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Abstract
In this paper, we examine the stock price benefit of meeting or beating earnings

expectations. Using a general methodology, we find no evidence that the timing of
earnings news has any benefit for firms’ stock returns. In fact, in many cases we find
firms attempting to engineer positive earnings surprises by beating down expectations
only to discover that their efforts are counterproductive. Our results appear to overturn
the findings of previous authors who, using less general methodologies, have suggested
that firms can boost their stock returns by getting bad news out early. Our results
are robust across time periods, for different scaling factors on earnings revisions and
surprises, when controlling for firm size and growth prospects, and when conditioned
on past earnings news.
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1 Introduction

Over the last decade, corporate chieftains seem to have become increasingly preoccupied

with their quarterly financial results and whether those results meet their equity analysts’

forecasts. Indeed, both market observers and academic studies have pointed out an appar-

ent tendency for corporate managers to guide analysts’ overly optimistic earnings forecasts

downward in advance of the official release, so that the firms are able to meet or beat Wall

Street expectations on the release date.

It is easy to understand management’s obsession with meeting Wall Street estimates in

light of the punishment frequently meted out to the stocks of companies whose quarterly

results fall short of forecasts. What is more difficult to understand is how firms could benefit

from managing down current quarterly forecasts by “preannouncing” bad news several days

or weeks before their final results are released. If, at the end of the day, the total news

is the same, then any benefit to the stock price at the earnings announcement should be

entirely offset by the earlier negative price impact at the time of the warning, rendering

the cumulative return insensitive to the timing of the news. This standard efficient markets

view, however, seems at odds with popular perceptions. Moreover, some recent academic

studies also conclude that managing expectations down ahead of bad news reduces the total

stock price impact of the news.

In principle, testing the hypothesis that firms can boost their near-term stock prices

by managing expectations should be straightforward. Controlling for the total earnings

information revealed over the period in question — the gap between realized earnings and

the beginning-of-quarter forecast (the “total forecast error”) — one can test whether the

timing of information revelation matters for the cumulative stock return over that period.

While a number of recent studies have attempted to implement this testing strategy, the

results are somewhat contradictory and the methodologies may not be robust.

In this paper, we examine the stock price benefit of meeting or beating expectations

using a general, yet intuitive, approach. Our methodology most closely parallels Kasznik
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and McNichols (2002) and Bartov, Givoly and Hayn (2002), both of whom measure interim

earnings news using revisions to analyst forecasts. Kasznik and McNichols (2002) gauge

the rewards to meeting analysts’ annual earnings forecasts by testing whether meeting (or

beating) those forecasts has a positive incremental effect on stock price, while controlling for

the total information revealed over the year. Indeed, they find a positive incremental effect

of meeting the expectations at the time of the earnings announcement. Bartov et al. (2002)

conduct a similar experiment, but focus on quarterly earnings. They also find that meeting

expectations has a beneficial stock price effect, even after controlling for the total earnings

news over the quarter, including the day of the report.

A clear implication of these findings is that earnings news released during the firm’s

performance period, that is, during the year or quarter, has a smaller stock price impact

than the same news released around the time of the actual report. This suggests that firms

can boost their stock prices by releasing negative news early, when price responses are lower,

while keeping any good news under wraps until the earnings report, when price responses

are larger.

Like these and a few other studies that have appeared recently in the literature, in this

paper we estimate the effect of quarterly earnings news on quarterly abnormal stock returns

by splitting quarterly total forecast errors into two contiguous pieces: (i) a forecast revision,

defined as the difference between analysts’ forecasts early in the quarter and their forecasts

three days before the earnings announcement; and (ii) an earnings surprise, defined as the

difference between the three day forecast and actual reported earnings. We then estimate the

effects of these forecast revisions and earnings surprises on the cumulative abnormal return

over the period.

The most important methodological difference here is our use of nonparametric esti-

mation, which allows for a wide range of abnormal return response functions. Given the

potential nonlinearities that might underpin the relation between earnings news and stock

returns, we argue that careful consideration should be given to the form of the assumed
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response function. Most of the previous studies have assumed that the response of stock

returns to earnings information is linear, with the possible exception of a discontinuity at

an earnings surprise of zero. Indeed, under any number of possible nonlinearities, such

regressions would be prone to incorrectly accept the hypothesis of a discontinuity at zero.

To estimate the abnormal return function, we employ the locally weighted least squares

(loess) method (Cleveland (1979), Cleveland and Devlin (1988)), which allows for a wide

range of possible functional forms. Moreover, under standard assumptions on the error term,

the statistical properties of the locally weighted least squares estimator are well approximated

by those of the the ordinary least squares estimator. The principal drawback to loess is

that it is a computationally and data intensive procedure, but given recent advances in

computer speed and our very large dataset, these drawbacks are significantly mitigated in

our application. We report our results in the form of three-dimensional plots of the abnormal

return on the vertical axis against the forecast revision and the surprise on the horizontal

axes, thereby allowing one to examine the estimated tradeoff that firms face at a variety of

points in revision-surprise space.

A second important methodological difference between our study and previous work is

that we focus on the econometrician’s choice of the “preannouncement period,” and suggest

that revisions early in the quarter might reflect the previous quarter’s news. If analysts do

not fully incorporate the previous quarter’s earnings announcement into their newly updated

or reconfirmed forecasts, but the stock price does immediately incorporate the information,

then revisions to these early-quarter forecasts might not convey as much information to the

market as revisions that follow company guidance later in the quarter. This would create

a spurious asymmetry in the magnitude of stock price responses to forecast revisions and

earnings surprises.

Finally, we examine the choice of the scaling factor applied to the forecast revisions

and surprises — a choice that we argue could influence the results. It is conventional in

accounting studies to normalize by beginning-of-period stock price, which reduces problems
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with outliers. We argue that, in theory, expected earnings (or book value) is a preferable

measure. We find that the expected earnings scaling factor produces fits that are slightly

superior, in a statistical sense, to the fits produced by the price scaling factor.

In contrast to previous studies, we do not find any short-term stock price benefit to

preannouncing bad news. In other words, we find little or no difference in the sensitivity of

stock returns to early forecast revisions and earnings surprises. This conclusion appears to

be robust across practically the entire range of the data. In particular, in most cases we do

not even see a benefit from nudging analysts’ forecasts so that the earnings surprise is zero

or slightly positive rather than slightly negative. Finally, we look at whether these results

obtain when we condition on the size of the firm and on the firm’s growth prospects as

measured by analysts’ long-term growth forecasts. While we do find that the stock prices of

high-growth firms, particularly small, high-growth firms, tend to be much more sensitive to

quarterly earnings news than those of low-growth firms, we again do not find any significant

asymmetries in their sensitivity to news released early versus news released at the earnings

report.

This paper is organized as follows. In the next section, we provide an overview of this

rapidly expanding literature. Section 3 describes the data in detail and discusses our empir-

ical methodology, and section 4 lays out our results. The final section concludes.

2 Previous Literature

Over the past decade, the consensus-meeting game played by corporate management and

equity analysts seems to have become a dominant feature of the corporate reporting land-

scape. In general, firms can meet over-optimistic expectations in one of two ways. They can

“manage” their financials in such a way as to boost the earnings they actually report, or they

can provide guidance to analysts well before earnings are actually reported, causing analysts

to immediately mark down their forecasts. Our analysis focuses on the latter behavior.

4



Early evidence on the asymmetric nature of management disclosures is provided by Skin-

ner (1994), who found that, more than a decade ago, 67 percent of early quarterly disclosures

conveyed bad news. Kasznik and Lev (1995) show that this asymmetry did not merely reflect

the state of forecasts relative to the economy, but a greater propensity by management to

divulge significant earnings news early when that news was negative. Moreover, the propen-

sity to avoid the negative announcement-day surprises appears to have become increasingly

pervasive over the last decade. For instance, Matsumoto (2002) shows that in a large and

growing percentage of cases where quarterly reports matched or even beat expectations,

those reports were negative surprises relative to where analyst forecasts stood one to two

months prior to the report (see also Burgstahler and Eames (2002)).

