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1 Introduction

Nominal short-term interest rates have been low in the United States, and,

with inflation also running at very low levels, many readings on real short-

term rates have actually drifted below zero. Nominal rates have been so low

that some market observers have wondered about the possibility that the fed-

eral funds rate—the key interest rate controlled by the Federal Reserve—may

reach its lower bound at 0 percent.1 Such a scenario would be reminiscent of

what economists as far back as Keynes (1936) have called a liquidity trap, a

situation where the Federal Reserve would no longer be able to lower short-

term interest rates to react to an eventual pick-up in deflationary forces.

In this paper I use an affine two-factor model of the yield curve to examine

the term structure of swap rates and infer what observed swap rates have

to say about the likelihood, as perceived by investors, that the lower bound

on the federal funds rate will become a binding constraint for U.S. monetary

policymakers.2 I also use the model to assess whether short-term rates have

been close enough to zero to distort the usual role of the yield curve as an

indicator of market participants’ expectations of where the short rate—and

potentially the economy—is headed.

The analytical framework follows the seminal work of Black (1995), from

1One might argue that the lower bound for the overnight federal funds rate should be
positive given that the associated loans are not entirely free of risk. The methodology and
main conclusions discussed in this paper would be little changed if I had imposed a slightly
positive lower bound, as would be suggested by the average spread of the overnight federal
funds rate over the Treasury general collateral repo rate—a proxy for the riskless short
rate. (That spread has averaged close to 3 basis points over the past couple of years.)

2Focusing on the interest rate swap market has the advantage that swap rates essentially
embed expectations of future short-term LIBOR, and the credit quality of participants in
the LIBOR and fed funds markets is essentially the same.

1



which I also borrowed part of the title of this paper. Black proposed an

interpretation of a nominal short-term interest rate as a call option on the

“equilibrium” or “shadow” interest rate, where the option is struck at zero

percent. He noted that when short rates are close to such a “strike rate”

usual term-structure relationships can be significantly affected by the value

of the options embedded in current and expected short rates. In this paper,

I build on the Black framework along three dimensions. First, I examine the

indicator properties of the yield curve when the short rate is close to zero

and argue that, under such circumstances, the typical relationship between

the slope of the yield curve and future economic activity can be substantially

distorted. Second, I extend the Black approach and show how to extract,

from observed yields, market-implied probabilities that the economy will slip

into the liquidity trap over given time horizons. Lastly, while Black carried

out his analysis in the context of a highly stylized theoretical model that was

arbitrarily parameterized, the main focus of this paper is to propose and use

an estimated term structure model to assess the quantitative importance of

Black’s original theoretical results and of the extensions developed in this

paper.

The empirical model suggests that the recent configuration of interest

rates in the United States does imply some probability that the zero bound

on nominal short rates will be binding in the near term, but such a proba-

bility appears to be very small. Indeed, market expectations that the recent

lows reached by short-term rates are only a temporary phenomenon seem suf-

ficiently prevalent in the U.S. that the yield curve is likely not being distorted

by the zero-bound constraint. I assess the sensitivity of these results to al-
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ternative parameterizations of the model and find that my findings are quite

robust to reasonable variation in the parameters. On the whole, the results

suggest that the option-like feature of short-term nominal rates uncovered

by Black (1995) did not play a quantitatively important role in shaping the

U.S yield curve during the interest rate lows of late 2002 and early 2003.

The paper is organized as follows. In Section 2, I provide a brief review

of Black’s (1995) main points, discuss the informational content of the yield

curve when short rates are near zero, and show how to extend the Black anal-

ysis to compute market-implied probabilities that a given economy will slip

into a liquidity-trap situation. I discuss the empirical model and estimation

approach in Section 3 and report the main results of the paper in Section

4. I run a battery of sensitivity analysis exercises in Section 5. Concluding

remarks are presented in Section 6.

2 Interest Rates as Options

The analysis in this paper is motivated by Black’s (1995) insight that the

fact that nominal interest rates are bounded at zero gives them an option-

like feature. In particular, one can write the observed nominal short rate,

r(t), as follows

r(t) = max[0, ρ(t)] = ρ(t) + max[0,−ρ(t)] (1)

where ρ(t) is the equilibrium value of the short rate, defined as the one

where the market for loanable funds clears. Alternatively, in the monetary

economics literature, one can think of ρ(t) as the value of the nominal short-
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term interest rate that is consistent with the prescription of the policy rule

followed by the central bank, or, in the traditional Keynesian economics

literature, as that value of the short rate that corresponds to the point of

intersection between the IS and LM curves.

