indexing, as there is no ambiguity about time-
dependency in this otherwise standard framework.
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where p (z) is the price of good z, and p is the general price index, which is used for deflating

nominal variables. Maximising this expression by choice of either output y (z) or price p (z)

leads to a demand schedule for inputs of the form

p (z)
p

=
[
y (z)

y

]θ−1

, (4)

but free entry in the final good sector eliminates these profits, yielding an expression for the

price of the composite good

p =
[∫ 1

0
p(z)

θ
θ−1 dz

] θ−1
θ

.

Clearly, this aggregating device is used to produce single-good analogues of output, consump-

tion, investment and material goods from a concept of differentiated goods. With a single

aggregator, these composite goods are assumed to use the same mix of intermediate com-

modities. The parameter θ measures both the slope of the demand curve for each good and

the cross-elasticity of substitution. The limiting case of θ = 1 reflects a perfectly competitive

environment due to perfect substitutability between goods.

2.2.2 Intermediate good production

Firms create intermediate goods using a production process that combines capital, labor

and materials, and benefits from labor-augmenting technological progress. In the spirit of

Rotemberg and Woodford (1995), the production process takes the functional form

Q (z) = min
[

y (z)
1− sm

,
m (z)
sm

]
, (5)

where y(z) is the value-added created by firm z, and sm ≡ m
Q is the share of material costs in

gross output Q. Thus, the left-hand argument of the minimand is a production function for

value-added y ≡ Q−m that is independent of market power and a fixed proportion 1− sm

of gross output. Throughout the paper, sm is taken as a structural parameter of the model.

Its importance will be clear later.

The reason Rotemberg and Woodford use the Leontief technology is the following. In

a competitive setting, production functions usually omit materials as an argument. This is
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because the output measure of relevance is value-added, the difference between production

of goods and the cost of materials used for it. Under perfect competition, since materials

and output have the same price, the demand schedule for the former can be re-written as a

relationship between value-added and capital and labor.6 However, in this framework, firms

face a downward-sloping demand schedule for their product, and therefore exert pricing power

in their relevant market which feeds back into the demand schedule for materials. The fixed

coefficent technology insulates this schedule from the degree of market power.

I depart from Rotemberg and Woodford’s framework by adding a cost to installing capital,

so as to dissociate the value of the firm from the value of the capital that it owns. Value-added

(which is the analog of GDP in the data) takes the form

y = f(k, An, i)− Φ = kα (An)1−α − h (i, k)− Φ , (6)

where k is the firm’s capital input, n its labor input, A a Harrod-neutral technology pa-

rameter, Φ are fixed costs and h (i, k) is a constant returns to scale capital installation cost

function. The returns to scale index for value added is

η =
dy
dkk + dy

dAnAn + dy
di i

y
=

fkk + fAnAn + fii

f − Φ
=

f

f − Φ
≥ 1 ,

so that value-added can be written as

y =
f

η
. (7)

As will be made clear in the next subsection, fixed costs are necessary to justify the absence of

pure profits in the steady-state of an economy with market power. With a downward-sloping

demand curve, price exceeds marginal cost, but with increasing returns, so does average cost,

and pure profits are zero precisely when price equals average cost. To rationalize these fixed

costs, one can imagine them representing a cost in resources to produce goods or install

capital each period (see Rotemberg and Woodford (1999) for other interpretations of fixed

costs, such as the presence of overhead labor).

6Under perfect competition, if output of the good is Q = g (k, n, m), value-added is Q − m =
maxm (g (k, n, m)−m) = f (k, n).
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2.3 Optimality

Dividends are deflated by the price index, and represent the residual from output sales once

labor has been paid. That is, for household z,

d (t, z) =
p (t, z)
p (t)

Q (t, z)− w (t) n (t)− i (t, z)−m (t, z) . (8)

The firm wishes to maximize the value of its equity (3) subject to the constraints (6), (4),

(8), and the capital accumulation equation k̇(t, z) = i(t, z)− δk(t, z). From here on, to avoid

cluttering of indices, both the t’s and the z’s are dropped when unambiguously convenient.

In any case, the latter will disappear in the symmetric equilibrium where p (z) = p. Setting

up the Hamiltonian and solving for the control variables n, i, p (z) and the state variable k

yields the following:

w = λfn (k,An, i) , (9)

q = 1− λfi (k, An, i) = 1 + λhi (i, k) , (10)

q̇ = (r + δ) q − λfk (k, An, i) , (11)

λ =
θ p(z)

p − sm

1− sm
=

θ − sm

1− sm
, (12)

and the transversality condition lims→∞R (t, s) q (s) k (s) = 0. Here, q is the costate variable

on the investment condition for any firm z (and as such represents the shadow price of its

capital), and λ is the Lagrange multiplier on the definition of value-added (equation (6)).

The firm’s markup, the ratio of output price to marginal cost, is 1
θ , but the ‘value-added

markup’, the ratio between the price of value-added and its marginal cost, is

µ ≡ 1
λ

=
(1− sm) 1

θ

1− sm
1
θ

which is greater than the markup 1
θ when sm > 0, because firms mark up their material inputs

as well (see Rotemberg and Woodford (1995)). As these authors emphasize, the presence of

materials is important in understanding the variation in measures of market power found in

the empirical literature, as some studies attempt to measure the value-added markup µ and
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others the elasticity of demand θ.

