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1 Introduction

A growing literature has suggested that the entire yield curve moves primarily

in response to changes in a small number of potentially unobservable common

factors, but the factors themselves are typically described based on their

effects on the “level, slope, and curvature” of the yield curve, rather than in

terms of the financial and economic fundamentals that drive market interest

rates—Dai and Singleton (2000) and Litterman and Scheinkman (1991).1 In

this paper, I discuss and test empirically an economic interpretation for an

otherwise standard no-arbitrage multifactor affine framework, very much in

the tradition of Balduzzi, Das, and Foresi (1998) and Babbs and Nowman

(1999). The results suggest that actual and expected changes in monetary

policy account for a remarkably large share of the variation in bond yields in

the United States across the whole maturity spectrum.

The proposition that monetary policy plays an important role in the

determination of market interest rates is hardly new. Indeed, in laying the

groundwork for the two-factor affine model used in the analysis, I briefly

review, in Sections 2 and 3, a well-known form of the expectations hypothesis

of the yield curve, which postulates that yields on longer-term bonds reflect

market participants’ expectations of future values of short-term yields, which

are themselves largely set by monetary policy. What is new and noteworthy

among the results reported in this paper is the extent to which estimates

1Recent work by Ang and Piazzesi (2002) and Piazzesi (2001) deviates somewhat from
this norm and is related to this paper to the extent that at least some of the common factors
discussed in those papers are given an explicit economic interpretation. For instance, Ang
and Piazzesi propose a multifactor framework that incorporates both observable (macroe-
conomic) factors and latent factors, although the latter are not fully accounted for by
identifiable fundamentals.
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of the two latent factors that drive the yield curve in the model can be

mapped into commonly used measures of the current and expected stance of

monetary policy. Based on the estimation approach described in Section 4,

I report, in Section 5, that while the first factor tracks observed short-term

interest rates very well, the second moves nearly one-to-one with medium-

term monetary policy expectations, as inferred by eurodollar futures rates.

The close relationship between the second factor and policy expectations is

especially remarkable given that futures rates were not used in the estimation

of the model. In Section 6, I discuss the main conclusions of the analysis and

point to potential directions for further research.

2 Background and Motivation

Let Z(t, T ) denote the time-t price of a zero-coupon bond that matures at

time T with no risk of default. Assuming, without loss of generality, that the

bond has a face value of $1, its continuously compounded yield-to-maturity,

R(t, T ), is such that:

Z(t, T ) = e−R(t,T )(T−t) (1)

The continuously compounded time-t forward rate for the future period

[T1, T2] can be shown to be

R(t, T1, T2) = − log(Z(t, T2)) − log(Z(t, T1))

T2 − T1
(2)
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and thus the instantaneous forward rate with maturity T—the time-t forward

rate for the infinitesimal future period [T, T + dt]—is written as

f(t, T ) = −∂log(Z(t, T ))

∂T
(3)

The instantaneous riskless spot rate, also referred to in this paper as the

short rate, is given by:

r(t) = f(t, t) (4)

Note that by integrating both sides of (3) and combining the result with

(1) we obtain

R(t, T ) =

∫ T

t
f(t, S)dS

T − t
(5)

which gives the familiar result that the time-t yield on a longer-term zero-

coupon bond can be thought of as the average of time-t forward rates pre-

vailing over the life of the bond.

Intuition and financial reasoning tell us that forward rates should embody

expectations of future spot rates (plus a potentially non-zero risk premium).

Motivated by this insight, the modeling approach adopted in this paper starts

with a model for the evolution of the short rate, which, in turn leads to the

specification of the common factors behind yield curve fluctuations. Before

turning to the specifics of the modeling framework, however, we will take a

closer look at equation (5), which should help us relate the model presented

here to other work in the term structure literature. In addition, I shall argue

that equation (5) is a useful tool for adding an economic interpretation to

the model.
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2.1 The Expectations Hypothesis and a Role for Mon-

etary Policy

Equation (5) serves as a basis for a well-known form of the expectations

hypothesis of the term structure of interest rates. This version of the hy-

pothesis is based on the assumption that the instantaneous forward rate

f(t, S) is equal to the expectation of the corresponding future spot rate plus

a time-invariant risk premium φ(S − t),

f(t, S) = Et[r(S)] + φ(S − t) (6)

where Et[.] denotes an expectation conditioned on time-t information, com-

puted under the objective probability measure.2

Combining equations (5) and (6), we obtain

R(t, T ) =

∫ T

t
Et[r(S)]dS

T − t
+ Φ(T − t) (7)

which is the so-called yield-to-maturity form of the expectations hypothesis—

see, e.g., Cox, Ingersoll, and Ross (1981)—augmented with a time-invariant

risk premium. Equation (7) says that yields on longer-term zero-coupon

bonds represent market participants’ expectations of the average level of

short-term interest rates over the maturity of the bond plus a risk premium

Φ(T − t) ≡
R T
t

φ(S−t)dS

T−t
.