The first equality in (1) is the essence of Black’s analysis. It tells us that

one can think of the observed short rate as a call option on ρ(t), struck at

zero percent. The second equality tells us that the short rate observed in

the marketplace can also be expressed as the sum of two components, the

equilibrium rate ρ(t) and an option-like term that provides a lower bound for

the market rate at zero when ρ(t) is negative. This last term corresponds to

the payoff of a floor written on ρ(t) with a strike rate of 0 percent, and thus

one can think of the holder of a money market instrument as being long this

floor and a bank deposit that pays ρ(t). Intuitively, the floor is akin to an

option to switch one’s money funds holdings into currency if ρ(t) falls below

zero. When the market value of the floor is positive, the observed rate r(t) is

too high relative that rate that would clear the market for loanable funds and

the resulting excess supply of loanable funds means that consumers and firms

are borrowing less than the socially optimal amount. The end-result is that

the economy may find itself “trapped” in a low equilibrium, where productive

activity persistently falls short of the economy’s potential, a situation that

is commonly dubbed “the liquidity trap.”

During most times, the equilibrium nominal rate ρ(t) is sufficiently above

zero that the value of the embedded floor shown in the second equality in

(1) can be safely ignored. Indeed, most term structure models disregard

the distinction between market and equilibrium interest rates. Under certain
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circumstances, however, the equilibrium nominal rate can become negative—

for instance, either the short-run equilibrium real rate or expected inflation

can fall below zero. Examples of such episodes include the United States

during the great depression (Bernanke, 2002) or Japan in the 1990s (Krug-

man, 1998). In such cases, Black (1995) noted, usual approaches of modeling

the yield curve have to be modified to take into account the binding zero

constraint on nominal rates.

Black’s approach to modeling the yield curve when short rates are close

to zero is intuitively appealing. Instead of modeling the market rate directly,

as is common in the term structure literature, he proposes that one should

model the equilibrium short rate first and then use (1) to model the evolution

of the market rate. Black illustrated his main points in the context of a risk-

neutral random walk model for the equilibrium rate,

dρ(t) = bdW (t) (2)

where b is the volatility of the equilibrium short rate, and dW (t) is an in-

finitesimal increment to a standard Brownian motion.

Using standard valuation techniques—see, e.g., Bjork (1998)—it can be

shown that the time-t arbitrage-free price, P (t, T ), of a zero-coupon bond

that matures at time T satisfies the following partial differential equation

∂P

∂t
+

1

2

∂2P

∂ρ2
b2 − rP = 0 (3)

provided shocks to ρ(t) are the only source of uncertainty about bond prices,

and assuming that r(t) evolves according to (1) and (2). Let the face value
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of the bond be $1 and impose the final condition

P (T, T ) = 1 (4)

and one can solve this pricing problem numerically using, for instance, either

finite differences or Monte Carlo methods.

Black (1995) used the above setup to show that when observed short rates

are at or near zero, the option-like feature of the nominal short rate can have

potentially large effects both on the yield curve and on the term structure of

yield volatilities. To see this, note that the same logic that led Black to write

the spot short-term interest rate as the sum of an equilibrium rate and the

payoff of a floor, equation (1), also applies to forward rates. In particular,

one can write the instantaneous time-t forward rate that corresponds to the

future period s, f(t, s), as

f(t, s) = Et[r(s)] + forward premium + floor value (5)

where Et[r(s)] is the expected value of r(s), based on information as of time

t and computed under the objective probability measure. Thus, given that

bond yields can be written as the mean value of all instantaneous forward

rates over the life of the bond, the option-like feature of the nominal short rate

can affect the entire yield curve. Black illustrated this point in the context of

an artificial economy where the short rate evolves according to (1)–(4) and

where r(t) and b are 1 percent and 100 basis points, respectively. Figure 1

shows two zero-coupon curves derived from the solution to (3) and (4), one

where the zero-bound constraint is explicitly incorporated into the pricing
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problem—the solid line—and one where it is not—the dashed line. The latter

can be thought of as the term structure of equilibrium zero-coupon yields, or

the zero-coupon yields that would clear the money and capital markets and

prevent the model economy from falling into the liquidity trap. The former

corresponds to the observed yield curve. As shown in the figure, the two

curves differ substantially with the gap between them corresponding to the

value of the option-like feature of future short rates.

2.1 The informational content of the yield curve

One point not explicitly made by Black (1995), but that bears being em-

phasized here is that, when short-term rates are sufficiently close to zero,

investors and economic policymakers would be ill-advised if they were to fol-

low a conventional rule of thumb regarding the (risk-adjusted) slope of the

yield curve and future economic activity. In particular, it can be shown that

the zero-coupon yields that would prevail in the absence of the zero bound

on the short rate—the dashed line in Figure 1—can be written as

R(t, T )∗ =
Et

[∫ T

t
ρ(s)ds

]
T − t

+ Φ(t, T ) (6)

where Et[.] denotes an expectation computed under the objective probability

measure and Φ(t, T ) is the associated term premium, which can be derived

from the solution to (3) and (4). Thus, controlling for the term premium

and ignoring the distinction between ρ and r, one can interpret R(t, T )∗ as

an indicator of where future values of the equilibrium short rate will be, on

average, over the life of the bond. Indeed, a vast literature has examined the
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properties of longer-term interest rates, especially of their spreads over short-

term rates, as indicators of future movements in short rates and, in many

economic models, of future levels of economic activity—see, e.g., Bernanke

and Blinder (1992).

