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Abstract

An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the
depth of the atmosphere (Θ) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from
the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager
(SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and
location) and the target data (Θ calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with
independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the
improvement ofΘ derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVRmethodology
reduces bothmean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time
scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South
America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Ocean is the main reservoir of heat and water on Earth. The
never-ending recycling process in which a small fraction of
water is continuously removed from the ocean as excess
evaporation over precipitation into the atmosphere, redistrib-
uted through atmospheric circulation, deposited as excess
precipitation over evaporation on land, and returned to the
ocean as river discharge, is critical to the existence of human life
and the variability of weather and climate.

The moisture transport integrated over the depth of the
atmosphere is

Q ¼ 1
g

Z ps

0
qudp ð1Þ

where g is the acceleration due to gravity, p is the pressure, ps
is the pressure at the surface, q and u are the specific humidity
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and wind vector at a certain level. Bold symbols represent
vector quantities. Θ links the water reservoir in the ocean to
those over ice and land, and the divergence of which is the
difference between evaporation (E) and precipitation (P) at the
ocean surface, assuming the change in atmospheric storage is
small.

In situ observations for the major components of the
hydrological cycle are sparse and intermittent, which severely
restrains our understanding of the water cycle. Efforts to retrieve
Θ from rawinsonde observations in various regions and time
periods can be traced back several decades ago (e.g., Starr &
White, 1955; Rasmusson, 1967; Rosen et al., 1979; Peixoto
et al., 1981; Bryan & Oort, 1984). In addition to in situ
measurements, numerical weather prediction (NWP) data
products have also been used to study atmospheric moisture
transport and hydrological budget (e.g., Roads et al., 1992;
Trenberth & Guillemot, 1995; Mo & Higgins, 1996; Cohen
et al., 2000).

Spacebased observations, with improved coverage and
resolution, should improve the estimation of Θ. As suggested
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by Liu (1993), Θ can be written as the product of an equivalent
velocity (ue) and W, where

W ¼ 1
g

Z ps

0
qdp ð2Þ

is the precipitable water, and ue=Θ /W, by definition, is the depth-
average velocity weighted by humidity. UsingW derived from the
Scanning Multichannel Microwave Radiometer by Liu (1987),
two methods to compute monthly mean Θ over tropical oceans
were demonstrated. Heta andMitsuta (1993) assumed ue equals to
the 850 mb wind vector produced by the numerical model that
assimilated cloud drift wind, while Liu (1993) related ue to surface
wind vectors derived from satellite data using a polynomial
regression. With the availability of surface equivalent neutral wind
vector (us) from QuikSCAT, Liu and Tang (2005) producedΘ for
tropical and subtropical oceans at twice daily resolution, by relating
ue to us through neural network (NN). Based on the same physical
rationale, Xie and Liu (2005) used nonparametric regression
(Hardle, 1990), which is essentially linear regression (LR), to
estimateΘ and showed that the annual mean of▿ ·Θ bears similar
large-scale patterns as that of E-P. Both terms show the major
climatological features over the tropical and subtropical oceans.

In this study, an improved method based on SVR (e.g., Vapnik,
1995, 1998; Schölkopf, 1997; Joachims, 1999; among many
others), will be presented. Themethod is described in Section 2 and
the training data in Section 3.Validation of the new estimate and the
comparison with the linear regression method and the data set
produced by Liu and Tang (2005) are shown in Section 4.1 and 4.2.
An earlier version of Θ derived by SVR was used to show
continentalwater balance in SouthAmerica byLiu et al. (2006); the
result is updated in Section 4.3. Discussion is given in Section 5.

2. Support vector regression

Support vector machines (SVMs) have several major applica-
tions, i.e., classification, regression, and time series prediction.
The SVMs for classification have been widely used, such as in
handwritten digital recognition, object recognition, speaker
identification, face detection in image, and text categorization.
The SVMs for regression are referred as support vector regression
(SVR) henceforth, which is a statistical tool to derive the
relationship between input and output. A comprehensive tutorial
of SVMs for pattern recognition can be found in Burges (1998)
and a tutorial of SVR can be found in Smola and Schölkopf
(2004). In the past decade, SVMs have become increasingly
popular due to their good generalization performance. Many
studies demonstrated that SVMs match or outperform other
machine learning methods (e. g., Blanz et al., 1996; Müller et al.,
1997; Drucker et al., 1997; Meyer et al., 2003).