Equation (7) provides a direct link between longer-term interest rates and

2In its “pure” version, this form of the expectations hypothesis assumes that φ(S−t) =
0. In this paper, I work with the weaker form of the hypothesis, which allows for non-zero
risk premiums.
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expectations of future short-term interest rates. A common approach in the

economics literature on the term structure of interest rates, which I shall refer

to as the “structural approach,” is to assume that short rates are primarily

determined by monetary policy and then to propose an equation—often re-

ferred to as a “monetary policy reaction function”—relating movements in

the short rate to changes in key macroeconomic variables that monetary pol-

icymakers are assumed to care about. Thus, using model-based projections

for such macro variables, which are effectively taken to be the factors behind

movements in the yield curve, one can derive the model-implied forecasts of

the short rate and assess the model’s ability to capture the main sources of

variation in longer-term yields.3

In this paper, I follow what I shall call a “market-based” approach to

estimating (7). Rather than trying to model the behavior of the short rate

by assuming a specific reaction function for monetary policymakers, and

attempting to forecast the macro variables that enter into that function,

I rely almost exclusively on observed interest rates to infer the short rate

expectations and associated risk premiums in the minds of financial market

participants. Indeed, a key idea behind this paper is to impose a minimum

set of assumptions on the evolution of the short rate and to let the whole

configuration of market interest rates tell us as much as possible about market

participants’ attitudes toward risk and their expectations of where the short

rate (and potentially the yield curve) is headed.

3This approach is similar in spirit to the work of Evans and Marshall (1998).
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3 The Modeling Framework

Consider the following model for the evolution of the short rate, r(t),

dr(t) = k[θ(t) − r(t)]dt + vdWr(t) (8)

dθ(t) = α[β − θ(t)]dt + ηdWθ(t) (9)

r(t) is assumed to error-correct toward its time-varying central tendency

θ(t) with a mean reversion coefficient k. θ(t) is also assumed to follow a

mean-reverting process, with α denoting its speed of mean reversion and β

its long-run value. dWr(t) and dWθ(t) are uncorrelated stochastic shocks

(infinitesimal increments to standard Brownian motions) hitting the short

rate and its central tendency, respectively, and v and η are their volatilities.

In terms of the economics of the model, θ(t) can be thought of as where

market participants think the monetary authority will take the short rate

in the future, an implicit notion of a policy reaction function, and β is the

steady-state value of the short rate.

The above model is a two-factor extension of the one-factor model origi-

nally proposed by Vasicek (1977) and a variant of the double-mean reverting

framework discussed by Babbs and Nowman (1999) and the two-factor model

of Balduzzi et al. (1998). Equations (8) and (9) make up a system of stochas-

tic differential equations, which can be solved to obtain

X(T ) = e−K(T−t)X(t) + (I − e−K(T−t))Θ +

∫ T

t

e−K(s−t)σdW (u) (10)
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where X(t) ≡ [r(t), x(t)]′, x(t) ≡ θ(t)− β, K ≡

 k −k

0 α


, Θ ≡ [β, 0]′, σ ≡


 v 0

0 η


, I is a 2x2 identity matrix, and dW (u), defined as [dWr(u), dWθ(u)]′,

is a normally distributed vector with zero mean and variance-covariance ma-

trix V ≡ ∫ T

t
e−K(T−u)σσ′e−K ′(T−u)du. As a result, it can be shown that the

conditional expectation of X(T ) is given by

Et[X(T )] = e−K(T−t)X(t) + [I − e−K(T−t)]Θ (11)

from which the conditional expectation of r(T ) easily follows:

Et[r(T )] = e−k(T−t)r(t)+
k

k − α
[e−α(T−t)−e−k(T−t)]x(t)+(1−e−k(T−t))β (12)

3.1 A Two-factor Characterization of the Yield Curve

Given the short-rate model, and assuming that unanticipated movements in

r(t) and θ(t) account for the stochastic variation in forward rates, equation

(5) would tell us that one can think of r(t) and θ(t) as being the two common

factors driving fluctuations in the entire yield curve. In particular, one can

write the time-t price of a T1-maturity zero-coupon bond as a yet to-be-

determined function of the maturity of the bond and of the factors r(t)

and θ(t), Z(t, T1, r(t), θ(t)). Given the short-rate model, and invoking Ito’s

Lemma, we can write down the evolution of the price of this bond in terms
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of the following generic stochastic differential equation:

dZ(1)(t)

Z(1)(t)
= µ(1)(t)dt + σ(1)

r (t)dWr(t) + σ
(1)
θ dWθ(t) (13)

where, to simplify notation, I used the superscript (1) to identify variables

corresponding to the T1-maturity bond.