Substituting the optimality conditions into the definition of value-added in equation (6),

one obtains

ηy = µ (wn + (1− q)i + [(r + δ) q − q̇] k) ,(
1− η

µ

)
y = y − (wn + (1− q)i + [(r + δ) q − q̇] k) . (13)

This last term represents pure monopoly profits, the difference between total revenue and

total cost. Pure profits are zero (price equals average cost) when returns to scale (ratio of

average cost to marginal cost) exactly offset the markup (ratio of price to marginal cost).

The term on the left-hand side, 1 − ηµ−1, is the share of pure monopoly profits, equal to 1

(the price of the goods in units of output) minus real average cost. Denote π ≡ µη−1 as the

inverse of real average cost. Clearly π is a monotonic transformation of the pure profit share,

and I will use the two terms interchangeably in what follows.

Most of the literature assumes that there are never any pure profits to be made. This

paper takes the different view that there is no particular reason to suppose µ = η at all points

in time. Relaxing this assumption is the key to the central result of the paper. Multiplying

(11) by k, and using the homogeneity assumption on f , one obtains:

q̇k = (r + δ) qk − λfk.k

(q̇k)− qk̇ = (r + δ) qk − λ (f − fi.i− fn.n)

(q̇k) = q (i− δk) + (r + δ) qk − λf + (1− q) i− wn

= rqk − λf + i + wn

= rqk +
(
1− π−1

)
y − d .

Eliminating d with equation (2), this latter differential equation can be solved for by appealing

to the two transversality conditions on the value of the two assets v and qk, yielding

v (t) = q (t) k (t) +
∫ ∞

t
R (t, s)

(
1− π−1

)
y (s) ds . (14)

Therefore, the value of the firm is greater than the shadow value of its capital stock by the
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present discounted value of its future monopoly profits (if µ > η). The intuition is that in the

presence of market power, factor inputs are paid less than their marginal product. If this gap

is greater than the amount necessary to cover the fixed costs inherent in production, then

there is residual output that is not owed to any provider of input, and remains the property

of the firm, which in turn is the property of its shareholders. Hence shares of the firm are

a claim not only to its capital base but also to its monopoly franchise. Clearly, in the case

of perfect competition and constant returns to scale, µ = η = 1, and Hayashi’s (1982) result

that average q is equal to marginal q is obtained. One can write this relationship in terms of

the gap between the observed and shadow values of capital ω = v − qk :

ω̇ = rω − (
1− π−1

)
y . (15)

2.4 Equilibrium

The economy’s equilibrium conditions are summarized by equations (1, 6, 9-12, 15), the

capital accumulation equation, the two transversality conditions, the asset market-clearing

conditions that x = 1 and b = 0, and the pricing symmetry condition p (z) = p . To solve

for the equilibrium, this system is re-written in ‘per effective worker’ terms, by dividing each

relevant quantity variable by An. With the homogeneity of the f function, the transformed

variables now satisfy

γ
ċ

c
= r − ρ− γg , (16)

µ (q − 1) = −fi (k, i) , (17)

µ ((r + δ) q − q̇) = fk (k, i) , (18)

y = c + i , (19)

ηy = f (k, i) , (20)

k̇ = i− (g + δ) k , (21)

ω̇ = (r − g) ω − (
1− π−1

)
y , (22)
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where g is the growth rate of technology g ≡ Ȧ
A . I assume no population growth. The

balanced growth path is defined by the conditions that k̇ = ċ = q̇ = ẋ = 0, and aggregate

capital, output, investment, and consumption all grow at rate g. The adjustment cost function

is assumed to take the standard quadratic form,

h (i, k) =
χ

2
k

(
i

k
− (g + δ)

)2

implying that there are no costs when the economy is on the balanced growth path. This

path is characterized by the following relationships,

q∗ = 1 ,

fk (k∗, i∗) = µ (r∗ + δ) ,

i∗

k∗
= g + δ ,

ω∗ =

(
1− π−1

)

r∗ − g
y∗ ,

y∗

k∗
= π

(r∗ + δ)
α

,

k∗ =
[

α

µ (r∗ + δ)

] 1
1−α

,

where r∗ = ρ+γg. The presence of market power causes the steady-state marginal product of

capital to be sub-optimally high, and by extension the capital stock to be sub-optimally low.

More importantly for this paper’s purpose, it does not affect the equilibrium shadow price of

capital (since investment is fungible with output by assumption, so that it must command

the same price in equilibrium), but it does affect its average price, since

v∗

k∗
= q∗ +

(
1− π−1

) 1
r∗ − g

y∗

k∗
(23)

= 1 +
π − 1

α

r∗ + δ

r∗ − g
.

Notice that the required rate of return has two competing effects. Ceteris paribus, in particu-

lar for a constant markup over cost, a higher rate implies higher costs of using capital, hence
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proportionally higher pure profits (recall equation 13). In turn, a higher rate discounts these

profits more heavily. The existence of even a small equilibrium pure profit share has large

effects on the long-run value of average q. For example, a profit share of 3% of value-added,

combined with the standard calibrated values of r = 7.5%, δ = 6%, α = 0.3 and g = 2%,

yields an average q of 1.25. This arises because the discounting effect increases hyperboli-

cally as the gap between the required return and the growth rate narrows. Later, a restriction

will be added on entry and exit which ensures that pure profits are zero in the long-run, thus

implying that v∗
k∗ = q∗ = 1. For the time being, however, I take it that these profits are

sustainable, and observe what implications this has for valuation.