Media reports often presume that preannouncements are aimed at softening the impact of

bad news on stock prices, but the underlying motivation remains a subject of growing debate

in the academic literature. Skinner (1994) and other early research on the topic emphasizes

that the threat of litigation gives rise to an asymmetry in the penalty for reporting significant

downside surprises. A number of authors have offered behavioral rationales, such as the

presumption that analysts are more embarrassed when a company that they follow reports

a negative surprise than when results top their forecasts. A third type of rationale invokes

signaling: By preannouncing bad news, firms might signal that they have some understanding

of the situation. In particular, Liu and Yao (2003) argue that firms preannounce bad news to

signal they have better growth prospects than firms that don’t preannounce bad news. This

last rationale, if not the others, would seem to suggest that the consensus-meeting game is

designed to boost (or perhaps just bolster) the firm’s stock price.

Some recent studies propose more insidious motivations. For example, Aboody and

Kasznik (2000) offer evidence that managers are motivated to make bad news public or hold

back good news prior to receiving installments on executive stock option grants. By moving

forward and perhaps exaggerating its negative stock price impact, preannouncing bad news

lowers the strike price on newly-granted stock options, thereby raising the potential value
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of the options to managers. In contrast to previous explanations, this rationale does not

imply that prereleasing negative information benefits the firm’s stock price in the short- or

long-run; rather, it merely pulls forward in time any downward price adjustments.

In a similar vein, Richardson, Teoh and Wysocki (2003) point out that the window

during which insiders can sell shares, and when firms tend to issue shares, usually follows

official earnings releases. If management believes that the market temporarily overreacts to

bad news, or that the market reacts less to bad news when it is disseminated prior to the

earnings report, then preannouncing such news well before both the report date and the

window for selling shares could bolster the price that managers receive on sales of shares to

the public. A similar argument, which may be more easily reconciled with market efficiency,

is that preannouncing bad news might simply reduce the variance of the price received on

post-report share sales, by providing more time for the information to be digested.

While there is little agreement on the primary motivation behind the consensus-beating

game, there does appear to be mounting evidence that playing this game has a positive

impact on stock prices. Such evidence has taken one of two forms. One approach to gauging

that impact is by analyzing valuations (the level of stock prices) to infer whether firms that

tend to meet consensus forecasts on the report date also tend to be more highly valued

(Chevis, Das and Sivaramakrishnan (2002), Liu and Yao (2003)). This type of evidence,

though highly suggestive, must be viewed with at least some skepticism, as it is difficult

to control for firm characteristics and insure that the true direction of causation is not the

reverse. In particular, it is difficult to control for the likelihood that highly-valued “growth

firms” are more prone to play the consensus-beating game. Indeed, those firms should be

more motivated to do so if, as suggested by Skinner and Sloan (1999), they are penalized

disproportionately when their reported earnings do fall short of consensus forecasts.

The most direct evidence on the stock price benefits of playing the consensus-beating

game comes from studies that analyze stock returns. One of the first studies to try gauging

the effect of company preannouncements on stock prices was Kasznik and Lev (1995), who
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identify discretionary management disclosures via a NEXIS News search. They analyze

fourth-quarter earnings announcements from 1988-1990, focusing only on observations with

substantial total forecast errors between actual earnings and forecasts 30 days after the

previous quarter’s earnings announcement. Controlling for the total forecast error, they find

no evidence that issuing an early disclosure boosts cumulative returns. In fact, among firms

with substantial negative forecast errors, they find that issuing an early disclosure has a

negative effect on the cumulative returns measured over a narrower window.

More recently, Soffer, Thiagarajan and Walther (2000) analyze the stock returns of com-

panies identified by First Call as having issued quantitative preannouncements no earlier

than two weeks prior to quarter-end. They find that, even after controlling for the total

forecast error (the difference between actual earnings and the forecast at the time of the

preannouncement), having a negative earnings surprise on the earnings announcement has a

negative effect on total-period stock returns. Moreover, they find that stock prices are more

sensitive to the amount of negative news when it is released at the earnings announcement,

suggesting that firms can reduce the impact of negative news by preannouncing it.

These ideas are further tested in the study by Bartov et al. (2002), henceforth BGH,

who analyze roughly three-month cumulative returns for all firms whose quarterly earnings

are forecasted by analysts tracked by Thompson/First Call. Again, controlling for the size

of the total forecast error, they test whether cumulative stock returns are affected by the

timing of earnings news. Their methodology is similar in spirit to the analysis of annual

earnings surprises by Kasznik and McNichols (2002). In both studies, news is gauged solely

by changes in analyst estimates, and in both cases, it is found that the cumulative returns

on stocks of firms with bad news (negative forecast errors) are higher when the bad news

is reflected in forecasts before the earnings announcement. The implication is that firms

can dampen the effects of bad news by driving down analyst forecasts prior to the earnings

report, through preannouncements or quieter means.1

1Firms’ scope for influencing analysts’ forecasts by quieter means was significantly limited following
October 23, 2000, when the Securities and Exchange Commission adopted Regulation FD (Fair Disclosure)
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BGH recognize the potential for nonlinearities and provide relatively compelling evidence

using difference-in-means tests. In particular, they divide observations into buckets according

to the size of the total forecast error. Among the set of observations falling within any given

range of total forecast errors (e.g., -5 to 0 percent), they compare the average abnormal

return for observations where there is a negative surprise on the report date to the average

return among those where there is a positive surprise. Our approach differs from BGH in two

potentially important respects. First, our methodology uses a continuous distance metric for

defining which observations are “close” to one another in the sample space. Second, among

observations within a given neighborhood, our estimation strategy allows for a slope, as well

as an intercept, in estimating the abnormal return function. While this should make our

estimates less biased, the potential downside is a loss of precision.

Venkatachalam and Wang (2000) recognize a need to allow for nonlinearities, but they

estimate an earnings response function that only allows for some select breaks in the linearity

assumption, including asymmetries in the response to positive and negative information.

Their results partially confirm those of BGH, but suggest a more complicated story in which

the benefits of lowering expectations are not uniform. Still, these inferences may be just as

sensitive to their parametric restrictions, which presume linearity over large ranges of the

data.

Our approach to the question essentially amounts to a generalization of the common

hypothesis in these previous studies: Is the size of the cumulative stock return a function of

not only the amount of earnings news, but also of the timing of that news? For instance,

does bad news have a smaller negative effect if that news is released some days or weeks

ahead of the actual earnings announcement? As in the more recent studies, we use analysts’

earnings forecasts to measure market expectations. Under this approach, current-quarter

revisions to analysts’ forecasts are assumed to reflect the timing of earnings news released

which addresses selective disclosure. The regulation provides that when an issuer (firm), or person acting
on its behalf, discloses material non-public information to securities market professionals and/or holders of
the issuer’s securities, it must make public disclosure of that information.
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by the firm, either publicly or privately.

3 Data and Methodology

3.1 Data Construction and Measurement Issues

Our study examines U.S. firms’ quarterly earnings reports from 1987 through 2001. Data on

both equity analysts’ forecasts of earnings per share and actual earnings per share (EPS) are

drawn from the I/B/E/S history and analyst detail files. For each firm-quarter observation,

we compute the average of analysts’ quarterly EPS forecasts, measured in dollars per share,

at three points in time: (i) 7 days after the previous quarter’s report (or about twelve weeks

before the current-quarter report date); (ii) 42 days (or six weeks), before the current-quarter

report date; and (iii) 3 days before the report date. To avoid using stale forecasts, average

forecasts are computed using only those forecasts that were issued or confirmed after the

previous quarter’s earnings report. To filter out observations where information timeliness

may be a problem, we exclude firm-quarters in which earnings are not reported within 90

days after quarter-end. In addition, we exclude observations in which the report is not

issued between 8 and 16 weeks after the previous quarter’s earnings report (where the mode

is about 13 weeks).

These data are used to construct our main information variables. We define the total

forecast error as the difference between actual quarterly EPS, revealed on the announcement

date, and our earliest consensus forecast, F0 in figure 1. Similar to BGH, we split the total

forecast error into two components: (i) the surprise, defined as the difference between actual

earnings and the consensus forecast 3 days earlier, F2; and (ii) the forecast revision, defined

as the difference between the 3-day forecast, F2, and the early-quarter consensus forecast,

F0.