Equation (13) can be thought of as the realized return on holding a T1-

maturity zero-coupon bond from t to t + dt. Accordingly, the bond’s corre-

sponding holding period return has mean µ(1)(t)dt and variance [σ
(1)
r (t)2 +

σ
(1)
θ (t)2]dt, where σ

(1)
r (t) and σ

(1)
θ (t) capture the contributions of shocks to

r(t) and θ(t), respectively, to unexpected changes in the price of the bond.

Equation (13) by itself is of little value in the derivation of an explicit

bond pricing formula that relates movements in Z(.), or in R(.), to changes in

the factors r(t) and θ(t). To derive such a formula, I use a standard valuation

methodology that follows the spirit of the Black-Scholes approach to pricing

calls and puts.4

Suppose we want to price the T1-maturity bond. I start by setting up a

hedged portfolio containing the bond and two other hedging vehicles—e.g.,

a T2- and a T3-maturity bond—one for each type of fundamental uncertainty

affecting the price of the T1-maturity bond. Let Π(t) be the time-t value

of the hedged portfolio and ∆i be the number of unities of the Ti-maturity

bond in the portfolio. Thus, we can write the evolution of the value of the

4See, e.g., Bjork (1998) for a discussion of this valuation approach.
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hedged portfolio as

dΠ(t) =
3∑

i=1

[
∆iZ

(i)(t)(µ(i)(t)dt + σ(i)
r (t)dWr(t) + σ

(i)
θ (t)dWθ(t))

]
(14)

To ensure the absence of arbitrage opportunities, the instantaneous return

on the hedged portfolio must be equal to the riskfree rate, and thus we obtain

the following conditions, which the dynamics of the hedged portfolio must

satisfy if there are no arbitrage opportunities in the economy:

3∑
i=1

∆i[µ
(i)(t) − r(t)] = 0 (15)

3∑
i=1

∆iσ
(i)
r (t)Z(i)(t) =

3∑
i=1

∆iσ
(i)
θ (t)Z(i)(t) = 0 (16)

and the above will be true provided that, for all i, there exist λ̃r and λ̃θ such

that

µ(i)(t) − r(t) = λ̃rσ
(i)
r (t) + λ̃θσ

(i)
θ (t) (17)

The left-hand-side of the above equation is essentially the ex-ante risk

premium associated with holding a Ti-maturity bond. The equation implies

that this premium can be written as a weighted sum of the contributions

of each factor to the overall riskiness of the bond, where the weights are λ̃r

and λ̃θ. Given that λ̃r and λ̃θ capture the relative importance of each risk

factor in the determination of the overall risk premium associated with the

bond, they are commonly referred to as the “market prices of risk” associated

with r(t) and θ(t), respectively. I assume that the market prices of risk are
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proportional to the volatilities of the underlying factors:

λ̃r = λrv (18)

λ̃θ = λθη (19)

After some mathematical manipulation, it can be shown that equations

(13) and (17) imply that the time-t price of the T -maturity bond, Z(t, T ),

must satisfy the following partial differential equation (PDE):

Zt+Zr[k(θ(t)−r(t))−λrv
2]+Zθ[α(β−θ(t)−λθη

2]+.5[Zrrv
2+Zθθη

2]−rZ = 0

(20)

subject to the terminal condition Z(T, T ) = 1, where Zi denotes the partial

derivative of Z(t, T ) with respect to i. (Zii is the second partial derivative

with respect to i.)

The solution to the above PDE can be shown to have the following form

Z(t, T ) = e−A(T−t)−B(T−t)r(t)−C(T−t)x(t) (21)

where, in addition to being maturity-dependent, A(T − t), B(T − t), and

C(T − t) are functions of the parameters of the short-rate model and of the

market prices of risk.