Consider the parameter κ ≡ (r∗ + δ) (r∗ − g)−1, which captures the two competing effects

of the interest rate. One can express both average q and the investment-output ratio as a

function of κ and π:

v∗

k∗
= 1 +

π − 1
α

κ , (24)

i∗

y∗
=

α

π

[
1− 1

κ

]
. (25)

It is useful at this stage to recall the aim of the model: explain how average q can theoret-

ically reach observed magnitudes without a corresponding swing in fundamentals (captured

by the investment-output ratio), and more generally how the two series can be dissociated.

Equations (24) and (25) point to the long-run qualitative results of the following calibra-

tion exercises. A change in κ—from a change in either r or g—pushes both valuation and

fundamentals in the same direction. Thus, from a steady-state perspective, explaining the

valuation conundrum with κ only compounds the fundamentals conundrum. However, a

change in π has opposite effects on average q and the i/y ratio and is therefore a potential

explanation for the observed dissociation between the two series.

2.5 Transitional dynamics

It will be more telling to track the dynamics of qπ ≡ ω
k = v

k − q in what follows. Re-

arranging the relevant equation and Taylor-expanding the previous system around the equi-

librium growth path yields the following equations, where the derivatives are evaluated at
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the steady-state, and the sans-serif variables are the deviations from equilibrium:

µq = hiii + hikk , (26)

fkk = η (c + i) , (27)

k̇ = i− (g + δ) k , (28)

q̇ =
γ

c∗
ċ + (r∗ + δ) q− 1

µ
(fkkk + fkii) , (29)

q̇π = (r∗ − g) qπ +
γqπ∗

c∗
ċ− qπ∗

k∗
k̇−

(
1− η

µ

)
fk

ηk∗
k . (30)

Equations (26-30) form a system of five equations in c, k, i, q, qπ, which can be reduced to

a system in k, q, and qπ. Notice that this system generalizes the standard Jorgensonian

model (the partial equilibrium analysis with constant interest rate, when γ = 0) and Abel

and Blanchard’s (1983) model (perfect competition and constant returns to scale of both the

production and adjustment cost functions, and µ = η = 1). The system can be written as

Ẋ = AX ,

where

XT =
[

k q qπ
]

,

A =




0 ψ1 0

− 1
µ

f ′′(k∗)
1+ξ ψ2 0

ψ3 ψ4 r∗ − g


 ,
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and

ψ1 =
µk∗

χ
,

ξ = µ
γ

χ

k∗

c∗
,

ψ2 = (r∗ − g)
(

1 + α
ξ

1 + ξ

qπ∗

k∗

)
> 0 ,

ψ3 = (1− α)
[
(r∗ − g)− ξ

1 + ξ
(r∗ + δ)

]
qπ∗

k∗
,

ψ4 = α (r∗ − g)
ξ

1 + ξ
qπ∗2 − µ

qπ∗

χ
.

Since the matrix is block-lower triangular, its eigenvalues are r∗ − g and the eigenvalues of

the Abel-Blanchard system (in k, q space), which is saddlepath stable. Therefore, this system

has a saddle-path equilibrium, since there are as many positive eigenvalues (two) as there are

non-predetermined variables (q and qπ). Take λ1 < 0. The stable manifold of the system is

defined by

X (t) = aV eλ1t ,

where V =
[

v1 v2 v3

]T
is the eigenvector corresponding to the negative eigenvalue. Since

capital is predetermined, one can write in level form k (t)− k = (k (0)− k) eλ1t. In difference

form, the equations for the stable saddlepaths are

q =
v2

v1
k =

λ1

ψ1
k ,

qπ =
v3

v1
k =

ψ3 + ψ4
λ1
ψ1

λ1 − (r − g)
k .

From the assumptions, the first equation is negative sloping in (k, q) space (the stable arm

in the standard q-theory of investment set-up, amended for the presence of the inefficiency

wedge µ), but the sign of the second slope is ambiguous. One can nevertheless observe that

average and marginal q will behave differently for any given deviation of capital from its

balanced growth path.
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3 Calibration

3.1 The equity premium

One of the driving variables in this model is the return on assets required by investors

to smooth their consumption profile. In a stochastic setting, the two assets, bonds and

equity, generate different returns as a reflection of their inherent riskiness. A vast body

of literature flowed from analysing this premium of equity returns over the risk-free rate,

and from attempting to reconcile it with observed consumption profiles, both across dates

and states (see for example, Kocherlakota (1996), and Cochrane (1997)). This is of prime

importance, in that a drop in the required return on assets, posited by a number of authors,

is the key effect that justifies the run-up in equity values in the dividend discount model.

However, in this framework, there is no uncertainty; both assets—stocks and bonds—earn the

same return. Since the asset I am interested in tracking is equity, I will calibrate r accordingly.

From the continuous time-perfect foresight Euler equation (1), the required return depends

on the growth rate of technology, on the coefficient of risk aversion and on the time preference

rate (or equivalently the discount factor). Here, for a given growth rate and aversion to risk,

I will follow Heaton and Lucas (1999) and model a drop in this return by postulating that the

discount factor has fallen, i.e. that people are more long-sighted. In other words, observed

values of γ, ρ, r and g are incompatible with the theoretical Euler equation. ‘Something has

to give’ among the three parameters γ, ρ, and g to justify the prevailing return r. In this

paper, I take it to be ρ.

3.2 Choice of calibration parameters

The calibration will use the following parameters. Importantly these parameters reflect an-

nual data.

γ = 2 α = 0.28 δ = 0.06 χ = 15 g = 0.015 ρ = 0.05

Some comments are in order about these choices. First, I take as fundamental benchmarks

the two facts that the average log-real returns on US stocks over the 1947-1998 period is

approximately 8% (8.1% in Campbell (2001)), and the average capital-output ratio is 2.