The theoretical basis of SVMs originates from statistical
learning theory (Vapnik, 1995, 1998). SVMs essentially translate
a nonlinear problem to a linear one by mapping the input into a
high-dimensional feature space, and fit a linear model in the
feature space (Boser et al., 1992; Vapnik 1995; Cherkassky &
Mulier, 1998). The solution of the optimization is unique.
Through the introduction of kernel function, the mapping to the
feature space is implicit, and computations are performed directly
in the input space rather than in the feature space. The concept of
SVR is summarized below through mathematical expressions.

The description here is concise. Details can be referred to
Smola and Schölkopf (2004) and Tang and Mazzoni (2006).
The training samples are denoted as (xi,Θi){i=1,…,N}, where xi
is the input and Θi the output. A kernel mapping function Φ(xi)
transforms the input into the high-dimensional feature space.
Then a linear model is fitted to the data in the feature space by a
convex optimization problem:

minimize
1
2
jj w jj 2 þ C

X
i

ni þ n⁎i
� � ð3Þ

subject to
wdU xið Þ þ b½ � �QiVeþ ni
Qi � wdU xið Þ þ b½ �Veþ n⁎i
niz0; n⁎i z0

8<
: ð4Þ

where w is the weight vector in the feature space, ξi and ξi⁎ are
called slack variables, measuring deviation of the estimated
model output from the target data. The output is represented by
a linear function in the feature space: f(xi)=w ·Φ(xi)+b, where
b is a bias term determined during the SVR training. ɛ is the
precision parameter. The goal of SVR is to find a function f(xi)
with the deviation from the target Θi no larger than ɛ for all the
training data. In this sense, only those data points with
deviations larger than ɛ will contribute to the error function
(see support vectors defined in the next paragraph). Bigger ɛ
leads to fewer support vectors. C is the penalty factor, which
determines the trade off between the model complexity and the
degree to which deviations larger than ɛ are tolerated. If C is too
large (small), it may cause overfitting (underfitting).

Introducing the Lagrangian multipliers αi and αi⁎, Eqs. (3)
and (4) become

maximize :
� 1
2

X
i;j

a⁎i � ai
� �

a⁎j � aj
� �

U xið ÞdU xj
� �

�e
P

i a
⁎
i þ ai

� �þP
i Qi a⁎i � ai

� � ð5Þ

subject to
X
i;j

a⁎i � ai
� � ¼ 0 and ai; a

⁎
i a 0;C½ � ð6Þ

where the weight vector w is described as a linear combination
of the following training pattern

w ¼
X
i

a⁎i � ai
� �

U xið Þ ð7Þ

The inputs with nonzero αi⁎−αi are called support vectors,
which are those inputs whose model outputs f(xi) differ from the
target data Θi by at least ɛ. The number of support vectors is
usually much less than that of the training data samples, which
leads to a sparse representation.

By substituting Eq. (7), the output f(x) with an input x can be
expressed as

f xð Þ ¼ wdU xð Þ þ b ¼
X
i

a⁎i � ai
� �

U xið ÞdU xð Þ þ b ð8Þ



Fig. 1. Distribution of rawinsonde stations, superposed on the NCEP 2.5° grids. The blue triangles mark those rawinsonde stations for validation.
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The nonlinear transformation Φ(xi) is not required to be
explicit. The dot product of the two mapped vectors in Eqs. (5)
and (8) is calculated by a kernel function

K xi; xð Þ ¼ U xið ÞdU xð Þ ð9Þ

There are many types of kernel functions. In this study, the
commonly used radial basis function is adopted

K xi; xð Þ ¼ exp �g jj x� xi jj 2
h i

ð10Þ

where γ is a kernel parameter.
The accuracy of SVR depends on the selection of the

hyperparameters (C and ɛ) and the kernel parameter (γ). The
Fig. 2. Pressure of gravity center for humidity estimat
initial values of the parameters are empirically estimated from
the training data based on previous studies. Then only one
parameter varies until the optimized correlation between the
trained output and the target data is found. In fact, there is a range
of the optimized parameters where the correlation coefficient is
not sensitive. In this algorithm, C=10, ɛ=0.2, and γ=0.05.

3. Training data

The target data Θ are daily averages computed from both
rawinsonde observations and the National Center for Environ-
mental Prediction (NCEP) reanalysis. The NCEP data are
included in the training samples to represent a global coverage,
because the rawinsonde measurements are sparse over the ocean
ed from the NCEP reanalysis, averaged for 2002.