We can use equations (1) and (21) to write:

R(t, T ) =
1

T − t
[A(T − t) + B(T − t)r(t) + C(T − t)x(t)] (22)

and it is straightforward to see that the conditional expectation of R(T1, T2),
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computed under the objective probability measure for T2 > T1 > t, is given

by

Et[R(T1, T2)] =
1

T2 − T1
[A(T2 − T1) + [B(T2 − T1), C(T2 − T1)]Et[X(T1)]]

(23)

Equation (22) is the bond pricing equation implied by the model. For

given estimates of the model parameters and of the current values of the short

rate and its tendency, (22) gives us the theoretical yield on a zero-coupon

bond of any maturity. Thus, using (22), we can, in principle, assess how well

the two-factor model fits the yield curve over time and across maturities. I

say in principle because this exercise requires estimates of not just the model

parameters, but also of the factors r(t) and θ(t), which are assumed not to

be directly observed in financial markets.

3.2 Revisiting the Expectations Hypothesis

Let us now examine how the two-factor model relates to the version of the

expectations hypothesis discussed in section 2. Using equations (3) and (21),

the model-implied forward rates can be written as

f(t, S) = AS(S − t) + BS(S − t)r(t) + CS(S − t)x(t) (24)

where AS(S − t) denotes the partial derivative of A(S − t) with respect to S,

and BS(.) and CS(.) are analogously defined. After some substitution and

rearranging we can arrive at

f(t, S) = Et[r(S)] + AS(S − t) − [1 − e−k(S−t)]β (25)
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where the last two terms provide an explicit functional form for the model-

implied risk premium associated with the forward rate f(t, S). We have thus

mapped the two-factor model into the expectation-hypothesis framework. In

particular, we can write

R(t, T ) =

∫ T

t
Et[r(S)]dS

T − t
+

A(T − t) + β[B(T − t) − (T − t)]

T − t
(26)

where the last term corresponds to Φ(T − t) in equation (7).

Note that the expectations hypothesis, as expressed in (7), generally does

not ensure the absence of arbitrage opportunities. In the context of the two-

factor model described in this paper, the restriction that

Φ(T − t) =
A(T − t) + β[B(T − t) − (T − t)]

T − t
(27)

does ensure that the theoretical bond prices implied by the model are con-

sistent both with an arbitrage-free framework and the weak version of the

yield-to-maturity form of the expectations hypothesis.

4 Estimation Approach

I use zero-coupon yields implied by swap rates and short-term LIBOR to

estimate the model. These yields are shown in Figure 1. They are based

on six- and twelve-month LIBOR and on swap rates corresponding to two-,

three-, four-, five-, seven-, and ten-year maturities.5 The data are made up

5To obtain the implied zero-coupon yields, I first computed zero-coupon bond prices
from the LIBOR/swap curve using a standard bootstrapping procedure and then generated
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of 667 weekly observations, covering the 1989-2001 period.6

The estimation approach allows the factors to be potentially unobserv-

able. Thus, I rely on a Kalman-filter-based maximum likelihood method to

simultaneously estimate the model parameters and the time series of the two

factors. Intuitively, the estimation routine “looks” at actual movements in

the term structure of zero-coupon yields and uses statistical criteria to de-

termine which portion of those movements can be ascribed to changes in the

factors, where the factors are constrained to evolve according to equations

(8) and (9). Formally, the equations that are estimated are

y(t) = D0(Ω, Λ) + DX(Ω, Λ)X(t) + u(t) (28)

X(t + s) = G0(Ω) + GX(Ω)X(t) + e(t + s) (29)

where (28), the measurement equation, is simply (22) expressed in matrix

form to include n maturities and augmented with maturity-specific measure-

ment error terms. Accordingly, y(t) is an n-by-1 vector of zero-coupon bond

yields implied by the LIBOR and swap curves, and u(t) is the correspond-

ing vector of measurement errors—u(t) is assumed to have zero mean and a

diagonal variance-covariance matrix H. Equation (29)—called the transition

equation—is simply equation (10) restated in more compact notation, where

e(t+s) is a vector of stochastic shocks with variance-covariance matrix V (Ω).

(Ω is the vector of parameters of the short rate model, and Λ is the vector

of market prices of risk.)

a smoothed curve using the cubic hermite interpolation method. (I also experimented with
a cubic spline, and the results were largely unaffected.)

6The beginning of the sample is dictated by data availability.
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Equations (28) and (29) fit neatly into the standard Kalman filter frame-

work and make it clear why I characterized the modeling approach used in

this paper as market-based. Other than assuming that the unobserved com-

mon factors follow mean-reverting processes in an economy that is free of

arbitrage opportunities, all that I use to jointly estimate the model param-

eters and the factors are the market-implied yields on zero-coupon bonds of

different maturities. I make no particular assumptions about the form of

the policy reaction function behind movements in short rates or about the

shape of investors’ utility functions and their attitudes toward risk. Instead,

I let market prices speak for themselves as much as possible, extracting from

them the implied time series of the factors and their corresponding market

prices of risk.