A key methodological question concerns the timing of the early forecast, F0: How early

should this measurement be taken? BGH measure this as early as 3 days after the previous
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quarter’s announcement. However, early in the quarter it is possible that analysts have not

fully incorporated the ramifications of the previous quarter’s official earnings release into their

updated or reconfirmed forecasts, even if the stock price has incorporated that information.

If this were the case, then revisions to these forecasts may not convey as much information to

the market (where the news has already been digested) as revisions that follow new company

guidance later in the quarter. This would create a spurious asymmetry in the magnitude of

stock price responses to forecast revisions and announcement-day surprises.

To address this concern, we construct an alternative measure of the initial forecast re-

vision, equal to the average forecast as of six weeks (42 days) prior to the actual earnings

announcement, denoted by F1 in figure 1. In this case, the revision is the difference between

F1 and F2, while the surprise is defined as before. For the typical firm, F1 would fall in

the middle of the third month of the quarter, about the time that most managers would

have an accurate picture of the firm’s performance over the first two months of the quarter.

Also, most warnings tend to come near the end of the quarter or shortly thereafter, so this

more abbreviated forecast revision period should capture most of the information released

in pre-announcements (Soffer et al. (2000)).

A second measurement issue that we consider is how to best scale earnings revisions and

surprises. The most common scale factor in the literature is the firm’s beginning-of-period

stock price. This scale factor is convenient because the stock price is always positive and

is rarely small relative to the numerator. From an analytical perspective, however, this

approach is less satisfying, and we also argue that this scale factor is likely to distort the

relative sizes of earnings revisions and surprises across firms. In particular, it has been argued

that the stock return of high growth, high price-to-earnings (PE) ratio firms should be more

sensitive to any given earnings surprise compared to slower growing, low-PE firms. However,

all else equal, scaling earnings revisions by stock prices will make the news on high-price

firms appear smaller than the same news on low-price firms. If so, this scaling would induce

measurement error that would reduce the apparent explanatory power of earnings news.
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Two alternative scale factors that we consider are the level of realized earnings-per-

share, which converts the revisions and surprises into percentage terms, and book value

per share, which converts them into returns on equity. While these measures might be

preferable analytically and theoretically, they produce numerical difficulties when earnings

or book value are negative or near zero. To implement these scale factors, we use their

absolute values, and delete observations for which the value of the scale factor is close to

zero. For the EPS scale factor, we omit observations in which actual EPS is 5 cents or

less in absolute value, denoting the resulting variable by |EPS|. In the case of book value,

we omit observations where the absolute value of the expected quarterly return on equity

was greater than 25 percent (an annualized expected return of 100 percent).2 Because the

book value scaling factor produced results that were qualitatively indistinguishable from the

|EPS| scaling factor, in what follows we discuss only the results based on the |EPS| and price

scaling factors.

The earnings data are linked with stock price data drawn from CRSP. For each firm-

quarter, we calculate the cumulative return on the firm’s stock between the day of the initial

forecast, F0, through the day after the release of the current quarter’s earnings. To compute

abnormal returns, we calculate the cumulative return on the S&P500 Composite index over

the same period and subtract this from the firm-level return. Although not shown in the

paper, we also calculated abnormal returns using estimated betas in a traditional single-

factor market model. However, both the qualitative and quantitative results using these

measures were virtually indistinguishable from the results reported here.3

2We drew the book value data from Compustat.
3We constructed betas for each firm-quarter using daily stock returns for the 250 trading days preceding

the first calculation of the mean EPS forecast for each firm, matched with daily returns on the S&P 500
index (the “market” return) over the same time period. In other words, for each firm we compute quarterly
betas on rolling one year samples of the firm’s stock returns and S&P 500 returns. The principal reason that
beta-adjusted returns do not change our results appears to be the fact that betas contain little predictive
power for firm-level returns, particularly for smaller firms.
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3.2 Sample Statistics

After merging the I/B/E/S, CRSP, and Compustat data, constructing the revision, surprise,

and abnormal return variables, and applying our data timeliness criteria, we have 134,098

firm-quarter observations (before scaling revisions and surprises). For most of our analysis,

we split the data into two subsamples, an early sample spanning 1987-1995, and a late sample

spanning 1996-2001. Doing so should provide some indication of any longer-term behavioral

changes. Because coverage of smaller firms has expanded over time, there are many more

observations per quarter in later years.

We apply some additional criteria to eliminate outliers. We remove firm-quarters with a

beginning-of-period stock price less than 3 dollars, as such observations are likely to produce

very volatile and highly idiosyncratic returns. As mentioned earlier, for the earnings-scaled

analysis, we eliminate observations in which quarterly EPS is 5 cents or less in absolute

value. Lastly, we trim out observations for which any of the variables (revisions, surprises,

or abnormal returns) have extreme values, defined as values in the top or bottom 2 percent

of the variable’s empirical distribution. After these refinements, we are left with a total of

100,437 observations in the sample using the |EPS| scaling factor, and 111,111 observations

for the sample using the price scaling factor.

In order to provide a sense of some of the qualitative features of our data, figure 2 provides

scatter plots depicting the joint distribution of “12-week” earnings revisions and earnings

surprises, scaled by |EPS|. Panel A depicts the joint distribution over the period 1987-1995,

while panel B shows the distribution for the period 1996-2001. In the early period, revisions

range from -0.94 to 0.30 (-94 percent to 30 percent), while in the late period, revisions

range from -108 percent to 21 percent. The distribution of surprises in the early period is

more skewed toward negative surprises than in the late period. These features of the data

are suggestive of increased efforts over time on the part of analysts to keep their forecasts

current, and/or increased efforts on the part of firms to manage down expectations so as to
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avoid negative surprises.4

Turning to a quantitative description of the data, table 1 displays univariate statistics

for our measures of revisions, surprises, and abnormal returns. The table displays the 25th,

50th, and 75th percentiles for the variables, plus the interquartile ranges, with all values

multiplied by 100 (which converts the dependent variable and the |EPS|-scaled revisions

and surprises into percent values). Panel A shows statistics for the early and late samples

when the revisions and surprises are scaled by |EPS|, while panel B shows sample statistics

when we scale by price. The first column in the upper left box of panel A shows some of

the distributional characteristics of abnormal returns, the dependent variable, in the early

period for the 12-week revision subsample. As shown, fifty percent of the observations on

abnormal returns lie between -7.90 percent and 7.43 percent, and the median value is -0.18

percent. In the late period, abnormal returns appear more volatile, with the 25th percentile

at -13.00 percent and the 75th percentile at 10.17 percent.

In both the early and late samples, there is a clear asymmetry in the distribution of revi-

sions, with negative revisions being much larger and more plentiful than positive revisions.

In the early sample, the 25th percentile |EPS|-scaled revision equals -5.15 percent, whereas

the 75th percentile is 1.67 percent. Although the late sample also shows this asymmetry,

the distribution is notably tighter, implying that that quarterly forecasts have become more

accurate in recent years.

Moving down panel A to the statistics for the 6-week forecast revisions, we find this

narrower measure to be much more tightly distributed compared to the 12-week revisions,

with a higher proportion of zeros. The 25th percentiles fall to -1.71 percent and -1.14 percent

in the early and late periods, respectively, while the median 6-week revision is zero in both

subsamples.

More obvious here than in the scatterplots is the strong positive skew of surprises, consis-

tent with the findings of previous studies, such as Richardson et al. (2003), which document

4The striations evident in the data reflect rounding and our cutoff on EPS values. We discuss the boxes
below.
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analysts’ generally positive forecast bias that disappears as the earnings announcement date

nears. In the early sample, the median surprise is 1.08 percent, while in the late period,

it is 2.34 percent. The positive skew in the distribution of surprises is most evident in the

late sample, suggesting greater effort by firms to avoid negative surprises in recent years,

consistent with the findings in Matsumoto (2002).

Turning to the price-scaled data in panel B, the qualitative features of the statistics differ

only slightly from panel A. The small differences in the distributions of abnormal returns

owe to the filtering out of observations with tiny earnings-per-share values.

The partial correlations amongst the variables can be inferred from table 2, which shows

the results of simple linear regressions estimated on the various subsamples, with abnormal

return as the dependent variable. All three information variables — the two partly over-

lapping revision variables and the surprise — are included as regressors. The regression R2

values range between 4.8 and 6.2 percent, values comparable to those for similar regressions

in previous studies. There appears to be little difference in qualitative comparisons between

the results for the |EPS|-scaled and the analogous price-scaled regressions.