When the short rate is at or near zero, however, long rates embed more

than just the usual term premium and expectations regarding future move-

ments in short rates. When the zero bound on the short rate is explicitly

taken into account, one can look back at equation (5) and think of a longer-

dated zero-coupon yield as incorporating three components,

R(t, T ) =
Et

[∫ T

t
ρ(s)ds

]
T − t

+ Φ(t, T ) + Ψ(t, T ) (7)

where the last term captures the option value associated with the zero bound.

This term is potentially negligible when current and expected values of ρ

are sufficiently above zero, but it could be significantly positive otherwise.

Indeed, when Ψ(t, T ) is large, R(t, T ) will be higher than what would be

suggested by expected values of ρ and the term premium alone, and, thus, as

we saw in Figure 1, the observed yield curve will be steeper than what would

otherwise be the case. Under such circumstances, investors and monetary

policymakers alike would be considerably misled if they were to take the

positive slope of the observed (solid) yield curve in Figure 1 as an indication

that market participants expect that economic activity is likely to increase

in the future. In reality, the negative slope of the equilibrium (dashed) yield

curve in Figure 1 suggests that the economy is expected to remain trapped in
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its low-activity equilibrium well into the future.3 Thus, we have a situation

where an upward sloping (observed) yield curve is signaling expectations of

a prolonged slump in the economy. This is exactly the opposite of the usual

indicator property attributed to the yield curve!

2.2 Computing liquidity-trap probabilities

As discussed above, by liquidity trap I mean a situation where the equilibrium

nominal short rate ρ(t) becomes nonpositive, leaving the observed rate at its

lower bound at zero and potentially substantially reducing the effectiveness

of conventional monetary policy actions. One may therefore be interested

in assessing, at any point in time, the likelihood that such a scenario will

emerge. Relying on well-known tools from statistics and stochastic calculus,

I propose here a novel approach to using the yield curve to answer this

question. I illustrate the approach by applying it to the simple model used

thus far, but I shall use it later with the richer estimated model described in

the next section.

Let C(ρ(t), t; t′), be the time-t probability that ρ will not hit zero before

some specified time t′ > t. A priori, one does not know the functional form of

C(ρ(t), t; t′), but this unknown function can be shown to satisfy the following

partial differential equation:

∂C

∂t
+

1

2

∂2C

∂ρ2
b2 = 0 (8)

3Baz, Prieul, and Toscani (1998) suggest that this phenomenon may have been at play
in Japan in the mid-1990s.
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which is akin to the backward Kolmogorov equation that relates to (2). Given

the definition of C(.), the boundary and final conditions associated with (8)

are given by:

C(0, t, t′) = 0 (9)

C(ρ(t′), t′, t′) = 1 if ρ(t′) > 0 (10)

Equation (9) simply says that the time-t probability that ρ will not hit zero

before time t′ is zero if ρ is already on the boundary at time t. Equation

(10) states that if ρ is still in positive territory at t′, then it has no time to

become nonpositive and thus C(ρ(t′), t; t′) = 1.

It can be shown that the solution to the above problem is given by

C(ρ(t), t, t′) = N

(
ρ(t)

b
√

t′ − t

)
− N

( −ρ(t)

b
√

t′ − t

)
(11)

where N(.) is the standard normal CDF—see, e.g., Cox and Miller (1965).

Equation (11) is a formula for the time-t probability that ρ will not hit

zero before time t′ when ρ is assumed to evolve according to (2). Table 1

shows risk-neutral liquidity-trap probabilities, 1−C(ρ(t), t; t′), computed for

various time horizons based on the same parameterization used in Figure 1.

The table indicates that the substantial differences between the yield curves

shown in Figure 1 are associated with very high probabilities that the model

economy will slip into the liquidity trap in the not too distant future.
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3 A Model for Empirical Analysis

The simple model depicted in the previous section was an abstraction used

solely for illustrative purposes. That model did not capture several important

stylized facts regarding the yield curve, such as the observation that the short

rate tends to display some mean reversion. In addition, the model allowed

for only one factor, the short rate, to affect the entire term structure of

interest rates, but empirical evidence suggests that at least one more common

factor may lie behind movements in the yield curve. I should also point

out that the short rate process in the simple model was specified only in

terms of the risk-neutral probability measure, and thus the liquidity-trap

probabilities that we computed do not necessarily correspond to the physical

(objective) probabilities of ρ hitting zero percent. Lastly the model was

arbitrarily parameterized, rather than either calibrated or estimated based

on observable data. Together, these limitations of the simple model make

it ill-suited to assess the quantitative importance of the theoretical results

obtained thus far. To address this topic, I now turn my attention to a two-

factor affine model that was estimated from the term structure of U.S. swap

rates.