As noted above, one aspect that differentiates this paper from most other

work in market-based approach to modeling the yield curve is the explicit

effort to provide an economic interpretation to the estimated factors. In

particular, I assess the empirical performance of the model in two different

ways. First, I look at the model’s ability to fit observed moments in the yield

curve, both along the time-series and cross-sectional dimensions. Second, I

examine the estimated time series of the unobservable factors and check

the extent to which they correlate with observable proxies for the economic

variables they are meant to represent. For instance, I compare the estimated

central tendency series—which is supposed to capture where the short rate is

headed—to observed proxies for market participants’ short-rate expectations.

14



5 Estimation results

Given the maximum likelihood estimates of the parameters and latent factors,

Figure 2 shows the model’s ability to fit the average shape of the yield curve

during each of the past nine years. Figure 3 shows actual and model-implied

yield curves for the last observation in the sample. Both figures suggest

that the two-factor model generally does a good job accounting for both the

average level and shape of the curve during the past decade. Figure 4, which

shows estimated residuals from equation (28), provides some perspective on

how the model captures the time-series variation in the zero-coupon yields.

The model residuals are very small, indicating that the Kalman filter was

able to ascribe most of the movements in zero-coupon yields to changes in

the two estimated factors.

Table 1 summarizes the parameter estimates underlying the model-implied

yields shown in Figures 2 through 4. According to the model, both the short

rate and its tendency have a statistically significant degree of mean rever-

sion, the k and α parameters, respectively. The estimated value of k, 0.42,

implies a half life of about 1.6 years, suggesting that θ(t) can be thought of

as where the short rate will be, in the absence of any unanticipated shocks,

over the next few years. The estimated value of α—about 0.05—implies a

much slower degree of mean reversion of θ(t) towards its long-term value, β,

but β itself was not precisely estimated by the model and its point estimate

seems high. The model did allow me to estimate more precisely the standard

errors of the shocks to the short rate and central tendency equations—v and

η—which, expressed on an annual basis, are estimated to be 84 and 110 basis

points, respectively.
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The market price of risk parameters, λr and λθ, were imprecisely esti-

mated in the context of the model. Nonetheless, their point estimates lead to

model-implied risk premiums that seem plausible. In particular, I examined

risk premiums associated with theoretical short-term interest rate futures

contracts, designed to mimic the structure of the three-month eurodollar

futures contracts traded at the Chicago Mercantile Exchange, assuming con-

tinuous marking to market of futures positions. In the context of the model,

and using standard risk-neutral valuation methods, the theoretical time-t

futures rate corresponding to the future period [T1, T2] can be written as

F (t, T1, T2) = EQ
t [R(T1, T2)] = J0(t, T1, T2) + JX(t, T1, T2)X(t) (30)

where EQ
t [.] denotes an expectation taken under the risk-neutral probability

measure and

J0(t, T1, T2) ≡ D0(T2 − T2) + DX(T2 − T1)[I − eK(T1−t)]Θ̃ (31)

JX(t, T1, T2) ≡ DX(T2 − T1)e
−K(T1−t) (32)

with Θ̃ ≡ Θ − K−1[λrv, λθη]′.

Thus, given equations (23) and (30), the risk premium associated with

the futures rate F (t, T1, T2) is given by

Ψ(t, T1, T2) = DX(T2 − T1)[I − eK(T1−t)](−K−1[λrv, λθη]′) (33)

Based on the estimation results, the model suggests that a risk premium of

about two basis points per month applies to near-dated interest-rate futures
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contracts. As can be seen in Figure 5, however, the model-implied futures

risk premium curve is non-linear in the maturity of the contract, and thus

it may be inappropriate to extrapolate the two-basis points per month rule

to contracts with longer maturities. For instance, the model-implied risk

premium for a two-year ahead three-month futures contract is about 37 basis

points, which would amount to roughly 1.5 basis points per month. For a

five-year ahead contract, the estimated risk premium is about 57 basis points

or .9 basis point per month.

5.1 Monetary Policy and the Estimated Factors

The solid lines in the two panels of Figure 6 show the estimated time series

for the two unobservable factors and examine their relationship to observed

variables. The model specified the first factor as corresponding to a short-

term interest rate, and indeed, as can be seen in the upper panel, the first

factor moves very closely in line with observed short-term interest rates,

such as the six-month zero-coupon bond yield. Given that the credit quality

embedded in the LIBOR/swap curve, from which our zero-coupon yields were

derived, is similar to that implicit in the federal funds rate, which is the main

monetary policy instrument in the United States, we can think of the first

factor as reflecting the current stance of U.S. monetary policy.