From the equilibrium conditions derived above, and assuming that, on average, the pure
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profit share is zero, the choices of α and the depreciation rate δ are compatible with these

long-run values. Second, the adjustment-cost parameter is the average value of the range

chosen by Kiley (2000) for his calibrations, and is consistent with estimates in Cummins,

Hassett and Oliner (1999) . Third, I assume a growth rate of 1.5%. Combined with the other

parameters, this choice implies a long-run investment-output ratio of 15%, 1.5 percentage

points above the average over the sample period depicted in figure 2. Fourth, I assume a

utility function more ‘curved’ than the standard logarithmic case. Sensitivity of results to

these choices of risk aversion and growth is postponed to a later section. Nevertheless, as

the previous subsection pointed out, the time preference rate ρ is now tied down for model

consistency by the other parameters to a value of 0.05. Following Kiley, the initial steady-

state is perturbed—in a deterministic sense—by assuming that the required rate of return

drops to 4%. This implies that ρ drops to 0.01.

Since the point of the calibration will be to compare the dynamics of the economy under

both the PC-CRS and IC-IRS paradigms and under the potential presence of monopoly

rents, the pure profit share π and the value-added markup µ (or equivalently η) will take

on several values. As was mentioned previously, the empirical literature on returns to scale

and markups has been thriving in the past few years, but with great disparity of magnitudes

involved (see Farmer (1999, p.172) for a more detailed presentation of the debate). Returns

to scale seem to range from 1.03 at the low end (Basu and Fernald, 1997)—or even decreasing

(Altug and Filiztekin, 2001)—to 1.4 at the high end (Rotemberg and Woodford, 1995). The

calibration will cover this range for short-run and long-run analysis. It will be convenient to

take the value of the latter set of authors as the upper bound of the range for purposes of

comparison with existing literature. These authors assume sm = 0.5, observing that value-

added in manufacturing is only about half of gross output in manufacturing. By ruling out

pure profits, their assumption that η = µ = 1.4 implies from equation (12) that the markup

is 1
θ = 1.17, which they view as a conservative measure.

An apology is in order, as the number of parameters of interest and related calibrations

generates an even larger number of figures necessary to illustrate the point of this paper. For

the purpose of form, these figures would inconveniently clutter the flow of text. Therefore,

instead of being presented in line with the analysis, they are all displayed in this paper’s
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appendix. The table on page 36 is produced to help keep track of them.

The calibrations involve several dimensions. The first ten figures analyse the effect of

”shocks” (required return and markup) on variables in the presence of a permanent monopoly

franchise. The remaining ten analyse the same parameter displacements when entry erodes

this franchise. These shocks are taken individually and combined, the point of the exercise

being to see how far plausibility of markups, scale, return and entry needs to be stretched to

justify the high observed level of average q. To make the exercises comparable, the required

return shock is modelled as a drop of r from 0.08 to 0.04, and the markup shock is such that

the pure profit share is 3% (i.e.µη = 1.03) unless otherwise stated. This is the value Farmer

(1999) uses for similar illustrative purposes.

3.3 Implications for valuation and fundamentals of a drop in the required

rate of return

Figure 3 on page 37 depicts the benchmark calibration, run under perfect competition and

constant returns to scale. The shadow price of capital, the stock market value of firms and the

investment-output ratio jump on impact as expected, and in the long-run, v∗ = k∗. Kiley’s

(2000) conclusions can be reproduced here: the investment-output ratio increases by more,

and the stock market by less, than is warranted in the data (see figures 1 and 2), for the

given hypothesis of a drop in the required rate of return.

Figure 4 shows the same impulse response functions 7, but for a given small positive profit

share, expected to be sustainable indefinitely. The effect of a drop in the required return

is to magnify substantially the response of average q, and accordingly the stock market

value of firms, which converges to a level above that of the new long-run value of capital

(see equation (23)).8 Hence the presence of sustainable monopoly profits helps the model

reproduce magnitudes of average q observed in the latter part of the 1990s. The price-

dividend ratio also jumps and converges to a much higher long-run value than under the

7Note that ”impulse response” is somewhat of a misnomer, since it refers to the stochastic nature of the
system under study. Here, the system is deterministic. Thus, the impulse-responses are in fact transitional
paths from one deterministic equilibrium to another.

8The full lines track the fundamentals (q and k), while the dashed lines track the valuations (average q
and v). The dotted lines indicate the pre-jump values of the valuation variables, which are not necessarily the
same as those of the fundamentals.
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PC-CRS case. Notice however that the level of capital is slightly lower than in the perfectly

competitive set-up, since the presence of the inefficiency wedge reduces its steady-state value.

On the other hand, as was commented above, the investment-output ratio also jumps, and

the presence of a positive profit share does not seem to dampen the jump in any substantial

way.

The following five figures analyse the sensitivity of these impulse-response functions along

the dimensions of profit and scale. As figures 5 and 6 show on page 38, marginal q becomes

less responsive on impact to a drop in the required return for both higher returns to scale

and profit rates. This occurs because at higher scale, less capital is needed in the future to

produce consumption compatible with the lower returns required by agents. On the other

hand, average q becomes relatively more responsive on impact with higher profit rates. This

clearly arises because of the increased discounting effect (r − g) on the monopoly franchise.