Consider the following model for the evolution of the equilibrium short

rate, ρ(t), under the objective probability measure,

dρ(t) = k[θ(t) − ρ(t)]dt + vdWρ(t) (12)

dθ(t) = α[β − θ(t)]dt + ηdWθ(t) (13)

ρ(t) is assumed to error-correct toward its time-varying central tendency
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θ(t) with a mean reversion coefficient k. θ(t) is also assumed to follow a

mean-reverting process, with α denoting its speed of mean reversion and β

its long-run value. dWρ(t) and dWθ(t) are uncorrelated stochastic shocks

(infinitesimal increments to standard Brownian motions) hitting the short

rate and its central tendency, respectively, and v and η are their volatilities.

The above model is a two-factor extension of the one-factor model origi-

nally proposed by Vasicek (1977) and a variant of the double-mean reverting

framework discussed by Balduzzi, Das, and Foresi (1998), Babbs and Now-

man (1999) and Bomfim (2003). In terms of the economics of the model, θ(t)

can be thought of as where market participants think the equilibrium short

rate will be in the future, and β is the steady-state value of the equilibrium

short rate. As for the actual short rate, r(t), I continue to assume that it

evolves according to (1).

Equations (12) and (13) comprise a Gaussian model of the equilibrium

short rate, in that it can be shown that unexpected movements in ρ(t) and

θ(t) are normally distributed. A common criticism levied at Gaussian models

is that they have the counterfactual implication that negative short rates

are possible. This limitation of this class of models, however, is actually a

desirable feature in the context of this paper, given that I am modeling the

equilibrium short rate, which could well be negative, in conjunction with the

actual short rate, which is nonnegative as prescribed by equation (1).

To derive the yield curve relationship implied by (12) and (13), assuming

that stochastic movements in ρ(t) and θ(t) are the only sources of uncertainty

regarding movements in the yield curve, we can again rely on standard val-

uation techniques to write down the partial differential equation that the
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price, P (t, T ), of a zero-coupon bond must satisfy in the absence of arbitrage

opportunities:

∂P

∂t
+

∂P

∂ρ
[k(θ−ρ)−λ̃ρv]+

∂P

∂θ
[α(β−θ)−λ̃θη]+

1

2

[
∂2P

∂ρ2
v2 +

∂2P

∂θ2
η2

]
−rP = 0

(14)

where λ̃ρ and λ̃θ are the market prices of risk associated with the element of

uncertainty in ρ(t) and θ(t), respectively. I assume that the market prices of

risk are proportional to the volatilities of the underlying factors:

λ̃ρ = λρv (15)

λ̃θ = λθη (16)

The particular functional form of P (t, T ) that satisfies (14) subject to (1)

and (4) corresponds to the bond pricing formula of the two-factor model.

3.1 Model estimation

Because of the additional complications associated with the zero-bound con-

straint, I will generally solve the PDE problem described in the previous

subsection numerically, using both Monte Carlo and finite differences meth-

ods. For the purpose of estimating the parameters of the model, however, I

shall rely on the analytical solution to a version of the model that ignores

the zero-bound constraint on the short rate. In particular, I estimate the

model using weekly data from 1989 to 2001, a period when nominal short-

term interest rates were safely above zero, and thus I assume that r(t) = ρ(t)
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over the entire estimation period.4 This allows me not only to write down

analytical expressions relating the prices of zero-coupon bonds to the factors

ρ(t) and θ(t), but also to rely on well-known likelihood estimation procedures

based on the Kalman filter—see, e.g., Harvey (1990). Assuming that the fac-

tors ρ(t) and θ(t) are not directly observable, the transition equation for the

Kalman filter is simply the solution to the system of stochastic differential

equations given by (12) and (13):

X(T ) = e−K(T−t)X(t) + [I − e−K(T−t)]Θ +

∫ T

t

e−K(u−t)σdW (u) (17)

where X(t) ≡ [ρ(t), x(t)]′, x(t) ≡ θ(t)− β, K ≡

 k −k

0 α


, Θ ≡ [β, 0]′, σ ≡


 v 0

0 η


, I is a 2x2 identity matrix, and dW (u), defined as [dWρ(u), dWθ(u)]′,

is a normally distributed vector with zero mean and variance-covariance ma-

trix V ≡ ∫ T

t
e−K(T−u)σσ′e−K ′(T−u)du.