The model assumed the second factor to be the central tendency of the

short rate, or, according to the estimated mean-reversion parameter for r(t),

where the short rate will be in the next three to five years in the absence of fu-

ture shocks to r(t) and θ(t). Thus, continuing with the short-rate/monetary

policy nexus, the second factor should correspond to market participants’ ex-
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pectations of where the monetary policy authorities are expected to take the

short rate in the future. Ideally, to assess whether this interpretation of the

second factor is a reasonable one, one would need to compare the estimated

time series for θ(t) to market participants’ expectations of where the short

rate will be, say, over the next three to five years. Such expectations are not

directly observable, however, and thus I resort to a commonly used proxy

that can be inferred from observed asset prices. In particular, I compared

the estimated second factor to short-rate expectations derived from futures

rates implied by the three-month eurodollar futures contracts traded at the

Chicago Mercantile Exchange.

5.2 Futures-based Interest Rate Expectations

My primary focus in this part of the paper is to obtain a measure of short-

term interest rate expectations that is independent of the two-factor model.

I shall thus step outside that model for the moment and focus on a expec-

tational proxy that is, for the most part, model independent. I start by

noting that, given that an eurodollar futures contract’s settlement price is

based on three-month LIBOR quoted on the settlement date, we can think

of the time-t futures rate, F (t, T1, T2), that corresponds to the three-month

period starting in T1 and ending in T2 as the sum of two components: (i)

the conditional expectation of three-month LIBOR that will be quoted at T1,

Et[R(T1, T2)]—computed under the objective probability measure—and (ii)

a risk premium µ(t, T1, T2):

F (t, T1, T2) = Et[R(T1, T2)] + µ(t, T1, T2) (34)
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Equation (34) reminds us that we cannot simply compare levels of observed

futures rates to levels of the estimated second factor. While the former

embodies both market participants’ expectations and their attitudes toward

risk, the model’s interpretation of the second factor is that of an expectational

variable only.

To start focusing on the expectational component of the futures rate,

recall that the results derived in Section 2 imply that

Et[R(T1, T2)] =

∫ T2

T1
Et[r(s)]ds

T2 − T1
+ Φ(t, T1, T2) (35)

which is analogous to (7), except that I am not imposing the expectations

hypothesis, i.e., I am potentially allowing for some time variation in the risk

premium Φ(.).

Assume now that there is a re(t) such that, for a given future period

[T1, T2], we have

Et[r(s)] ≈ re(t) (36)

for T1 ≤ s ≤ T2. In words, (36) assumes that r is expected to revert to a

value close to re by time T1 and to remain in the vicinity of that value by

time T2. Given this assumption, I can write:

Et[R(T1, T2)] ≈ Et[r(T1)] + Φ(t, T1, T2) (37)

and thus

F (t, T1, T2) ≈ Et[r(T1)] + Φ(t, T1, T2) + µ(t, T1, T2) (38)
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I now follow Kuttner (2001) and assume either that risk premia change

little from week to week, or, as implied by the two-factor model, that they

are time invariant. Focusing on first differences, I can write:

F (t, T1, T2) − F (t − 1, T1, T2) ≈ Et[r(T1)] − Et−1[r(T1)] (39)

Thus, we can think of changes in the futures rate F (t, T1, T2) as a proxy

for changes in expectations of where the short rate (monetary policy) will be

over some future period [T1, T2].
7

5.3 Policy expectations and the second factor

Let us now go back to the two-factor model. I argued that the second factor,

θ, can be thought of as reflecting expectations of where r will be over the

medium term. Given the results derived in Subsection 5.2, this interpretation

of the second factor would imply that changes in θ should then be highly

correlated with changes in appropriately chosen futures rates. To verify this

I ran the following regression:

θ(t) − θ(t − 1) = c0 + c1[F (t, Ti, Tj) − F (t − 1, Ti, Tj)] + w(t, Ti, Tj) (41)

where Tj − Ti corresponds to the three-month period specified in the futures

contract; Ti − t is the maturity of the futures contract, which varies from

7An alternative equation describing the relationship between futures rates and policy
expectations could be derived by assuming that risk premia follow a random walk. In this
case,

F (t, T1, T2) − F (t − 1, T1, T2) ≈ Et[r(T1)] − Et−1[r(T1)] + ε(t) (40)

where ε(t) follows a white noise process.

20



a few days to several years, and w(t, Ti, Tj) is the corresponding regression

residual.