Focusing on the |EPS|-scaled regressions, in both the early and late subsamples, all three

information variables are significant, suggesting that the stock price effects of late-quarter

revisions (those during the last six weeks before report) tend to be larger than the effects of

revisions earlier in the quarter. In the early sample period, the coefficient on the 12-week

revision is only 0.05, while the marginal effect of the 6-week revision is 0.23; this would imply

that a revision during the latter six weeks has a total effect of 0.28 (0.23+0.05). Notably, the

coefficient on the surprise is only 0.16, suggesting that surprises have a substantially smaller

effect on returns compared to late-quarter revisions. However, we view these results as at

best suggestive; given the potential for nonlinearities in the relationship between returns

and revisions and surprises, they may not hold up over key portions of the revision-surprise

space.

The late period results are similar, though the effects of our information variables appear
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to be larger. The coefficient on 12-week revisions is substantially larger, at 0.21, perhaps

reflecting increased attentiveness toward early-quarter forecasts in more recent years. In this

sample, the total estimated effect of forecast revisions during the second 6-week interval is

0.35 (0.21+0.14). Finally, the coefficient on surprises, at 0.28, is nearly twice as large as in

the earlier years.

3.3 Methodology: Locally Weighted Least Squares

Our basic regression specification is given by:

Abnormal Returnn = f(Revisionn, Surprisen) + εn, (1)

for n = 1, 2, . . . , N , where N is the number of firm-quarter observations (note that we

have pooled the quarterly data and dropped the time subscript for notational ease). The

“Abnormal Return” on a firm’s stock is the cumulative return over the roughly 12-week

period ending one day after the earnings report, less the cumulative return on the S&P500.

The “Revision” and “Surprise” are defined as described above. 5 The random error εn is

assumed to be normally distributed with zero mean and constant variance σ2, and is further

assumed to be uncorrelated with revisions and surprises.

Theory provides little guidance on the functional form of f(·), so in order to allow for the

greatest range of possible functional forms, we adopt a nonparametric estimation approach.

Specifically, we employ locally weighted least squares (loess) to estimate f(·) (Cleveland

(1979), Cleveland and Devlin (1988), Cleveland, Devlin and Grosse (1988)). Loess is es-

sentially a method for smoothing scatterplots by means of the local fitting of low-order

polynomials. At a given point in the revision and surprise space, local fitting is achieved

with a weighting scheme that down-weights data points that are relatively distant from the

given fitting point. Compared to perhaps more familiar kernel regression techniques, such

5In our notation, we do not explicitly indicate the scaling factor; in the discussion of our results, we will
always make clear which scaling factor applies.

15



as the Nadaraya-Watson estimator (Nadaraya (1964), Watson (1964)), loess is typically less

biased on the boundaries of the data and in other situations where the data are asymmetri-

cally distributed in the local regression sample (where by local regression sample we mean

the points with non-zero weight in the local fit — see Hastie and Loader (1993)). More-

over, the estimator enjoys a number of convenient statistical features by virtue of its close

association to the ordinary least squares estimator.

An important element of the loess methodology is the definition of the weighting function.

Following Cleveland (1979), we employ the “tricube” weight function:

W (x) =




(1 − |x|3)3 for |x| < 1;

0 for |x| ≥ 1.
(2)

As shown in Devlin (1986), the tricube weighting function improves certain approximations

to the distributions of some of the statistics associated with the loess estimator. Denoting

by hi the distance from xi to its rth nearest neighbor, for each data point n = 1, 2, . . . , N we

construct the weights:

wn(xi) = W
(

xn − xi

hi

)
. (3)

As can be seen by examining equations (2) and (3), the rth nearest neighbor and all points

more distant from xi receive zero weight.

The estimates β̂i,0 and β̂i,1 are computed by minimizing the sum of squared residuals:

N∑
n=1

wn(xi) (yn − βi,0 + βi,1xn)2 . (4)

More independent variables can, of course, be included in equation (4), if called for in the

application at hand. As we move across the fitting points xi, we re-compute the weights

assigned to each of the data points included in the regression, producing a series of estimates

β̂i,0 and β̂i,1 for i = 1, 2, . . . , N .

Like all other nonparametric techniques, an application of loess requires that the econo-
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metrician decide on the degree to which the precision of the estimate (bias) is to be traded off

against smoothness (variance). In general, the desired amount of smoothing is application-

specific (Mallows (1973)). We based our smoothing parameter selections on two standard

selection methods. First, we performed generalized cross-validation (GCV) on each sub-

sample in order to select a smoothing parameter (Härdle (1990)). Second, we computed

M-statistics across a range of smoothing parameter settings. As discussed in Cleveland and

Devlin (1988) and summarized in the appendix, the M-statistic is an extension of the Cp

procedure of Mallows (1973) for choosing a subset of independent variables based on esti-

mates of the mean squared error for each subset. We used graphs of M-statistics (M-plots) to

gauge the tradeoff between bias and variance embodied in the smoothing parameter selected

by GCV. In general, the M-plot analyses confirmed the GCV smoothing parameter settings:

the M-plots revealed that the GCV parameters were consistent with a null hypothesis of zero

bias. In cases where there was divergence between the GCV parameters and the optimal pa-

rameter suggested by the M-plot analysis, we picked the lowest smoothing parameter (least

smoothing) that would accept a null hypothesis of zero bias at the traditional 95 percent

level, so as to reveal nonlinearities in the abnormal return response function.

4 Empirical Results

We begin by estimating the effects of 12-week forecast revisions and earnings surprises, both

scaled by |EPS|, on abnormal returns in the early sample period (1987-1995). Figure 3 shows

four sets of estimation results, each based on a different smoothing parameter. The upper

left plot depicts the estimated surface for a smoothing parameter setting of 0.15, meaning

that each local regression uses 15 percent of the available data. At the other extreme, the

bottom left plot shows the estimated surface based on a smoothing parameter of 0.75. We

display the surfaces over a portion of revision and surprise space that contains most of the

data. For this subsample, the displayed surfaces are on a grid of points laid over the box
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drawn in panel A of figure 2.6 The rest of the surface is omitted because the quality of the

fit deteriorates as we move toward the fringes of the data.

Each surface shows the predicted abnormal return in the relevant revision-surprise space.

As one would expect, the surface tends to be highest where both the revision and surprise

are positive and relatively large. Casual observation suggests that the predicted abnormal

return is an increasing function of the revision and surprise over most of the sample space.

But the results also indicate substantial nonlinearities; in particular, the effect of a change

in the revision or surprise appears to be largest when both are close to zero. Of course,

the degree of nonlinearity is reduced when the surface is estimated with a high smoothing

parameter, but the GCV smoothing parameter for this sample is low, about 0.15.

Figure 4 illustrates the results from the same estimation procedures run on the later

sample period (1996-2001).7 These surfaces clearly slope upward over the whole range of the

data in both the revision and surprise dimensions, and differ from the early sample in two

notable respects. First, there appears to be less nonlinearity: changes in either independent

variable have a noticeable price impact over the entire range of the independent variables,

rather than effects that are concentrated near (0,0). The optimal smoothing parameter

reflects this fact; our selection methodology picked an optimal smoothing parameter of 0.6,

much higher than in the early sample. Second, while somewhat difficult to discern, the range

of predicted abnormal returns in this sample (the vertical range of the surface) is wider than

that in the early sample, implying that the stock price sensitivity to earnings surprises has

increased over time.

A useful tool for gauging the relative effects of revisions and surprises is the contour plot,

a two-dimensional plot of iso-return lines in revision-surprise space. Figure 5 provides such

a contour plot for the early-sample estimates shown in figure 3 (at the optimal smoothing

parameter setting of about 0.15). The iso-return lines (the solid curved lines) reflect 1

6In each case, the box over which the surfaces are displayed covers the 4th through 96th percentiles in
the revision dimension and the 6th through 94th percentiles in the surprise dimension. Twenty points in
each dimension are plotted, for a total of 400 points on each surface.