To arrive at the measurement equations for the Kalman filter, I use the

solution to (14) and (4), again assuming that ρ(t) = r(t):

P (t, T ) = e−A(t,T )−B(t,T )r(t)−C(t,T )x(t) (18)

where, in addition to being maturity-dependent, A(t, T ), B(t, T ), and C(t, T )

are functions of the parameters of the short-rate model and of the market

prices of risk.

4As reported later in this paper, I checked to see whether the values of the options
embedded in the yield curve were nonzero over this period. They were not.
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Using the fact that P (t, T ) = e−R(t,T )(T−t), where R(t, T ) is the time-t

yield on a zero-coupon bond that matures at T , I can write R(t, T ) as an

affine function of the factors

R(t, T ) =
1

T − t
[A(t, T ) + B(t, T )r(t) + C(t, T )x(t)] (19)

and the vector of measurement equations is simply (19) expressed in matrix

form for various maturities and augmented with maturity specific measure-

ment errors

y(t) = D0(Ω, Λ) + DX(Ω, Λ)X(t) + ε(t) (20)

where y(t) is an n-by-1 vector of zero-coupon bond yields implied by the

LIBOR and swap curves, and ε(t) is the corresponding vector of measurement

errors—ε(t) is assumed to have zero mean and a diagonal variance-covariance

matrix H . (Ω is the vector of parameters of the short rate model, and Λ is

the vector of market prices of risk.)

3.2 Model estimation results

I used zero-coupon yields implied by swap rates and short-term LIBOR

to estimate the model. These yields are shown in Figure 2. They are

based on six- and twelve-month LIBOR and on swap rates corresponding to

two-, three-, four-, five-, seven-, and ten-year maturities.5 Although the data

extend from January 1989 through January 2003, the sample used in the

5To obtain the implied zero-coupon yields, I first computed zero-coupon bond prices
from the LIBOR/swap curve using a standard bootstrapping procedure and then generated
a zero-coupon curve using the cubic hermite interpolation method. (I also experimented
with a cubic spline, and the results were largely unaffected.)
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estimation contains only the 667 weekly observations ranging from January

1989 through December 2001. As noted, I did not use data from 2002 and

2003 in the estimation of the model, as short-term nominal rates dipped

very close to zero during that period. Using those data could potentially

have made problematic my decision to disregard the zero bound constraint

when estimating the model.

Estimation results are summarized in Figures 3 through 6. Figure 3

shows the model’s ability to fit the average shape of the yield curve during

each of the past twelve years. Figure 4 shows actual and model-implied

yield curves for the last week in the entire sample. Both figures suggest

that the two-factor model generally does a good job accounting for both the

average level and shape of the curve during the past several years. Figure 5,

which shows estimated model residuals, provides some perspective on how

the model captures the time-series variation in the zero-coupon yields. The

model residuals are very small, indicating that the Kalman filter was able to

ascribe most of the movements in zero-coupon yields to changes in the two

estimated factors and suggesting that the assumption that the zero-bound

constraint was not binding during the estimation period was a reasonable one.

The validity of this assumption is also suggested by Figure 6, which shows

the estimated factors, both of which remained in positive territory during the

estimation sample and into 2002 and 2003. In addition, I also computed the

value of option-like feature of nominal rates—Ψ(t, T ) in equation (7)—and

found that it was essentially zero throughout the estimation period across all

maturities.

Table 2 summarizes the parameter estimates underlying the model-implied
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yields shown in Figures 3 through 6. According to the model, both the short

rate and its tendency have a statistically significant degree of mean rever-

sion, the k and α parameters, respectively. The estimated value of k, 0.42,

implies a half life of about 1.6 years, suggesting that θ(t) can be thought of

as where the short rate will be, in the absence of any unanticipated shocks,

over the next few years. The estimated value of α—about 0.05—implies a

much slower degree of mean reversion of θ(t) towards its long-term value, β,

but β itself was not precisely estimated by the model and its point estimate

seems high. The model did allow me to estimate more precisely the standard

errors of the shocks to the short rate and central tendency equations—v and

η—which, expressed on an annual basis, are estimated to be 84 and 110 basis

points, respectively.

Similar to the long-run value of the short rate, β, the market price of

risk parameters, λr and λθ, were imprecisely estimated in the context of

the model. In Section 5, I examine the sensitivity of my main results to

alternative parameterizations regarding β, λr, and λθ.

4 Results from the Estimated Model

I extended the analysis carried out with the stylized model used in Section

2 to the estimated two-factor model proposed and estimated in Section 3.