The upper panel of Table 2 summarizes the results of regressions based

on futures contracts with maturities ranging from one to nine years.8 Be-

cause the data for some contracts with maturities longer than five years are

only available starting in the early to mid-1990s, however, these regressions

are based on a shorter sample than the one used for the estimation of the

two-factor model. The results suggest a strong link between changes in the

estimated second factor and changes in short rate expectations derived from

the eurodollar futures rates. The estimated R2s are higher than 0.80 in most

cases, especially for the regressions involving futures rates corresponding to

contracts maturing in three to six years, a result that is consistent with the

estimated speed of mean reversion of the short rate in the two-factor model.

Moreover, the estimated slopes of most regressions are not far from one, sug-

gesting a nearly one-to-one relationship between changes in the second factor

and movements in this market-based measure of the expected future stance of

monetary policy. The estimated intercepts were all found to be statistically

insignificant. To take into account the possibility that the regression errors

may be non-i.i.d.—for instance, because futures rates may embed a time

varying risk premium—the t-statistics reported in the table are consistent

with possible heteroskedasticity and autocorrelation of regression residuals

(Newey and West, 1987).

The lower panel of Table 2 focuses on futures contracts expiring in three

8Futures contracts expiring in ten years are also traded at the CME, but were not
included in this analysis because of their more limited data availability.
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to six years, a time horizon that is more in line with the estimated half-

life of 1.6 years for the short rate process. These contracts also have the

advantage of having a longer historical record, in that the data go back to

1989. The results confirm the findings reported for the regressions based on

the shorter sample. They suggest a high degree of comovement between the

estimated second factor and medium-term policy expectations inferred from

eurodollar futures rates, with a one percentage point increase in the three-

year eurodollar futures rate being associated with an increase in the second

factor of similar magnitude.

5.4 Interpreting historical movements in the yield curve

We can use the model to interpret observed movements in the yield curve.

For instance, as can be seen in Figure 6, the model suggests that the substan-

tial easing in monetary policy in the early 1990s was initially taken by market

participants as a temporary phenomenon. In particular, θ(t) hardly moved

from its level in 1989 until late 1992, leading to a considerable steepening

of the yield curve during that period. The downward revision in monetary

policy expectations in 1992 would prove to be short-lived, however, as the

model interprets movements in the yield curve in the second half of 1993 as

being driven by a sharp upward revision in the expected path of short rates.

Indeed, even as the Federal Reserve started tightening policy in February

1994, the estimated time series for θ(t) would suggest that market partic-

ipants were expecting even higher levels of short-term rates farther down

the road. The gap between the short rate and its model-implied central

tendency was considerably narrower during the rest of the 1990s, implying
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that the model would characterize the observed stance of policy during that

time as being roughly consistent with the expected stance of policy. For

instance, although θ(t) started rising considerably in early 1999, the series

of tightening actions that got under way later that year would again bring

the actual policy stance broadly in line with the model-implied longer-term

policy stance.

5.5 Level, slope, and curvature

Figure 7 shows how the model would characterize the response of the yield

curve to unanticipated one percentage point increases in each of the factors.

As shown in the upper panels, a positive shock to the short rate alone would

result in a substantial flattening of the yield curve, with a one-percentage

point rise in the short rate being associated with a nearly 90 basis point

narrowing in the spread between the six-month and the thirty-year zero-

coupon bond yields. The intuition behind this result is straightforward: The

rise in the short rate is viewed as temporary and thus the response of longer-

dated yields to the short-rate shock decreases with maturity.

The middle panels show the estimated yield curve’s response to an un-

expected one-percentage increase in the central tendency of the short rate.

Here the model suggests two effects: First, the yield curve steepens consid-

erably, as short rates are anticipated to rise in the future. A second, more

subtle, effect regards the curvature of the yield curve: The shock is felt more

strongly around the ten-year sector of the curve because the model posits

that θ(t) will eventually revert back to its long-run value.

Lastly, the lower panels of Figure 7 show the effect of simultaneous posi-
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tive shocks to r(t) and θ(t): The entire yield curve moves higher in response

to these shocks. Thus, the model captures the so-called level, slope, and cur-

vature effects that are commonly referred to in the term structure literature.

6 Concluding Remarks

I estimated a two-factor term structure model that fits the data very well

both across time and maturity. The analysis carried out in this paper differs

from other work in the affine term structure literature in two main ways.

First, in setting up the model, I proposed an economic interpretation to each

factor, as opposed to the usual practice of labeling them according to their

effects on the level, slope, and curvature of the yield curve. Second, I checked

explicitly whether the proposed interpretation of the factors is born out by

the data. It is. The first and second latent factors essentially correspond

to the current and expected stance of monetary policy, in that they move

nearly one-to-one with short-term LIBOR and medium-term eurodollar fu-

tures rates, respectively.

