"Bottom-up" meets "top-down": Self-assembly to direct manipulation of nanostructures on length scales from atoms to microns

Sandia National Laboratories

Brian Swartzentruber, Gary Kellogg, Ezra Bussmann,

Franz Himpsel, University of Wisconsin - Madison, Joanna Mirecki-Millunchick, University of Michigan

Problem

State-of-the-art instrumentation is needed for fabrication and characterization of engineered nanostructures on surfaces.

Combining low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM) allows direct imaging of surface features on length scales from atoms to microns.

- · Find templates for 3D nanostructures
- . Investigate "bottom-up" generation of surface nanostructures

Novel nano-manipulator inside of a scanning electron microscope (SEM) provides "top-down" construction & characterization of unique nanostructures.

- Direct and precise control over placement of individual nanostructures
- Measurement of nanostructure electronic properties

Combining the development of a nanomanipulation framework with an expertise in customizable probes, in an environment where new nanostructures and materials are constantly being discovered, allows us an exciting opportunity for impact.

Results

Si adatoms on Au/Si(111) surface diffuse by a new defect-mediated process.

Si atoms atop the Au/Si(111) surface diffuse along the 1D surface rows.

Distinctive features of the statistics of motion – a nonbinomial jump distribution, a nonexponential wait-time distribution, and direction and time correlations imply 1D hopover diffusion.

Approach

"Self-assembly" and "directed-assembly" is used to form two-dimensional nanostructure patterns.

5µm LEEM image of selfassembled stripe pattern on heavily B-doped Si(001)

- Stripe patterns self-assemble on the Si(001) surface due to the presence of boron.
- Patterns form over very large distances (tens of microns).
- Patterns can be stabilized to room temperature to serve as templates for nanowire structures.

Approach

Nanomanipulator in an SEM allows electrical characterization and direct manipulation of nanostructures

Advantage: complete flexibility in hardware, software, and data acquisition

Impact

A successful program in nanoscience...

... relies on the innovative discovery of novel nanostructures and their characterization.

- Discover and understand surface self-assembly processes using LEEM and STM.
- Use the nanomanipulator to integrate small nanostructures with larger lithographically defined electronic or MEMS systems via direct manipulation for the creation of new functionality.
- Provide the necessary means to measure nanostructure properties.
- ... impacts the broader community.
 - The inclusion of our instruments in the CINT portfolio greatly broadens the scope for collaborative impact.
 - We offer new educational opportunities for students through UW-Madison, the University of Michigan, and the summer NINE program.