The discrepancy between the percentage jump of average q (figure 7) and its absolute value

on impact (figure 6) comes about because average q starts before the jump at a value above

1, precisely because of the existence of the monopoly franchise (see the dotted lines in figure

4). Figure 9 shows by how much equity increases in the long run for given profit rates (the

increase of the capital stock in the long-run is observed on the graph at the zero-profit share

increment).

The main result of this first exercise is that it is quite easy to reproduce observed val-

uation levels, once one accounts for the capitalized value of future monopoly profits, which

could be small at any point in time. However, figure 8 shows that the sensitivity of the

investment-output ratio to the required return actually increases as a function of both profits

rates and scale. That is, by explaining the valuation conundrum, the model compounds the

fundamentals conundrum.

3.4 Markup shocks

Introducing market power enables us to analyse another possible source of disturbance to the

economy, namely markup shocks. Rotemberg and Woodford (1999) survey several theories

of markup determination, but in this model, the markup is simply assumed to be exogenous.

Figure 10 plots the impulse responses of the same variables for a change in the prevailing
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profit share (given a constant discount rate r∗). A positive markup shock drives a greater

wedge between average and marginal q, as the two variables jump in opposite directions. The

price-dividend ratio also increases. But the disturbance implies a drop in the investment-

output ratio, as well as in the capital stock, while increasing the stock market value of

firms. This comes about because a higher markup causes greater inefficiency (a greater gap

between marginal product and factor price which leads to suboptimal supply of the factor)

and increases the profit share. Notice however that magnitudes involved are very small,

except for the value of equity, which for this particular calibration increases by around 18%.

The two calibration exercises illustrate how allowing for monopoly rents can change the

scale of the response of the system to a shock to the rate of return, and can introduce a

different and potentially important source of shock to the system, precisely via these rents.

The calibrations show that quantitatively, both the rate of return and markup shocks work in

the same direction on impact for average q, and hence for the stock market v, but work in the

opposite direction for marginal q and the investment-output ratio. An immediate follow-up

would be to analyse whether a combination of shocks could explain high valuation and low

investment response. This exercise is performed in the next section, which assumes more

realistically that monopoly franchises are temporary. The reason is that, individually, the

rate of return and markup shocks can be expected to have less of an effect on the system

when franchises are temporary than when they are permanent. It therefore seems logical to

see whether their combined effect can compensate the shortfall of their individual effects.

4 Entry condition

4.1 Dynamics of fixed costs

To maintain permanent rents, the previous section assumed that returns to scale were time-

invariant. This required that

Φ (t) =
η − 1

η
y (t) ,

namely that fixed costs are a fixed proportion of output, or equivalently that the ratio of fixed

to variable costs is constant. Clearly, this defeats the definition of costs as ‘fixed’, but this is

the bane of attempting to model permanent rents in a model of monopolistic competition. The
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previous calibration postulated the existence of a positive long-run profit share, which came

about because of the long-run gap between markups and returns to scale. This assumption

may be too strong, although models of imperfect competition exist where monopoly franchises

are permanent.9 Indeed, the revival of the ‘creative destruction’ approach to growth theory

relies precisely on the idea that monopoly franchises are the necessary incentive to promote

growth.

Although the literature has traditionally assumed that there were no long-run profits to

be made—because free entry would wipe these away—there seems to be little reason not to

expect some short run pure profits. In this section, I amend the previous model by adding

an entry-and-exit condition that links markups and returns to scale so that profits are zero

in the long-run,

Φ̇ = −φ (Φ− Φ∗) ,

with the steady-state level of fixed costs per capita defined by Φ∗ = µ−1
µ y∗.

This autoregressive process follows Zellner (2000). It captures very crudely the notion

that short run aggregate pure profits are possible for deviations of markups with respect to

the long-run, but they are eroded by an increase in returns to scale, which arises from the

increase in the number of firms entering the market and facing fixed costs of production. The

obvious objection to such an equation is its lack of micro-underpinning: there is no sense of

optimisation behind it, as firms enter and exit sectors in a mechanistic fashion. However, I

follow other authors by introducing such a basic behavioral equation (see again Rotemberg

and Woodford (1995) and again, for empirical work, Zellner (2000) and references therein),

which still captures some interesting features from the existence of short-run monopoly profits.

Given that Φ∗ depends on both productivity growth and markups, I can proceed with the

same exercise as before with this extra dynamic equation. Since there are no sustained profits,

qπ∗ = 0, ie average q equals marginal q in the long-run. The equations that need modifying

9In fact, there are a number of models which imply sustained monopoly profits, even in the presence of
entry. For a series of references, see Eaton and Lipsey (1997), and their Chapter 6 in particular.
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are (27) and (30), which now become

fkk = c + i− Φ , (31)

q̇π = (r∗ − g) qπ +
µ− 1

µ (1− α)
f ′′ (k∗) k +

1
k∗

Φ , (32)

with the dynamics of fixed costs

Φ̇ = −φΦ .