I illustrated how the model can be used to characterize movements in the

yield curve since the late 1980s. The model provides a plausible account of

how expectations about future monetary policy have helped shape the yield

curve over this period. I also used the model to quantify the effects of changes

in each factor on the yield curve, showing they can be directly mapped into

level, slope, and curvature effects.

In this paper, I provided an expectations-hypothesis interpretation of the

model, highlighting the fact that a common form of the hypothesis generally
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does not ensure the absence of arbitrage opportunities. I did not, however,

address a vast literature that focuses on empirical tests of the expectations

hypothesis—see, e.g., Dai and Singleton (2002) and references therein. I

consider this a topic for another paper. In future work, I also intend to

extend the model to allow for changing risk premiums, as the imprecise esti-

mates of the market prices of risks reported in this paper suggest a possible

misspecification of the time-invariant risk premiums.

Lastly, it is worth noting that, because the model discussed in this paper

was build upon an arbitrage-free framework, its uses go well beyond the

important topic of unveiling the relationship between monetary policy and

the yield curve. For instance, the model can be used in the pricing and

hedging of a large array of more complex instruments, such as bond options,

swaptions, mortgage-backed securities, and credit derivatives.
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Table 1 —Estimation Resultsa

Parameter Estimated value Standard error

k 0.4186 0.0039
α 0.0458 0.0015
β 0.0838 0.0588
η 0.0110 0.0003
v 0.0084 0.0002
λr 40.9367 38.951
λθ 0.1273 23.389
h1/2 0.1310 0.0086
h1 0.0001 0.0003
h2 0.1254 0.0123
h3 0.1122 0.0116
h5 0.0608 0.0029
h7 0.0001 0.0067
h10 0.0671 0.0021

aEstimation period: 1989 to 2001. The data are weekly (667 observations). The model was
estimated using zero-coupon yields derived from LIBOR and swap rates for the following maturities:
six-months, one, two, three, five, seven, and ten years. hi is the standard error of the residuals of
the measurement equation associated with a zero-coupon bond with i years to maturity.
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Table 2 —The Second Factor and Monetary Policy Expectationsa

θ(t) − θ(t − 1) = c0 + c1[F (t, Ti, Tj) − F (t − 1, Ti, Tj)] + w(t, Ti, Tj)

Futures Durbin
Maturity c0 c1 Watson R2

A: Regressions based on 1994–2001 sample

two years .00 (.08) 1.06 (24.6) 1.91 .78
three years .00 (.10) 1.22 (45.2) 2.08 .88
four years .00 (.35) 1.26 (54.3) 2.29 .90
five years .00 (.53) 1.26 (54.3) 2.28 .89
six years .00 (.53) 1.25 (49.8) 2.22 .87
seven years .00 (.44) 1.21 (42.01 2.11 .83
eight years .00 (.40) 1.16 (34.8) 1.93 .78
nine years .00 (.39) 1.09 (28.7) 1.83 .76

B: Regressions based on 1989–2001 sample

three years .00 (.93) 1.10 (36.0) 2.13 .78
four years .00 (.73) 1.18 (45.5) 2.27 .82
five years .00 (.35) 1.23 (51.1) 2.41 .86
six years .00 (.52) 1.25 (49.9) 2.27 .87

aThe data are weekly. Heteroskedasticity- and autocorrelation-consistent
t-statistics shown in parenthesis (Newey and West, 1987).

29



89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
1

2

3

4

5

6

7

8

9

10

11

P
er

ce
nt

0.5−year
  1−year
  2−year
  3−year
  5−year
  7−year
 10−year

Figure 1
Swap−implied zero−coupon yields

30



0 5 10
2

3

4

5

6

7

8
1993

0 5 10
2

3

4

5

6

7

8
1994

0 5 10
2

3

4

5

6

7

8
1995

0 5 10
2

3

4

5

6

7

8
1996

P
er

ce
nt

0 5 10
2

3

4

5

6

7

8
1997

0 5 10
2

3

4

5

6

7

8
1998

0 5 10
2

3

4

5

6

7

8
1999

0 5 10
2

3

4

5

6

7

8
2000

Maturity (years)
0 5 10

2

3

4

5

6

7

8
2001

Figure 2
Actual (solid) & Model−implied (dotted) Yield Curves

Annual Averages

31



1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Maturity (years)

P
er

ce
nt

Actual
Model−Implied

Figure 3
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Measurement Equation Residuals
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Level, Slope, and Curvature Effects
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