7The surfaces are displayed over the box drawn in panel B of figure 2.
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percentage point steps: moving from one iso-return line to an adjacent line corresponds to

a 1 percentage point change in abnormal return. The highest iso-return lines are in the

upper right-hand corner, where both the revision and surprise are positive. The distance of

the iso-return lines from one another indicates the return gradient in a particular direction;

more tightly packed contour lines indicate a larger effect of earnings information on abnormal

return.

If the timing of information matters, then changing the decomposition of a given total

forecast error into surprise versus revision would put one onto a different iso-return line. In

order to gauge the trade-off, we overlay three “iso forecast error” loci, represented by the

straight dashed lines. Any given iso-forecast error locus represents the state faced by the

firm, characterized by (i) the initial expectations at the beginning of the quarter and (ii)

the earnings it will ultimately report. A particular position along that iso-forecast error line

represents an information release policy by the firm. For instance, the lowest line, labeled -10

percent, represents the state in which the early-quarter analyst forecast, F0, is 10 percent

higher than the actual earnings, which the company will ultimately report in its earnings

release after quarter-end. The coordinates (0,-10) on this line represent the outcome in

which no information is released early and a -10 percent surprise is revealed on the earnings

announcement date. Alternatively, the coordinates (-10,0) represent a -10 percent early

revision and zero surprise; here, all of the information was revealed early, perhaps via a

preannouncement. Another possible outcome is (-20, 10): overly pessimistic information is

preannounced, prompting a -20 percent forecast revision, and actual earnings then exceed

the pre-report forecast by 10 percent.

The first key empirical result of our analysis is seen by comparing the slope of the iso-

forecast error lines with the slopes of the iso-return lines, or “information policy lines.”

Forecast revisions have smaller price effects than surprises if the information policy lines

are steeper than the iso-return lines. In that case, a firm can achieve a higher return by

releasing unfavorable information early, that is, by choosing a point to the northwest on
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the information policy line. Indeed, this is what we find in the region near (0,0), where the

data concentration is highest. Thus our initial set of estimates are consistent with previous

results suggesting that firms might be able to engineer higher returns by beating down

expectations early on and then releasing good news to the market on the announcement

date. In particular, this result is consistent with the findings of Bartov et al. (2002) who

use difference-in-means tests on a similar sample and similar definitions of revisions and

surprises.

Figure 6 depicts the contour plot that results from running the same estimation proce-

dure on the late sample, spanning the period 1996-2001. Here, we are led to the opposite

conclusion. The picture shows that the firm’s information policy lines either run parallel to

the iso-return lines or even, in some data-rich areas of the design space, at a shallower slope.

For instance, the zero-percent forecast error line crosses over to lower iso-return lines when

moving northwest from (0,0) to (-10, 10).

Before speculating on why the two time periods might differ, we examine the sensitivity

of the results to our definition of the forecast revision period. As noted earlier, there tend to

be relatively few earnings preannouncments early in the quarter (subsequent to the previous

quarter’s report). Hence a measure of the forecast revision based on early-quarter forecasts

could produce a downwardly biased estimate of the stock price effects of analyst revisions

induced by preannouncments. To eliminate this potential source of bias, we re-estimate the

return response surfaces using the 6-week forecast revision in place of the 12-week revision.

Figures 7 and 8 show the contour diagrams with the results for the early and late sample

periods, respectively. Here, in both samples, we find no evidence of a favorable tradeoff

from releasing negative information early. In fact, the iso-return contours in both cases tend

to be a bit shallower than the information policy lines, which implies that the total effect

of earnings news on returns may even be smaller in cases where firms kept the negative

information under wraps until the earnings announcement.

Clearly, the estimates using the 6-week forecast revision produce no evidence to suggest
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that firms can bolster their stock prices by preannouncing bad earnings news early in order

to meet or beat expectations when the earnings report is released. How do we reconcile

these results and the somewhat ambiguous conclusions drawn based on the 12-week revi-

sion? First, as argued earlier, early-quarter forecasts by analysts may not reflect all of the

information revealed to the market in the previous quarter’s financial report. With sim-

ilar effect, even if investors have not refined their own views on current-quarter earnings,

they still might heavily discount analysts’ early-quarter forecasts. Either way, movements in

analyst estimates earlier in the quarter might not accurately reflect investor convictions.

Still, there remains the question of why the earlier 12-week revisions appear to have had

more price impact in recent years, as implied in Figure 6. This might be rationalized by

the observation that analysts’ earnings forecasts have garnered increased attention over the

1990s, evidenced for instance by the increased use of analysts’ forecast revisions as a factor

in stock selection during this period (Kirschner and Bernstein (2003)). As their forecast

revisions have garnered more attention in recent years, analysts presumably felt stronger

incentives to exert greater effort in calibrating their early-quarter forecasts.

4.1 Standard Errors

The statistical precision of our conclusions is perhaps best cast in terms of the accuracy

with which we can resolve the location of the contour lines on our contour plots. Hence,

in terms of statistical precision, we are primarily concerned with the standard errors on the

fitted values (the distribution of the standardized residuals) as opposed to the individual

coefficient estimates.

Under the loess theory, the distribution of the standardized residuals is well approxi-

mated by a t-distribution. However, calculation of the degrees of freedom is computationally

expensive (see Cleveland et al. (1988)), requiring the inversion of a matrix with rows and

columns equal to the number of observations. Moreover, this matrix must be built up one

row at a time because, in essence, there is a different set of regression coefficients at each
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fitted point. To make these calculations we developed specialized software based on the

Scalapack software library.8

Table 3 provides calculations of the precision of our fit for the late sample period.9 We

display the width of 95 percent confidence intervals around the fitted values at various points

on the solution surface. Panel A displays the confidence interval widths when we use the

12-week revision. As can be seen, in the center of the data (near the point where both the

revision and surprise are zero), the confidence intervals have a width of about 1.3 percentage

points of abnormal return. When we move to the outer fringes of the data, where the

observations are far less concentrated, the confidence interval widths range from 2.1 to 3.7

percentage points. Comparing these results to those in Panel B, we find that the widths of

the confidence intervals in the center of the data are comparable when we use the 6-week

revision, but at the fringes the confidence intervals are somewhat wider. Taken together,

these results indicate that a two percentage point move, that is, a move across two contour

lines, is a statistically significant move in the area where the data is densely distributed.

This suggets that, in figures 6, 7, and 8, the perverse tradeoffs that we find for firms moving

along their information policy lines are only statistically significant for fairly sizable moves,

if at all. Our results on statistical precision also indicate that, as one moves further away

from the center of the data, the contours are not resolved with as much statistical precision,

suggesting some caution is required in interpreting the shape of the contours in regions where

the data are relatively sparse.

4.2 Robustness and Sub-Sample Analysis

This section explores the robustness of our qualitative results, focusing in particular on

the findings for the 6-week revision period. As discussed earlier, our main concern is the

sensitivity of the results to the choice of the scaling factor for the earnings news. To examine

8The Scalapack library contains pre-programmed Fortran and C routines for carrying out basic linear
algebra computations on a network of workstations.

9Calculations for our other fits reveal similar degrees of precision, and are omitted.
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this issue, we re-estimate the early- and late-period contours with the revision and surprise

variables scaled by price. The results are shown in Figures 9 and 10. The optimal smoothing

parameters used to estimate these contours are low, particularly the 0.10 used for the early

period, which compares to the value of 0.15 used in the earnings denominator specification.

Consistent with the low smoothing parameter, the contours for the early sample suggest a

high degree of nonlinearity, with a large portion of the vertical climb being concentrated

around the zero-surprise line. In contrast, the contours for the late-period are much more

evenly spaced, suggesting less nonlinearity.

While the evidence of nonlinearities seems clear, we find no substantive evidence of any

benefit from getting bad news out early. This is most obvious in the late-sample estimates.

In the early-sample estimates, this judgment requires more careful scrutiny. As shown in

figure 9, there appears to be no net benefit from moving along the -.002 forecast-error locus,

for instance, from the zero revision to the zero surprise point. While moving further up the

locus (into negative revision and positive surprise territory) does appear to produce some

benefit, the gain is small and statistically insignificant. Finally, we note that, as shown

in the appendix, the |EPS| scaling factor produces somewhat better fits to the data, at

least as judged using the Akaike Information Criterion (AIC) values for the |EPS|-scaled fits

compared to the fits scaled by price.