As noted, the two-factor model fits the data well and thus constitutes a

potentially useful framework for quantifying any effects that the zero bound

constraint may have on the yield curve, as well as for estimating probabilities

that real-world economies will face liquidity-trap situations.
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4.1 Market-based liquidity-trap probabilities

The analysis here mirrors that of Section 2.2. In particular, the time-t

market-implied probability C(ρ(t), t; t′) that the nominal short rate will not

hit zero before time t′ can be shown to satisfy a backward partial differential

equation that is similar to (8) and subject to the same boundary and final

conditions (9) and (10). Instead of solving that problem to derive an analyt-

ical solution for C(.), however, I relied on numerical solutions based on finite

difference methods, which are quite accurate and relatively straightforward

to implement.6

Thus far the empirical work has focused on the pre-2002 period, which

allowed me to estimate the two-factor model while implicitly assuming that

the zero-bound constraint on nominal rates could be ignored. I shall focus

now on the behavior of the yield curve in the U.S. during 2002 and early 2003,

a period when short-term nominal rates became very close to zero. How does

the estimated model parse out the level and shape of the U.S. yield curve

in 2002 into liquidity-trap probabilities? To start answering this question,

for each data point in 2002 and early 2003, I computed the model-implied

probability that the nominal short rate will become nonpositive sometime

during the ensuring two-year period. The resulting liquidity-trap probabili-

ties, as seen from the perspective of the yield curve, are shown as the solid

line in Figure 7, which also depicts the evolution of swap-implied zero-coupon

yields corresponding to the two-, five-, and ten-year maturities. Unlike the

6I assessed the accuracy of the numerical algorithm using the stylized model and found
that it delivered solutions that were very close to the analytical solution discussed in
Section 2.
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risk-neutral probabilities derived in Section 2, these are “real-world,” objec-

tive probabilities implied by the yield curve and the estimated parameters of

the model.

As can be seen in Figure 7, the model would interpret the low levels

of market interest rates over the second half of 2002 and in early 2003 as

implying some odds that the U.S. economy might slow enough to fall into a

liquidity-trap type scenario over the next two years, but these market-implied

odds are very small. For instance, as of early 2003, the model would place

the probability of short rate hitting its lower bound at zero within the next

two years at close to 4 percent. It is noteworthy, however, that, while small,

this probability was higher then than at any period included in the sample.

Table 3 shows liquidity-trap probabilities implied by the model over var-

ious horizons, inferred from the observed swap curve early in 2003. These

market-implied probabilities increase with the time horizon, but remain rel-

atively low even for the five-year horizon. One might contrast the shape of

term structure of liquidity-trap probabilities associated with the two-factor

model with that of the artificial economy, which has a much more pronounced

upward slope. The fact that the two-factor model detects a significant degree

of mean reversion in the short rate process, while the stylized model assumed

no mean reversion in the artificial economy, accounts for the flatter pattern

of liquidity-trap probabilities in the estimated model.

Table 3 also contrasts objective and risk-neutral probabilities implied by

the estimated model. Because the risk-neutral process for the short rate has

a higher drift than does the objective process, the risk-neutral probabilities

generally tend to underestimate the likelihood that the economy will fall into
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a liquidity-trap scenario.

4.2 Any distortions to the U.S. yield curve?

Black (1995) highlighted the potential for the shape of the yield curve to be

affected when short rates are close enough to zero percent, and this paper

has taken that insight further by cautioning policymakers and other market

participants about changes in the informational content of the yield curve

during such times. The question then arises: Are rates close enough to zero

that their option-like feature is distorting the yield curve?

I shall continue to focus on 2002 and early 2003. Similar to the approach

illustrated for the stylized model of Section 2, I derive the bond pricing

equation for the two-factor model under two assumptions—with and with-

out explicitly imposing the zero bound constraint on the short rate r(t)—in

order to estimate the size of the option value associated with the floor. An-

alytical solutions to the first case, no zero bound constraint, are relatively

straightforward and, indeed, I outlined the derivation of those in Section

3 in order to obtain the measurement equations for the Kalman filter—see

equation (18). While this solution method can be defended for the pre-2002

period, however, it may not be appropriate for 2002 and 2003 and hence

my interest in solving equation (14) while explicitly incorporating the zero

bound constraint.7

To answer the question of whether the proximity of short rates to zero

has affected the shape of the U.S. yield curve, I compare, in Figure 8,

7I solved the version of the model that incorporates the zero bound constraint using
the same numerical methods outlined in Sections 2 and 3.
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two curves: a model-generated yield curve that does not impose the zero

bound constraint—the dashed line—and a model-generated curve that ex-

plicitly takes into account the non-negativity condition on the short rate—the

dashed-dotted line. As shown in the figure, one can hardly tell the difference

between these two model-generated curves, suggesting that market partici-

pants see the odds of the U.S. economy slipping into the liquidity trap as

low enough that one can still ignore the zero bound constraint when pricing

bonds or when interpreting movements in the yield curve. The curves shown

in Figure 8 are for the week of January 17, 2003. Analyses of other weeks in

2002 would lead to conclusions similar to the ones just reported.

