Enhanced Simulation for Homeland Security Training

Donna Djordjevich (P1), Patrick Xavier, Michael L. Bernard, Jonathan Whetzel, Michael Senglaub, Ben Wu, Jason Honda, David Ko, Edward Baker, Paul Nielan USC Viterbi School of Engineering - GamePipe Laboratory, Mike Zyda

Problem

- DHS and other government agencies charged with preparing for WMD attacks and other catastrophic events have turned to expert facilitated multi-person exercises using computer-based simulation to address preparedness training.
- Valuable approach that has its drawbacks:
 - Requires use of expert facilitators,
 - A significant number of trainees must be using the system at the same time,
 - Generally takes a day or longer to run through a threat scenario.
- These tool types are too scripted, time-consuming and specialized to be utilized by a broad user base.

Is there a complimentary approach that leverages advantages in computer gaming and cognitive modeling?

The "Experience Gap"

	Requirements	Experience	Benefit /
Full-Scale Exercise	All impacted personnel, Logistical equipment, Facilitators, Scenario writers	Scripted (low risk)	Capability demo and logistics test Practice with real equipment
Scripted Run-Thru	High-level decision-makers Facilitators, Scenario writers	Scripted (low risk)	Open discussion of key issues
Table-Top Exercise	High-level decision-makers, Facilitators, Scenario writers, Rules development	Group Decision ⇒ Bounded Consequence	Intellectual decision- making experience based on abstractions
Simulation- driven Exercise	High-level decision-makers, Logistical equipment Facilitators, Scenario writers, Simulation development	Group Decision -+ Consequence	Intellectual decision- making experience based on simulated data, Practice with real equipment
Game- based Training	Decision-makers, Game development	"My" Decision ⇒ Consequence	Visceral decision-making experience based on simulated data. Frequent use.

Research Design Choices

Game-based Training

Rationale

 Train decision-making skills only acquired through experience

Model based non-player characters

- Simulated group environments
- Multiple-perspective play

Short scenario runtime

- Learn in short time bursts available
- Run more scenarios in a given time

Adaptive training scenarios

Al-based "facilitation"

Research Objectives

Game-based Training

 Incorporate advanced Al techniques while maintaining training objectives

non-player characters Short

player characters by incorporating emotionally driven cognitive models Leverage SHERCA / SCREAM Investigate scenario time-compression

Adaptive

Model based

scenario rui

scenarios

options to determine appropriate Innovate on statically defined skill

levels by dynamically changing subcomponents of the scenario - Leverage Automated Decision Support

Research Accomplishments: Scenario and Platform

- Setting: Metropolitan area (geo-typical)
- . Threat: Chlorine release from a tanker truck
- . Player Character: Abstracted Incident Commander
- * Non-Player Characters:
 - Firefighters
 - Police officers
 - HazMat team
- Key Decisions:
 - Shelter-in-Place City Blocks
 - Evacuate City Blocks
 - Equip PPE
 - Manage Traffic Intersections
- · Assessment:
 - Number of lives saved

Research Accomplishments: Testing and Publication

- . Put game in front of responders early-on
 - Alameda County Public Health, HazMat (August 2007)
 - San Jose Police (September 2007)
 - South Bay Regional Public Safety Training Consortium (October 2007)
 - Campbell Police (October 2007)
- Papers and Presentations
 - Paper submitted; IEEE Symposium on Computational Intelligence and Games, (2008)
 - Presentation; Serious Games Summit / Game Developer's Conference, (2008). Submitted presentation for
 - Invited talk; Lockheed-Martin
 - Information Technology Trends Conference (2008)
 - Present paper; International Conference on Software Engineering and Knowledge Engineering (2008)

Significance

- Gaming is an important and emerging delivery path for knowledge about complex systems
- Current Programmatic Interest
 - DHS S&T: 2008 funded project extends gaming approach in analysis and training delivery
 - DHS OHA: Briefed Assistant Secretary Runge on this work and potential adoption in scenario planning. Proposal under consideration.
 - DOT: Two invited talks to Hazardous Materials Intermodal Meeting. Ongoing discussions.
 - DoD: Two proposals submitted to DTRA/JSTO

This research address key issues in using this delivery path for DHS / WMD training and analysis systems