This results in the following system:

Ẋ = A2X ,

where

XT =
[

Φ k q qπ
]

,

A2 =




−φ 0 0 0

0 0 µk∗
χ 0

φγ
c∗(1+ξ) − f ′′(k∗)

µ(1+ξ) r∗ − g + ψ5 0

k∗−1 (µ−1)f ′′(k∗)
µ(1−α) 0 r∗ − g




,

ψ5 =
ξ

1 + ξ
(µ− 1) (r∗ + δ) ,

and the other parameters are defined as before. Note again that the matrix is lower block-

triangular, so its eigenvalues are (minus) the speed of entry −φ, the discounting term r∗− g,

and the two eigenvalues of the Abel-Blanchard sub-matrix (the middle block in A2, in (k, q)

space). The determinant is non-zero and there are two negative eigenvalues (λ1 and −φ)

corresponding to the two predetermined variables (Φ and k); therefore, the system is stable

in Blanchard and Kahn’s (1980) sense. Again, shocks to the system will have a different

impact on average and marginal q.
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4.2 Calibrations

Figure 11 on page 41 shows the time paths of the variables after a drop in r in the presence

of returns to scale of 1.4 (the Rotemberg-Woodford value—the upper bound on markup

data) and a speed of adjustment arbitrarily set at 0.3. Again, average q is more responsive

than marginal q, but less so than in the presence of a permanent monopoly franchise. The

investment-output ratio jumps by the same amount as in the benchmark case. A noteworthy

feature is that the price-dividend ratio, equity and the investment-output ratio jump to values

close to their steady-states, and follow what seem like cyclical processes, which are simply

the reflection of the interaction of two negative eigenvalues determining the dynamics of the

system. Figure 12 plots the initial jump of average q, and by extension of the stock market

(since capital is predetermined), after a drop in the required return, for different values of

scale and speed of adjustment. The noticeable feature is the upward ‘flap’ at higher scale

and lower speed, values for which the stock market value can easily double. 10. This cusp is

reversed for the sensitivity of the responsiveness of the i/y ratio to the drop in r, as figure

13 shows. For low values of the speed of entry, this ratio increases by substantially less

than otherwise. It therefore appears that the empirical value of the rate of entry is of prime

importance if this crude model is to replicate the basic features of the data by appealing

solely to a drop in the equity premium.

Figure 14 plots the time paths of the variables in response to a sudden increase in the

markup, for a given required rate r. For this particular calibration, the markup is assumed

to increase permanently by 10%, with fixed costs adjusting to eliminate the excess profits.

There are two noteworthy results. First, average q is a cyclical amplification of marginal

q. This implies that the stock market overshoots its long-run value, as it must converge

to a lower capital stock induced by the higher inefficiency wedge. Second, as opposed to

the calibration with permanent monopoly franchises, the increase in the markup actually

increases the investment-output ratio, and does so by a significant amount. Figure 15 shows

exactly how this ratio reacts to a markup increase from the benchmark of perfect competition.

Figure 16 plots the response to a joint drop in r to 0.04, and a 10% increase in µ. As

10This cusp, interestingly, appears at speeds of entry that Rotemberg and Woodford use for their calibration
exercise on employment (1995), which suggests that their results obtain only under the restrictive assumption
of very slow erosion of profits.
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can be noticed, the dynamics are qualitatively quite different from those obtained in the

presence of a permanent monopoly franchise. Figure 17 shows the impact on average q (and

on market value) of a joint shock to r and µ, from an initial steady-state of constant returns

and marginal pricing, for a given speed of entry. Figure 18 shows the same impact for the

given shock of r = 0.04, for various values of the markup shock and the speed of entry. Again,

the speed of entry plays a crucial role, and the combined effect of lower required returns and

markup shock can reproduce the observed values of average q with the added restriction of

no long-run profits. However, again, this is possible either with a very slow rate of entry, or

substantially large markup changes, much larger than in the model of section 3, since they

must compensate for the erosion of the value of the monopoly franchise which was assumed

permanent therein. Figure 19 shows that the fundamentals conundrum is still present, as

only a very slow speed of entry and a high markup change can dampen the effect of r on i/y.

Finally, figure 20 shows that the long-run effect of the presence of increasing returns to

scale (or equivalently market power) is actually to decrease the long-run value of capital (and

by extension, the stock market) for a given required rate of return on assets.

5 Discussion and Extensions

5.1 Intertemporal substitutability and the growth rate

Sensitivity analysis can be done on a number of parameters in this model, but a full quan-

titative exercise would cause the paper to lose its focus, which is specifically the sensitivity

of asset prices to market power and scale. For the sake of completeness, however, I can

qualitatively assess the impact of the choices of prevailing risk aversion γ and growth g on

the calibration results of 3. Looking again at the steady-state values of average q and the

investment-output ratio in equations (24) and (25), these depend on the ratio κ = r+δ
r−g . Recall

that the calibrations were done on the assumption that ρ changes in a way that is compatible

with a postulated drop in r and a prevailing growth rate. Note that

dκ

dρ
= − g + δ

(r∗ − g)2
< 0 ,

dκ

dg
=

ρ− (γ − 1) δ

(r∗ − g)2
Q 0 .
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The effect of the time preference rate on κ—and hence of r, holding g constant, on average

q and the i/y ratio—is unambiguous. But the effect of g on κ depends on the degree of risk

aversion. Growth has two competing effects. It increases the output-capital ratio (since out-

put is produced with more effective labor) and therefore the value of the monopoly rents. But

it also increases the required return which discounts these future higher rents. Greater risk

aversion requires a higher return to entice consumers to substitute consumption intertempo-

rally. This second effect is more likely to dominate the first, precisely when ρ < (γ − 1) δ.

The implication is that an increase in g can have an adverse effect both on long-run valuation

and investment-output ratios.

In light of this observation, the choice of γ = 2 and g = 1.5% is not innocuous. To see

this, consider the cross-derivative:

d 2κ

dρ dg
= − 1

(r∗ − g)3
[ρ− (γ − 1) (g + 2δ)] > 0 .