5 Sensitivity Analysis

The results reported in Section 4 are, of course, functions of the estimated

parameters of the two-factor model. While the model does a very good job

capturing the behavior of the yield curve over the past decade, I was unable

to estimate some of the underlying parameters with the desired precision,

particularly, as reported in Section 3, the long-term value of the short rate,

β, and the market price of risk parameters, λρ and λθ. Thus, I shall start

this section by assessing the robustness of my results to variations in these

parameters.

Long-run value of the nominal short rate. At 8.3 percent, the point estimate

of β is likely high. For instance, it is well above the sample average of the

six-month zero-coupon yield, which is about 5-1/4 percent. To assess the

sensitivity of my results to a lower value of β, I reran the analysis discussed
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in Section 4 with β set at this lower value. The results were little changed

from the benchmark case. While one might argue that the lower value of β

would help keep short-term rates lower, and thus potentially closer to the zero

bound, I would make two points. First, although lower than the estimated

value, 5-1/4 percent is still sufficiently above zero that it may help anchor the

short rate in positive territory. Second, the degree of mean reversion in the

medium-term trend of the short rate, θ(t), is very low, though statistically

significant, and that should help mitigate the effect of changes in β on the

computed liquidity-trap probabilities.

Market prices of risk. As long as my main interest lies on objective proba-

bilities, the estimated values of the market price of risk parameters have no

direct effect on computed liquidity-trap probabilities. Where these parame-

ters do matter explicitly is on the computation of risk-neutral probabilities as

they enter into the adjustment to the drift of the short rate process when one

goes from the objective to the risk-neutral measure. I examined the effects of

doubling the market price of risk parameters, which had the expected result

of driving a wider wedge between objective and risk neutral probabilities.

As a result, the risk-neutral probability went from about 1.8 percent in the

benchmark case to close to 1 percent. Reducing the market price of risk

parameters would have the unsurprising effect of bringing risk-neutral and

objective probabilities closer.

Short rate volatilities. Unlike the parameters examined thus far, the volatil-

ity of the short rate and its central tendency, v and η, respectively, were

quite precisely estimated in the context of the two-factor model. Nonethe-

less, despite the model’s simplifying assumption that v and η are constant,
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volatilities in the real world do display some time variation.

As a first attempt to gauge the sensitivity of my results to changes in

volatility, I computed liquidity-trap probabilities under two alternative sce-

narios. In the high-volatility scenario, I increased v and η by 3 times the

standard errors of estimate associated with these parameters. In the low-

volatility scenario, I reduced v and η by the same amount. The main results

were relatively robust to these variations in volatility. The probability that

ρ will hit the zero bound during the ensuing two-year period rose to about

6 percent in the high-volatility specification and fell to close to 3 percent in

the low-volatility scenario.

I also experimented with an additional high-volatility case, one that I

dubbed the “extreme-volatility scenario.” In this scenario, I increased v and

η 50 percent, about 20 times the standard errors of estimate associated with

these parameters. Not surprisingly, such a large increase in volatility had a

noticeable effect on the model-implied liquidity-trap probability, which rose

to about 22 percent. In the face of such an outsized rise in volatility, however,

one might find some comfort in the fact that the model would suggest more

than 3 in 4 odds that the economy will not fall into the liquidity trap over

the next two-year period. Moreover, Bomfim (2002) used swaption prices

to generate time-varying estimates of short rate volatility over the 1994-

2001 period, and the resulting series never reached a level as high as in the

extreme-volatility scenario.

The extreme-volatility scenario can be examined further to assess whether

the corresponding liquidity-trap probability would be elevated enough to

distort the shape of the yield curve. Figure 9 shows two hypothetical yield
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curves, one where the zero-bound constraint is ignored—the dashed line—

and another where it is explicitly taken into account—the solid line. The

starting values for r(t) and θ(t) are the ones suggested by the model at the

beginning of 2003, and all parameter values are as in Table 2, except for v

and η, which are set as in the extreme-volatility scenario. Figure 9 shows

that even with a liquidity-trap probability as high as 22 percent, the shape

yield curve is mostly unaffected by the zero bound constraint. It is only for

maturities beyond 15 years that one starts seeing the option value associated

with the zero bound having some effect on the slope of the curve, and even

then the effect is relatively small. Figure 9 reinforces the finding that the

qualitative effects uncovered by Black (1995) regarding the effect of the zero

bound on the shape of the yield curve were likely not of great quantitative

importance in the United States in 2002 and early 2003.

6 Concluding Remarks

This paper had two main motivations. On the theoretical front, the work of

Fisher Black (1995) provided a useful and intuitive framework for analyzing

the yield curve when short-term nominal rates are close to zero. On the

practical front, nominal rates were indeed close to zero in the United States

in 2002 and early 2003. My goal was to use the Black framework as a starting

point for the analysis and then to extend it to be able to make empirical

statements about observed yield curves.