So far, the analysis ignores any potential role of heterogeneity, that is, the likelihood

that sensitivity to earnings news differs systematically across firms. This may be particu-

larly important if such differences induce substantial variation in the propensity to play the

consensus-meeting game. For instance, Skinner and Sloan (1999) provide evidence suggesting

that stocks of high-growth firms are more vulnerable to negative earnings surprises, due to

their high valuations being so dependent upon investors’ optimistic expectations for earnings

growth. If so, these firms might be more prone to prerelease bad news than low-growth firms.

Moreover, investor awareness of such different propensities might influence how the market

reacts to news. In particular, firms that habitually warn and then meet or beat expectations
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or those that have not met expectations in recent quarters might face a different tradeoff in

the current quarter than firms that recently reported negative surprises.

While it is unclear how such heterogeneity might bias our conclusions, we can examine

the robustness of our results by splitting the sample along some potentially important di-

mensions. This approach is used principally because computational and data constraints

limit our ability to expand the dimensionality of the estimation, although it does have the

advantage of allowing for very general qualitative comparisons. Two firm characteristics that

we consider are: (i) firm size, gauged by market value; and (ii) firm growth prospects, gauged

by the median of analysts’ long-term growth forecasts. Firm size may be an important factor

because, all else equal, larger firms tend to have more predictable earnings. Moreover, such

firms have a broader following in the investment community, and analysts may do a better

job of forecasting their earnings. Casual observation of press reports suggests that the very

largest firms devote a relatively high level of resources toward managing market expecta-

tions. As mentioned earlier, firm growth prospects have been shown to correlate with the

sensitivity of stock price to earnings news. 10

We perform a two-by-two sample split along the firm size and growth dimensions, produc-

ing four subsamples: large/high growth, large/low growth, small/high growth, and small/low

growth. The size split is based on beginning-of-quarter market value. A firm is assigned to

the large-firm subsample if its market value is above the median firm’s market value in

the same quarter. This produces a split that is balanced over time; the small-firm group

does not shrink over time due to the upward trend in nominal firm valuations. The growth

split is based on the sample median growth forecast. A firm is assigned to the high-growth

subsample if its analysts’ average long-term growth forecasts are above the sample median.

Figure 11 displays fitted surfaces for the four subsamples based on their optimal smooth-

ing parameters. Noting that the vertical axes differ markedly across the subsamples, the

10We have explored whether the number of analysts following a firm affects our results. Specifically, we
imposed a lower limit on the number of analysts tracking a firm in order for the firm to be included in the
sample, and re-ran all of our calculations. Our results were not affected in a material way by this type of
restriction.
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estimated surfaces for high growth firms (the two bottom figures) are much steeper than

those for the set of low-growth firms (the two top figures). This indicates that earnings

news can explain more stock return variance for high-growth firms than for low-growth

firms. Moreover, since the horizontal axes for the high- and low-growth results cover similar

ranges, the steeper slope also implies that a given magnitude of earnings news tends to have a

larger impact on high-growth firms’ stock prices. In contrast, comparing the small and large

samples while holding the growth class constant, it appears that smaller firms experience a

wider range of earnings news; in particular, they experience more extreme negative surprises

and revisions than large firms.

The associated contours are shown in figure 12. The top row of figures again displays

the contours for the low-growth firms, small and large. As in the overall sample, bringing

out bad news early does not appear to produce any net benefit for those firms, and in many

instances appears to be counter-productive. However, this finding is a bit more nuanced for

at least one of the subsamples. Consider the large low-growth firm contours. Moving along

the negative -0.10 (negative 10 percent) forecast error locus, from zero revision (0, -0.10) to

zero surprise (-0.10, 0) appears to reduce stock returns on average by 2 percent. However,

the concave-shaped contours imply that this is the worst place to be. Moving up from (-0.10,

0) to (-0.25, 0.15) appears to boost return 2 percent, which suggests that it may be better

to exaggerate the possible shortfall than to warn and then just meet revised expectations,

at least in this case.

The results for the other three subsamples suggest that the trade-off from preannouncing

news is at best neutral over the vast majority of the surprise/revision space. This result

comes through quite clearly in the case of large high-growth firms. This is the group of firms

that is probably most prone to playing the consensus-meeting game, and, as evidenced by

their more tightly-packed contours, their stock prices are much more sensitive to earnings

news compared to their low-growth counterparts discussed above. The most interesting

group, however, may be the small high-growth firms. For these firms, the figure shows
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about 35 contour lines (35 percentage points of return variation), which implies that earnings

forecast errors explain a large range of abnormal returns. The contours also reveal substantial

nonlinearity; the tightly packed lines in the region just to the southwest of (0,0) indicate

that relatively small negative revisions as well as small negative surprises have particularly

strong, albeit symmetric, effects on stock returns.

We end our search for the timing effect by conditioning our sample split on firms’ recent

surprise histories. In one group, we include only firms that did not have a negative surprise

in either of the two preceding quarters; the second group contains all other firms, that is,

firms with one or two negative surprises in the previous two quarters. As shown in panels

A and B of figure 13, this sample split again confirms the robustness of our earlier results.

The scale ranges on the surprise axis of the contours do indicate that firms with a recent

negative surprise are more prone to issue a negative surprise again. However, we find that

neither group of firms appears to benefit by preannouncing negative news in order to meet

expectations at the time of report.

5 Conclusion

In this paper, we examined the stock price benefit of meeting or beating earnings expec-

tations. We estimated the effect of quarterly earnings news on quarterly stock returns by

splitting analysts’ total forecast errors into a forecast revision and an earnings surprise. We

then estimated the effects of these forecast revisions and earnings surprises on the cumulative

abnormal return over the period.

The most important methodological difference between our study and previous studies

is our use of loess, a nonparametric estimation technique that allows for a wide range of

functions that map earnings news into abnormal returns. A second important methodological

consideration in our analysis is the econometrician’s choice of the “preannouncement period.”

We conjecture that revisions early in the quarter might be contaminated by the previous
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quarter’s news, which could create a spurious asymmetry in the magnitude of stock price

responses to forecast revisions and earnings surprises. Finally, we examined the choice of

the scaling factor applied to the forecast revisions and surprises.

In contrast to previous studies, we did not find persuasive evidence of a short-term stock

price benefit to preannouncing bad news; that is to say, we found little or no difference

in the sensitivity of stock returns to early forecast revisions and earnings surprises. Our

nonparametric approach does uncover significant and fairly interesting nonlinearities. In

particular, we find that the sensitivity of returns to earnings news tends to get stronger

when the news is close to zero. Moreover, this would appear to be true regardless of whether

the news is reflected in revisions or surprises.

There is one notable case where we do find evidence consistent with the hypothesis

that firms benefit by getting bad news out early. When we estimate the response function

using the longer revision period, on the 1987-1995 subsample, surprises appear to have a

larger effect on returns than revisions over an important part of the sample space. However,

when the model is estimated using a shorter (6-week) revision period, when more of the

revisions are presumably driven by preannouncements, the asymmetric response disappears.

Moreover, when we estimate the response function on the post-1995 sample, this result is

again reversed, regardless of the definition employed for the revision period.

An appealing interpretation that reconciles these results is that, in earlier years, equity

analysts may not have been particularly diligent about reworking their quarterly earnings

forecasts following previous-quarter announcements. If so, then revisions over the earlier

part of the quarter would have partly reflected information that may have already been

incorporated into stock prices. However, as quarterly earnings forecasts garnered increasing

attention during the 1990s, analysts may have become more assiduous about updating their

current-quarter estimates.

We further examined the issue by splitting the sample into subgroups by size and earn-

ings prospects. Again, we found little evidence of an asymmetric stock return response to
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the timing of news. However, for large, low-growth firms, it does appear to be better to

exaggerate any possible earnings shortfalls than to warn and just meet expectations. Fi-

nally, we conditioned on firms’ recent surprise histories to see if firms with a track record of

negative surprises, or a track record of meeting expectations, might face asymmetric stock

return responses. Again we found no evidence of an asymmetric response.

