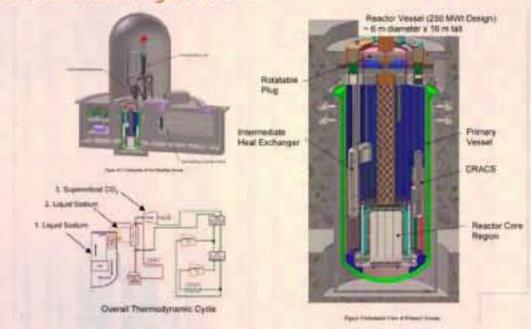
Foundational Development of an Advanced Burner Reactor Integrated Safety Code

Sandia National Laboratories

R. Schmidt, Pl, A. Lorber, L. Humphries with R. Hooper, W. Spots, R. Pryor, N. Belcourt, and K. Clarno (ORNL)

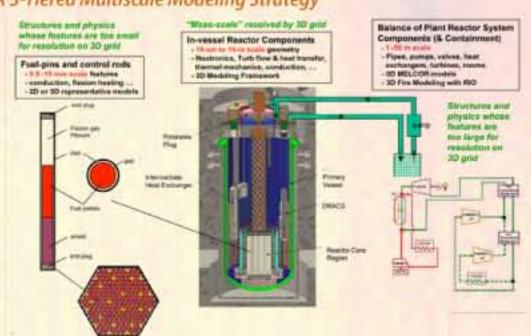

Objective: To develop and demonstrate the foundational aspects of a next-generation nuclear reactor safety code (BRISC) that leverages advanced computational technology.

Why: Legacy reactor safety codes are inadequate to meet future NRC & DOE needs. How to best apply advanced computational technologies to these types of problems is not clear.

HOW: Leverage the combined expertise and experience of staff in 1400, 1500, and 6700 (~2.5 FTEs for 3 years) to help create a new standard for nuclear reactor safety simulation.

Approach

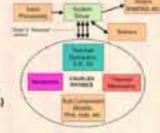
An ANL Preconceptual Design Suggests What an Advanced "Burner" Reactor might look like


Problem

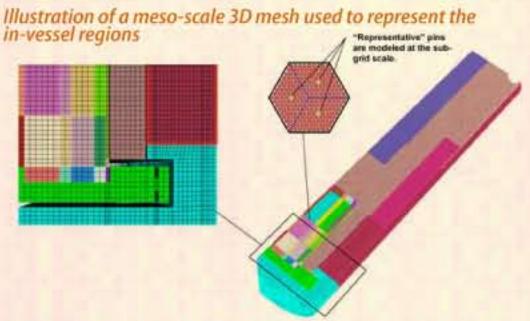
There are Four High-level Challenges

- · The "multiscale" issue
 - Length-scales
 - Time-scales
 - Energy groups
- The "coupled multiphysics" issue
 - Fluid flow and heat transfer
 - Neutronics
 - Thermal mechanics
- The "complex geometry" issue
 - Nuclear reactors are not simple devices
- The "uncertainty quantification" issue
 - "without UQ (with requires V&V), results are no better than speculation, and often worse"

Approach

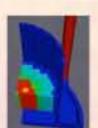

A 3-Tiered Multiscale Modeling Strategy

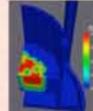
Two Approaches for Multiphysics Coupling

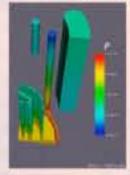

- Both approaches use different codes for different physics
 - CFD (RIO, MELCOR)
 - Neutronics (ORNL code)
 Thermal Mechanics (ARIA)
 - Fuel Pin heat transfer

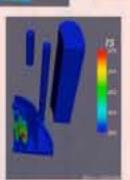
Que attimate.

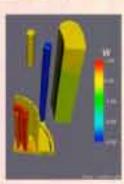
- Loose coupling in BRISC-α using RIO for overall time integration
- Strong Coupling being developed using JFNK, orchestrated by a Multiphysics Driver/Solver Code written in Python
 - Designed to accept multiple PhysicsModules (codes).
 - Primary job of PhysicsModules is to take a complete state vector and return a partial residual.
- * IFNK is a Newton method that employs Krylov based linear solves (eg. CC, CARES) without requiring formation of the facobian matrix.


Results




Illustrative Snapshots of 3D Model for Unprotected Loss of Flow Sequence





Significance

- A first-iteration version of our test-bed code, BRISC-α, was planned, written, evaluated/ tested and reviewed. We are now working on BRISC-β
- As a stepping stone to test individual components, a CFD-centric loose-coupling approach
 has been implemented and tested on a full-scale reactor problem (ULOF) to test and
 evaluate individual components and methods.
- A prototype Multiphysics coupler leveraging JFNK has been written in Python and demonstrated on simple problems. Challenges for "wrapping" external codes with the Multiphysics driver were uncovered.
- Capabilities of the Multiphysics driver are being expanded for use with full-scale reactor simulation codes, and is an important focus of current work.