The paper has three main intended contributions to the term structure

literature. First, it makes explicit that Black’s (1995) insight that nominal
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interest rates have an option-like feature that can affect the shape of the yield

curve should be taken as a cautionary note for financial market participants.

For instance, those who might feel tempted, say, to use term structure spreads

to assess market sentiment regarding future states of the economy might

want to take notice of the fact that, when rates are sufficiently close to zero,

a positive slope of the yield curve could have as much, if not more, to do

with expectations of a prolonged liquidity-trap situation than with forecasts

of improved economic conditions.

The second main intended contribution of the paper was to show how to

use the observed yield curve to assess the likelihood, as assessed by market

participants, that the economy will slip into the liquidity trap. The ap-

proach outlined in this paper has the advantage of requiring fewer structural

assumptions than one that would be based, for instance, on a macroecono-

metric model. In addition, we were able to obtain not just the risk-neutral

liquidity-trap probabilities that one could compute, say, from options prices,

but also the objective probabilities that presumably underlie the evolution

of the short rate in the real world.

Third, I wanted to apply my extensions of the Black framework to an es-

timated term-structure model that would allow me to assess the quantitative

significance of the theoretical results. I did so in the context of a two-factor

affine model of the U.S. swap curve, which I estimated using conventional

maximum-likelihood methods. When applied to the estimated model, the

analytical framework described in this paper suggested that the configura-

tion of market interest rates in the United States during 2002 and early 2003

did imply some odds that the U.S. economy could slip into a liquidity-trap
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scenario in the not too distant future. But these market-implied odds were

very small; indeed, small enough that the results suggested that the shape

of the yield curve during that period was likely not significantly affected by

the proximity of short-term nominal rates to their lower bound at zero. The

model would suggest that financial market participants saw the low levels

of short-term rates observed in 2002 and in the beginning of 2003 as a tem-

porary phenomenon, believing that rates will mean revert to more normal

levels in due course.

I should close while pointing out that the methods described in this paper

have applications well beyond the interest rate environment prevailing in the

United States in 2002 and early 2003. They are, for instance, potentially

equally applicable to assessing market participants’ expectations of future

economic conditions in other countries or in the United States during other

times. In addition, the extended interest-rate-as-options framework intro-

duced in this paper has implications both for market practitioners pricing

fixed-income products and for researchers interested in the determinants of

interest rate dynamics.
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Table 1
Risk-Neutral Liquidity-trap Probabilities

for the Artificial Economya

Horizon Prob[ρ ≤ 0] within horizon
(percent)

one month 0.1
three months 4.5
six months 15.7
one year 31.7
two years 47.9
five years 65.5

aTable entries show the probability that ρ will become nonpositive in the artificial economy
during the horizons indicated. ρ is assumed to evolve according to (2), with b = 100 basis points
and with the initial value of ρ set at 1 percent.
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Table 2 —Estimated Parameters for the Two-factor Modela

dρ(t) = k[θ(t) − ρ(t)]dt + vdWρ(t)

dθ(t) = α[β − θ(t)]dt + ηdWθ(t)

Parameter Estimated value Standard error

k 0.4186 0.0039
α 0.0458 0.0015
β 0.0838 0.0588
η 0.0110 0.0003
v 0.0084 0.0002
λρ 40.9367 38.951
λθ 0.1273 23.389
h1/2 0.1310 0.0086
h1 0.0001 0.0003
h2 0.1254 0.0123
h3 0.1122 0.0116
h5 0.0608 0.0029
h7 0.0001 0.0067
h10 0.0671 0.0021

aEstimation period: 1989 to 2001 (667 weekly observations). The model was estimated using
zero-coupon yields derived from LIBOR and swap rates for the following maturities: six-months,
one, two, three, five, seven, and ten years. hi is the standard error of the residuals of the measure-
ment equation associated with a zero-coupon bond with i years to maturity.
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Table 3
Estimated Liquidity-trap Probabilities for the U.S. Economya

(as of January 17, 2003)

Horizon Prob[ρ ≤ 0] within horizon

objective risk-neutral

six months 2.0 1.2
one year 3.0 1.6
two years 3.6 1.8
five years 4.8 2.4

aTable entries show the probability that the equilibrium short rate, ρ, will become nonpositive in
the U.S. economy during the horizons indicated. ρ is assumed to evolve according to the estimated
two-factor model. Model parameter values are shown in Table 2.
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Observed and Actual Yield Curves in the Random−Walk Model
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Swap−implied zero−coupon yields
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Swap−implied zero yield curve, week ending January 17, 2003
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Measurement Equation Residuals
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