The absence of any short-term stock price benefit from getting bad news out early begs the

question: Why do firms manage their news releases? A definitive answer is beyond the scope

of this paper, but a few comments are in order. First, it is possible that individual managers

might believe that such actions will produce a near-term benefit to their stock price even if,

on average, this is not the case. Indeed, if researchers in possession of the comprehensive

data can not agree on the stock price benefits, should we expect managers, focused largely

on their own firm’s experience, to know the average effect? Second, the absence of any clear

short-term benefit does not rule out the possibility of a longer-term reputational benefit. As

pointed out earlier, both Chevis et al. (2002) and Liu and Yao (2003) provide evidence to

suggest that firms that habitually meet expectations tend to be more highly valued, that

is, have a higher stock price level given fundamentals. A comparison of short run returns

probably has little power as a test of such longer-term valuation benefits.

In closing, it is worth reemphasizing that a variety of rationales that do not presuppose

any benefit to quarterly stock returns have been proposed to explain this behavior. In fact,

the hypothesis of Aboody and Kasznik (2000), that management is motivated to warn by the

desire to receive stock option grants when their stock price is relatively low, is perhaps even

more plausible in light of our findings. Furthermore, managers that intend to sell shares after

the end of a “quiet period” might also benefit directly by shifting the timing of bad news

and the associated volatility along the lines suggested by Richardson et al. (2003). Finally,

the traditional rationale for the early release of bad news — that management is striving to

mitigate the risk of securities litigation — does not presuppose any short-term stock price

benefit.
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Table 1: Univariate Statistics

The table displays univariate statistics for revisions, surprises, and abnormal returns. The table displays the
25th, 50th, and 75th percentiles for the variables, plus the interquartile ranges (labeled 75 − 25), with all
values multiplied by 100.

Panel A: |EPS| scaling factor

1987-1995 1996-2001
Abnormal Abnormal

Percentile return Revision Surprise return Revision Surprise
12-week revision, N=22,987 N=42,424

25 -7.90 -5.15 -5.86 -13.0 -3.37 -1.19
50 -0.18 -0.27 1.08 -0.90 0.00 2.34
75 7.43 1.67 7.14 10.17 0.50 8.33
75-25 15.33 6.82 13.00 23.21 3.87 9.52
6-week revision, N=49,041 N=51,396

25 -8.17 -1.71 -8.64 -13.00 -1.14 -1.40
50 -0.31 0.00 0.54 -1.05 0.00 2.36
75 7.39 0.12 7.69 10.04 0.00 8.61
75-25 15.56 1.83 16.33 23.08 1.14 10.01

Panel B: Price scaling factor

1987-1995 1996-2001
Abnormal Abnormal

Percentile return Revision Surprise return Revision Surprise
12-week revision, N=25,029 N=46,986
25 -8.35 -0.10 -0.12 -13.9 -0.06 -0.02
50 -0.49 -0.01 0.01 -1.24 0.00 0.03
75 7.38 0.03 0.12 10.15 0.01 0.12
75-25 15.73 0.12 0.23 24.00 0.06 0.14
6-week revision, N=54,005 N=57,106
25 -8.77 -0.03 -0.18 -14.0 -0.02 -0.03
50 -0.67 0.00 0.00 -1.43 0.00 0.03
75 7.24 0.00 0.13 9.99 0.00 0.12
75-25 16.01 0.03 0.31 23.95 0.02 0.15
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Table 2: Regressions of Abnormal Returns on Scaled Revisions and Surprises

The table displays linear regression results for four variations of the basic specification

Abnormal return = β0 + β1(12-week revision) + β2(6-week revision) + β3(Surprise) + ε,

with the revisions and surprises as defined in the main text. The regression is repeated for each scale factor
over each sample period. The early subsample covers the period 1987-1995, while the late subsample covers
the period 1996-2001. The sampling frequency is quarterly. The t-values displayed beneath each estimate
are based on heteroscedasticity-robust standard errors. The sample sizes are smaller than those displayed
in table 1 owing to the inclusion of both revision variables; observations missing either variable are dropped
from the regression.

Normalization Period β0 β1 β2 β3 N R2

|EPS| Early 0.00 0.05 0.23 0.16 19,259 0.060
3.48 4.12 11.79 25.22

Late -0.02 0.21 0.14 0.28 35,825 0.048
-16.94 12.42 5.99 26.49

Price Early 0.00 2.91 14.43 9.34 20,971 0.062
0.12 4.94 13.25 26.87

Late -0.02 14.17 9.80 17.83 39,605 0.051
-19.37 13.91 6.92 28.60

30



Table 3: Width of 95 Percent Confidence Intervals across Solution Surface

The table displays the widths of 95 percent confidence intervals at the indicated points on the solution
surface. For example, in panel A, when the 12-week revision is -0.05 (-5 percent) and the surprise is -0.05,
the width of the 95 percent confidence interval around the fitted value is 0.024 (2.4 percentage points wide).
The width of the confidence intervals across the solution space indicates the degree to which the contours
shown on the relevant contour plot can be differentiated. The confidence intervals are for the late sample
period (1996-2001) using the |EPS| scaling factor; the widths of the confidence intervals for our other fits
are similar in magnitude.

Panel A: 12-week revision

Revision
Surprise -0.05 0.00 0.05

0.05 0.024 0.014 0.027
0.00 0.021 0.013 0.034
-0.05 0.024 0.020 0.037

Panel B: 6-week revision

Revision
Surprise -0.05 0.00 0.05

0.05 0.030 0.014 0.037
0.00 0.026 0.012 0.048
-0.05 0.027 0.017 0.052
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Figure 1: Decomposition of Total Forecast Error into Revision and Surprise
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Figure 2: Scatterplots of 12-Week Revisions and Surprises
Panel A of the figure displays a scatterplot of revisions against surprises for the early period (1987-1995).
The data are scaled by |EPS| and reflect our other data filters discussed in the main text. Panel B displays
a scatter of revisions against surprises for the late period (1996-2001). The boxes in panels A and B show
the regions plotted in figures 3 and 4, respectively.
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Figure 3: Fitted Surfaces for 1987-1995 Period, |EPS| Scaling Factor

The figure displays fitted surfaces for the early period subsample using the |EPS| scaling factor and the 12
week revision. The fitting method is locally weighted least squares, with each surface depicting the fit at the
indicated smoothing parameter. The sample size is 22,987.
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Figure 4: Fitted Surfaces for 1996-2001 Period, |EPS| Scaling Factor

The figure displays fitted surfaces for the late period subsample using the |EPS| scaling factor and the 12
week revision. The fitting method is locally weighted least squares, with each surface depicting the fit at the
indicated smoothing parameter. The sample size is 42,424.
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Figure 5: Iso-Return Contours for 1987-1995 Period, |EPS| Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on early-period
data and the |EPS| scaling factor, and the revision is measured over a 12 week interval. The sample size is
22,987 firm-quarter observations and the optimal smoothing parameter is 0.15615, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 6: Iso-Return Contours for 1996-2001 Period, |EPS| Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on late-period
data and the |EPS| scaling factor, and the revision is measured over a 12 week interval. The sample size is
42,424 firm-quarter observations and the optimal smoothing parameter is 0.62499, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 7: Iso-Return Contours for 1987-1995 Period, 6-Week Revision, |EPS| Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on early-period
data and the |EPS| scaling factor, and the revision is measured over a 6 week interval. The sample size is
49,041 firm-quarter observations and the optimal smoothing parameter is 0.15619, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 8: Iso-Return Contours for 1996-2001 Period, 6-Week Revision, |EPS| Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on early-period
data and the |EPS| scaling factor, and the revision is measured over a 12 week interval. The sample size is
51,396 firm-quarter observations and the optimal smoothing parameter is 0.15623, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 9: Iso-Return Contours for 1987-1995 Period, 6-Week Revision, Price Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on early-period
data and the price scaling factor, and the revision is measured over a 6 week interval. The sample size is
54,005 firm-quarter observations and the optimal smoothing parameter is 0.10670, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 10: Iso-Return Contours for 1996-2001 Period, 6-Week Revision, Price Scaling Factor