The parameters impose a positive cross-derivative which, combined with dκ
dρ < 0, implies

that the higher the prevailing growth rate the more dampened the long-run boost to the two

ratios of interest from a drop in r. The choice of log-utility, however, reverses the sign of this

cross-derivative, implying that a higher prevailing growth rate enhances the impact of this

drop.

This sensitivity analysis is not tractable for the short-run impact of shocks to the system.

An alternative calibration was run with logarithmic utility and a zero growth rate, under the

same conditions of a drop of r from 8% to 4%. The implications are that valuation ratios

are less responsive to this drop than in the original calibration, while fundamentals are more

responsive. Hence the original selection of parameters seems to fit better with observations11.

5.2 Time scale and the significance of φ

As was emphasized at the beginning of the quantitative section, the model is calibrated

according to annual data. This means that the time scale in the impulse response functions

is measured in years. Clearly, the reversion to equilibrium is done on a scale beyond business-

11These alternative results are available upon request.
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cycle analysis: it takes about 15 years for q to decay halfway back to 1 in the PC-CRS case

(in figure 3). Under this paradigm, the model does not capture business-cycle features of

asset valuation, but rather the underlying secular trends. However, the markup and the

speed of entry affect the system’s eigenvalues that determine mean-reversion, and the latter

is substantially accelerated—about 5 to 7 years of half-lives—for most figures where these

parameters differ from the benchmark of PC-CRS. This suggests that estimating the markup

and the speed of entry is of prime importance.

Consider φ, which measures the speed of catch-up of fixed costs Φ to their new long-run

equilibrium. To make sense of it, consider the choice made in this paper of calibrating it to

0.3. This implies that it takes T = ln 2
φ = 2.3 years for fixed costs to cover half the distance

to the new steady-state. For comparison purposes, the annual value used by Rotemberg and

Woodford (1995), φ = 0.08, implies a half-life of T = 8.6 years, which seems inordinately

long. Yet, looking at figure 12, only a very small value of φ can help the model reproduce the

magnitude of observed valuation ratios. Unfortunately, the choice of φ is completely ad hoc.

There is no data available to my knowledge that would enable me to infer a ‘sensible’ value.

The natural instinct is to calibrate on the basis of the expected number of years it would take

to erase half of existing pure profits. But this calibration is not a simple exercise, since profits

depend both on Φ and on y—hence on the two negative eigenvalues of the system—making

the relationship between T and φ non-monotonic. Exploring the significance and the scale of

φ is an obvious direction for extending the quantitative understanding of the effect of pure

profits on valuation.

5.3 Habits

As is well-known from the literature (see Kocherlakota (1996) for example), general equi-

librium models have long failed to account jointly for the equity-premium and risk-free rate

puzzles. One partial way out of this conundrum involves generalising the representative con-

sumer’s utility function. More specifically, a number of authors have explored the implications

of habit formation for asset pricing. Some modelling issues arise about functional forms and

existence of consumption externalities, namely choosing between additive and multiplicative,

and internal versus external habits, as well as the speed with which habits adapt to current
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consumption levels. These issues are discussed at length in Campbell, Lo and Mackinlay

(1997, Chap. 7).

This paper has bypassed the equity premium puzzle in two ways: first, simply by adopting

a non-stochastic framework, and second, by adopting the assumption of time-separable utility.

Relaxing the latter assumption along the lines described in the previous paragraph may still

enable the paper’s model to replicate more closely observed data. In fact, this paper was

written with the first version of Kiley’s (2000) working paper in mind, which dealt with

a standard time-separable utility-based asset pricing model. In the latest version, Kiley

incorporates habit formation in his model. He still retains his original conclusion, which is

that general equilibrium modelling with production refutes the asset pricing consequences of

a drop in the equity premium in the dividend discount model. Habit formation, however,

does affect the path of investment, since it is defined as non-consumed output.

From this paper’s perspective, however, the behavior of marginal q and the rate of return

under habit formation as described by Kiley would still only be half of the story. Recall from

equation (23) that average q and marginal q differ by a term that one can represent as MP
r−g ,

where MP stands for ‘monopoly profits’. Adopting habit formation may be a cleaner way

of modelling the discounting effect in this wedge (the denominator), but it does not alter

the pure profit share µη−1, which underpins the term MP . In other words, habit formation

affects the representative agent’s choice of a consumption profile, but it clearly does not affect

the market structure in which production is undertaken. The crux of this paper is that the

latter matters.

5.4 Labor-leisure choice

In this model, I have made the strong assumption that labor supply is fixed. This is an easy

restriction to relax, but I refrain from doing so purely for simplification. This is another

extension worth exploring, although some of the conclusions from it may be tentatively

sketched out. First, as observed from the first structural matrix A that governs the system,

it is block lower-triangular and its determinant is negative, which implies that all three roots

are real. Hence there is no cyclical behavior in any of the variables tracked by the model,

regardless of the prevailing market power and returns to scale. However, the inclusion of
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labor supply decisions in the model, through the related optimality condition on consumption

and leisure, causes these parameters to influence the determinant and eigenvalues of the new

matrix. As some authors suggest (Farmer and Guo (1994), Benhabib and Farmer (1994)), for

certain values of the elasticity of labor supply and returns to scale, the system may be driven

by complex roots and endogenously persistent behavior, leading to more interesting cyclical

dynamics that, according to these authors, seem to fit US data much better than under the

PC-CRS paradigm. Later research has cast doubt over whether the required magnitude of

the parameters is actually observed to justify cyclical behavior (see Basu and Fernald (1997),

Rotemberg and Woodford (1995)), but it may be worth investigating this further in this

framework, where another source of friction in input markets is introduced in the form of

capital installation costs.

