HPC Application Performance Analysis and Prediction

HPCCG

Prolego

10043

problem size

Fragments

Sandia National Laboratories

Michael A. Heroux (PI), S. Scott Collis (PM), H. Carter Edwards, Alan Williams

Problems

- The arrival of multi-core computer processors is a 'step-change' in computer technology, which requires different programming approaches.
- We need improved decision-making for selecting next-generation computer systems.
- How will we develop parallel application codes that effectively utilize multi-core processors?
 - Will "pure MPI" be good enough? (1 MPI process per core)
 - . Will MPI implementations do "the right thing" for multi-core?
 - Will explicit hybrid programming (MPI+threads) be necessary?

Approach

Mantevo Project

* GREEC AUGUR, GUESS, PREDICT, PRESAGE

- Multi-faceted project to develop benchmarks and simulators for studying application performance.
- Three types of packages:
 - Microapps: Small, self-contained programs.
 - HPCCG: unstructured implicit FEM/FVM.
 - pHPCCG: parameterized scalar/int, SpMV kernel.
 - phdMesh: explicit FEM, contact detection.
 - MD: Parameterized from simple to bio molecules.
 - Microdrivers: Wrappers around Trilinos packages.
 - Beam: Intrepid+FEI+Trilinos solvers.
 - Epetra Benchmark Tests: Core Epetra kernels.
 - Motif framework: Collection of "dwarves."
 - Prolego: Composable fragment collection to mimic real apps.
- Open Source: Fosters external collaboration.
- Staffing: Application & Library developers.

Node Architectures: Key Focus Area

Multicore:

- New HPC systems axis.
- First Mantevo analysis focus.

Quantitative results:

- Confirm, sharpen intuitive sense
- Sometimes counter intuition.

Sun Niagara2 Nagarad Chip Overview

Intel Clovertown

Multicore: First focus area for Mantevo micro apps/drivers.

phdMesh

- . Portable compact application with parallel heterogeneous dynamic unstructured mesh.
- Geometric proximity search is a performance constraining kernel for contact detection and multiphysics loose-coupling.
- Driver problem six 3D counter rotating "gears" with continually changing contact surfaces.

Beam: 3-D FEM "beam" of Hex-8 elements

- Mimics important computational characteristicsof implicit finite-element applications.
- Heavily exercises Trilinos (linear solvers andinfrastructure) and FEI (sparse matrix assembly).
- Shown scaling to 2 Billion equations on Red Storm
- . Beam test program is portable, parallel, and freely available

Prolego: compact performance-prediction application

- · Collection of "kernels" that exhibit the performance characteristics of a real application kernel.
- Application performance can be modeled by a calibrated collection of "basis kernels."
- Prolego infrastructure has been developed:
 - XML input file parsing (run-time selection and specification of kernels)
 - Some kernels are in place:
 - BLAS operations (vector axpy, dot operations, matrix-vector, matrix-matrix)
 - Sparse matrix-vector multiply
 - MPI communication operations
- · Near-term future work:
 - add more kernels representative of Sandia target applications
 - collect and compare predicted performance data to refine the concept of generating performance bases.

Library Efforts in Response to Node Architecture Trends

- Block Krylov Methods (Belos & Anasazi)
- Specialized sparse matrix data structures
- Templated Kernel Libraries (Tpetra & Tifpack)
- Shared memory node-only algorithms
- Kokkos Node class: Support for Intel TBB, OpenMP, Pthreads, ...
- MPI-only+MPI/PNAS

- Trilinos/Kokkos: Trilinos compute node package.
- Abstraction definition in progress: Will look a lot like TBB.

Results

A Few Programming Model Results

Significance of Accomplishments

- Micro-drivers and Compact Apps:
 - Provide new information source for system designers.
 - Provide new test-bed for experimental programming models.
 - Quantify the performance advantages of different programming models.
 - Establish dialogue between systems and applications staff.
- External visibility:
 - Enhances Sandia's voice in the external community.
 - Provides valuable insight from external experts.