The figure displays iso-return contours and three information policy lines. The fit is based on late-period
data and the |EPS| scaling factor, and the revision is measured over a 12 week interval. The sample size is
57,106 firm-quarter observations and the optimal smoothing parameter is 0.15628, determined by generalized
cross-validation. The iso-return contours are spaced at one percentage point intervals; moving from a point
on one contour to a point on an adjacent contour represents a one percentage point change in abnormal
return. The information policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement
along an information policy line represents an information release policy by the firm in terms of the timing
of information release. Points to the northwest on a policy line represent a policy of releasing bad news in
the revision period and good news in the surprise period.
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Figure 11: Fitted Surfaces for 1996-2001 Period, 6-Week Revision, Large and Small, High-
and Low-Growth Firms, |EPS| Scaling Factor

The figure displays fitted surfaces for firms split into subsamples based on size and growth prospects, where
size is measured by market value and growth prospects by analysts’ long-term growth forecasts. A firm is
classified as large if its market value is above the median firm market value for the given quarter. A firm
is classified as high-growth if its consensus long-term growth forecast is above the sample median consensus
long-term growth forecast. The upper two panels display the surfaces for small and large low-growth firms,
respectively. The lower two panels display the surfaces for small and large high-growth firms, respectively.
The samples sizes and smoothing parameters used for each fit are shown in the appendix.
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Figure 12: Iso-Return Contours for 1996-2001 Period, 6-Week Revision, Large and Small,
High- and Low-Growth Firms, |EPS| Scaling Factor

The figure displays the iso-return contours for the four surfaces shown in figure 11 above. The upper two
panels display the contours for small and large low-growth firms, respectively. The lower two panels display
the contours for small and large high-growth firms, respectively. Note that the vertical and horizontal axes
all vary. The samples sizes and smoothing parameters used for each fit are shown in the appendix. The
iso-return contours are spaced at one percentage point intervals; moving from a point on one contour to a
point on an adjacent contour represents a one percentage point change in abnormal return. The information
policy lines are for total forecast errors (TFE) of 0, -5, and -10 percent. Movement along an information
policy line represents an information release policy by the firm in terms of the timing of information release.
Points to the northwest on a policy line represent a policy of releasing bad news in the revision period and
good news in the surprise period.
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Figure 13: Iso-Return Contours for 1996-2001 Period, 6-Week Revision, Sample Split on
Lagged Surprises, |EPS| Scaling Factor

The figure displays the iso-return contours for fits based on late-period data and the |EPS| scaling factor.
The revision is measured over the six week interval. Panel A displays the fit for the subsample of firms with
at least 1 lagged negative surprise; Panel B shows the fit for the subsample of all other firms. The sample
sizes and smoothing parameters used for each fit are shown in the appendix. The iso-return contours are
spaced at one percentage point intervals; moving from a point on one contour to a point on an adjacent
contour represents a one percentage point change in abnormal return. The information policy lines are for
total forecast errors (TFE) of 0, -5, and -10 percent. Movement along an information policy line represents an
information release policy by the firm in terms of the timing of information release. Points to the northwest
on a policy line represent a policy of releasing bad news in the revision period and good news in the surprise
period.
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A Smoothing Parameter Selection

Following Cleveland and Devlin (1988), the expected mean squared error of the loess esti-

mator, given by

Mh =

[
E

N∑
i=1

(
f̂h(xi) − f(xi)

)2
]

σ2
, (5)

can be decomposed into a term representing the contribution of bias, Bh, and the contribution

of variance, Vh, to the overall mean squared error. Here we have subscripted M and f̂ by h,

to emphasize that the calculations are conditional on the degree of smoothing. A larger h

is analogous to a wider bandwidth in kernel regression, implying a lower variance estimate

at the risk of potentially greater bias.11 Denoting the residual sum of squares by RSSh, the

estimated error variance by σ̂2, and by Lh the matrix such that ŷh = Lhy, it can be shown

that:12

Mh = Bh + Vh, where (6)

Bh =
RSSh

σ̂2
− tr [(I − Lh)(I − Lh)

′] , and (7)

Vh = tr [LhL
′
h] , (8)

where I is the identity matrix. As shown in Cleveland and Devlin (1988) it is straightforward

to compute an estimate M̂h of Mh. Moreover, it is possible (albeit highly computationally

intensive) to compute approximations to the distribution of M̂h under the null hypothesis of

zero bias.

The M-plot is a graph of M̂h against Vh for a range of values of h. The basic idea is to

consider a range of smoothing parameters running from the standard OLS fit (including all

11The term Vh is often referred to as the “equivalent number of parameters”. This is an intuitive label
because, under ordinary least squares, Vh is equal to the trace of the projection matrix, which in turn is
equal to the number of parameters being estimated. While the loess operator is not a projection matrix, it is
nevertheless the case that Vh increases as h decreases – less smoothing results in a higher equivalent number
of parameters, and vice-versa.

12An estimate of σ2 is obtained from the residuals of a fit with very small h – a highly localized fit.
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of the data in each local regression) to very localized fits in order to see how the contribution

of bias changes as the degree of smoothing is varied. Figure A1 presents a representative set

of estimates of M-statistics at different degrees of smoothing and their associated confidence

intervals under the null hypothesis of zero bias for the late period |EPS|-scaled dataset using

the 12-week revision.13 The points on the plot show the estimated M-statistic values. The

45-degree line through the origin and the rightmost M-statistic value show the values of the

M-statistics that are expected under the null hypothesis. The vertical lines show the 95

percent confidence bands, while the ’x’ symbols on the vertical lines indicate the 90 percent

confidence bands. The leftmost point - at an equivalent number of parameters equal to 3

- gives the M-statistic at the OLS fit. It is clear from the plot that the OLS fit is heavily

biased - the null hypothesis of zero bias is soundly rejected. As the equivalent number of

parameters rises, the estimated M-statistics fall. For an equivalent number of parameters

equal between nine and twelve, we cannot reject the null hypothesis of zero bias. As we

increase the number of parameters from twelve, the bias again rises, suggesting that the

optimal smoothing parameter is the one that uses approximately 60 percent of the data.

It should also be noted that this fit is the one that is selected with the generalized cross-

validation procedure for these data.

In order to conserve space, we do not display all of the M-plots for our various subsamples.

Table A1 displays the smoothing parameters selected by the generalized cross-validation

technique. In general, our M-plot analyses confirmed these settings.

13These calculations were made on a random sample of 2,500 points from the overall dataset. The calcu-
lation of the M-statistics on the full dataset is computationally infeasible.
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Figure A1: M-Plot, 12-Week Revision, |EPS| Scaling Factor
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Table A1: Generalized Cross-Validation Results

The table displays the sample size (N), the generalized cross-validation objective function value (GCV), the
Akaike Information Criterion (AIC), and the optimal smoothing parameter for all of the estimates discussed
in the main text. Panel A displays the main sample splits on sample period, scaling factor, and revision
definition. Panel B displays the sample splits on firm growth and size, and Panel C displays the split on
recent earnings news.

Panel A: Sample Period, Scaling Factor, and Revision Sample Splits

Sample Scaling Smoothing
period factor N Revision GCV AIC parameter
All firms
Early |EPS| 22,987 F0 − F2 6.248e-07 -3.24309 0.15615

49,041 F1 − F2 3.063e-07 -3.19828 0.15619
Price 54,005 F1 − F2 2.978e-07 -3.12987 0.10670

Late |EPS| 42,424 F0 − F2 9.043e-07 -2.26050 0.62499
51,396 F1 − F2 7.418e-07 -2.26679 0.15623

Price 57,106 F1 − F2 7.172e-07 -2.19526 0.15628

Panel B: Late Period, |EPS| Scaling Factor, F1 − F2 Revision, Growth and Size Sample
Splits

Growth Size Smoothing
Class Class N GCV AIC Parameter
Low Small 15,918 2.18e-06 -2.36219 0.22355
Low Large 14,968 1.08e-06 -3.12539 0.31217
High Small 10,460 7.34e-06 -1.56637 0.15626
High Large 10,079 4.81e-06 -2.02729 0.62452

Panel C: Late Period, |EPS| Scaling Factor, F1 − F2 Revision, Previous Earnings Surprise
Sample Split

Smoothing
Surprise History N GCV AIC Parameter
No recent negative surprises 16,709 5.464e-07 -3.34235 0.15627
A negative surprise in previous 2 quarters 15,638 1.040e-07 -3.38635 0.61745
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