Second, because of the gap between marginal products and factor prices, a technology

shock has a stronger effect on output than in the PC-CRS case, through the increase in the

effective units of labor that a firm hires. However, it has a weaker effect on employment,

through a stronger wealth effect in the labor supply decision that come about from the exis-

tence of the markup (see again Rotemberg and Woodford (1995)). Given the substitutability

of labor and capital, the substitution of current work for future leisure may dampen the effect

of a change in technology on capital accumulation. The size of this new response is also worth

exploring. A companion paper (citation to come) explicitly accounts for the effect of labor

on asset prices.

5.5 Estimating markup changes

Consider now the markup µ. As the last calibration exercises showed, it is possible to reconcile

magnitudes of valuation ratios with a business-cycle model if one accepts the possibility of

large swings in the prevailing markup and the pure profit share. In this paper, these were

assumed. However, data on both variables can be constructed from the optimality conditions

of the model. Consider equation (9). Multiplying by the labor-output ratio and using the

definition of returns to scale yields

wn

y
= µ−1 fn (k,An, i)

f

f

y
=

η

µ
α
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Hence, by assuming for example that constant returns to scale prevail and that the production

function is Cobb-Douglas, the markup moves inversely with the labor share. Rotemberg and

Woodford (1999) proceed in this direction in order to build a markup series and analyse

the effects markups have on output and employment. The extension to this model of asset

pricing is quite straightforward, once one recognizes that a forward-looking rational firm will

optimize profits along each of its input margins. That is, a markup series can be constructed

from the first order condition on labor to test the one on capital and its ‘Hayashi’ extension,

equation (14). This is the focus of a companion paper.

6 Conclusion

The driving idea of this paper was to investigate whether the analysis of stock prices in

a general equilibrium model with production could be amended sufficiently with the intro-

duction of market power to account for the behavior of the stock market in the late 1990s.

The attraction of the dividend discount model stems from the hyperbolic effects of changes

in discount factors on an exogenous infinite stream of income. From a general equilibrium

perspective, however, this hyperbolic effect is dampened, precisely because this stream –

dividends– is endogenously determined by the discount rate. Nevertheless, the q-theory of

investment also values equity as a discounted stream, but of contributions of the capital

stock to future output (directly through marginal products and indirectly through reduced

capital installation costs). This paper recognizes that this discounted stream should include

the future value of monopoly rents. This suggests that the hyperbolic effect of discounting

applies to an extra term which could be sizeable enough to compensate the shortcomings of

the q-theory to account for observed data.

Indeed, under the perfect competition-constant returns to scale paradigm, as Kiley (2000)

pointed out, only half of observed stock valuations could be explained by a potential perma-

nent shift in fundamentals. Introducing market power goes a lot further towards mimicking

observed short-run movements in valuation. As was seen in sections 3 and 4, the combination

of a drop in required returns and an increase in prevailing pricing power can push average

q to observed levels. Moreover, changes in markups could also qualitatively account for the

puzzling dissociation of investment and valuation time-series observed from the mid-1970s to
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the mid-1980s.

However, the long-run properties of the model do not bode well for future valuation, since

q is a mean-reverting process. In order to obtain an equity value permanently higher than

the capital stock, the model must posit a permanent monopoly franchise, which is a serious

departure from the Chamberlinian tradition. Adding an entry-and-exit condition captures

short-run divergence between price variables, but the long-run implications of the model are

necessarily similar to that of Kiley’s: deviations should be eventually erased, and valuation

should revert to a long-run level whose calibrated value is lower than currently observed data.

Moreover, the amended model still requires too high an investment intensity in the economy

compared to the data. Finally, introducing simple markup shocks creates the potential for

more interesting dynamics, but the scale of these dynamics is small, and improbably large

changes in market power are required to match the data.

The positive aspect of these results is that the introduction of market power in a general

equilibrium model with production is straightforward, and highlights an obvious weakness in

the standard q-theory of investment, namely the oversight of the value of monopoly franchises.

It also highlights the need to integrate the empirical literature on imperfect competition,

particularly that on the estimation of time-varying markups and returns to scale, to conduct

more appropriate econometric analysis of investment and valuation behavior.
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Figure 3: Impulse response - drop in required return to r = 4% with µ = η = 1
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Figure 4: Impulse response - drop in required return to r = 4% with 3% permanent profit share
(µ = 1.03, η = 1)
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Figure 5: Marginal q on impact as a function of scale and profit share
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Figure 6: Average q on impact as a function of scale and profit share
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Figure 7: Percent change in average q on impact as a function of scale and profit share
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Figure 9: Percent change in long-run value of equity as a function of scale and profit share
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Figure 10: Impulse response - sudden permanent profit share (µ = 1.03, η = 1)
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Figure 11: Impulse response - drop in the required return to r = 4% with scale of η = 1.4 and
speed of entry of φ = 0.3
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Figure 12: Average q on impact as a function of scale and speed of entry
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Figure 13: Percentage change in investment ratio on impact as a function of scale and speed of
entry
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Figure 14: Impulse response - sudden profit share (µ = 1.1, η = 1) with entry speed φ = 0.3
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Figure 15: Percentage change in investment ratio on impact as a function of a markup change
and speed of entry
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Figure 16: Impulse response - drop in required return to r = 4% with sudden profit share
(µ = 1.1, η = 1) and entry speed φ = 0.3
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Figure 18: Average q on impact as a function of markup and speed of entry
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