Table 1b
Correlation coefficient between Θ from rawinsonde and Θ from satellite data
using the three algorithms

ΔΘx, kg/m/s ΔΘy, kg/m/s

SVM 0.948 0.867
LR 0.826 0.739
NN 0.804 0.552

Table 1a
Mean and standard deviation of the difference between Θ from rawinsonde and
Θ from satellite data using the three algorithms

Mean ΔΘx,
kg/m/s

Mean ΔΘy,
kg/m/s

S.D. ΔΘx,
kg/m/s

S.D. ΔΘy,
kg/m/s

SVM −2.75 −8.58 69.83 60.16
LR −2.00 −4.15 125.22 80.25
NN −28.56 −19.00 135.19 97.54
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and with limited geographic coverage (Fig. 1). One year of data
in 2001 were used as training samples. 90 rawinsonde stations
were selected through data quality control, of which 74 stations
Fig. 3. Bin average of ΘSVR–ΘR, as a function of ΘR, for (a) zonal component, a
average as error bars. (c) and (d) are the same as (a) and (b), except forΘLR–ΘR. The
as (a) and (b), except for ΘNN–ΘR.
are within 40°S–40°N in the three ocean basins and 16 stations
are located at higher latitudes. Θ computed from the NCEP
reanalysis is evenly distributed at 2.5° by 2.5° grids between
75°S and 75°N every 10 days. Distribution of the rawinsonde
stations is shown in Fig. 1, on top of the NCEP grids. From
these data sets, a total of 26,547 data points were selected as the
training data set, with 10,000 points randomly selected from the
rawinsonde data between 40°S and 40°N, 6547 points poleward
of 40° latitude, and 10,000 points randomly selected from the
NCEP reanalysis.

The input data include daily averages of us measured by
QuikSCAT (Liu, 2002), u850 from the combined cloud drift
wind averaged between 800 mb and 900 mb derived from
MISR (Horvath & Davies, 2001) and geostationary satellites
(Hayden & Pursor, 1995), W from SSM/I (Wentz, 1997), the
day of the year, longitude and latitude. Time and longitude take
the forms of sine and cosine because of their periodicity. The
input parameters are interpolated to the locations of the target
data. The input parameters and the target data (x), except for
time and longitude, are normalized as: x'= (x− x̄ ) /σ, where x̄
and σ are the mean and standard deviation of x.
nd (b) meridional component. Standard deviation is superimposed on each bin
black curves represent number distributions based onΘR. (e) and (f) are the same
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The methodologies of Liu (1993) and Heta and Mitsuta
(1993), as discussed in Section 1, are combined by adding u850
to us as an input parameter. Although humidity peaks near the
surface and decreases rapidly with height, the gravity center of
the humidity profile is lifted up to the top of the boundary layer
over the ascending areas and suppressed to a lower level over
the descending regions (Fig. 2). In addition, the dominant mode
of vertical humidity variability was found to peak at the top of
the boundary layer (Liu et al., 1991), which also suggests the
importance of winds at this level in addition to the surface
winds.

4. Analysis

Four years, 2001–2004, ofΘSVR were produced using SVR.
The same training data were used to produce ΘLR, using
multivariate linear regression. They are compared with ΘNN,
produced and released to the science community by Liu and
Tang (2005), using neural network based on different training
data. We did not attempt to optimize the ΘNN algorithm in this
study. The daily values are first evaluated in Section 4.1 with
rawinsonde data in 2002 (independent of the training data), as
validation. The distribution of rawinsonde is limited, and
monthly mean global distributions were compared with ΘNCEP

computed from the NCEP reanalysis in Section 4.2.
Fig. 4. Comparison of dailyΘ derived from satellite data using SVR (green curve) and
(b) meridional components at Seychelles International Airport (55.53°E, 4.67°S). A
4.1. Comparison with daily rawinsonde data

There are 28,408 rawinsonde observations (ΘR) collocated
with the satellite-based data. Table 1 shows that the mean
difference betweenΘR and all the model estimates (ΘSVR,ΘLR

and ΘNN) are small. The standard deviation of the difference is
smaller for ΘSVR than those for ΘLR andΘNN. As indicated by
the correlation coefficients between model estimates and the
rawinsonde observations,ΘSVR is better than the other two data
sets. The bin-averages in Fig. 3 show that all three satellite-
based data sets overestimate compared to observations at low
amplitudes and underestimate at high amplitudes, as expected.
The numbers of data samples at the two ends are small, as
indicated by the ΘR distributions in Fig. 3c and d. The mean
difference and standard deviation from the rawinsondes are
much lower forΘSVR among the three data sets, particularly for
the zonal component.

Performance of each method is also evaluated by time
series comparison at individual rawinsonde stations.ΘSVR has
the best performance across the broad range of time scales. For
better figure clarity, ΘLR is not shown. Comparisons at two
stations, representing different wind regimes, are shown as
examples (Figs. 4 and 5). ΘSVR captures not only the seasonal
variation but also the high-frequency variability of ΘR, with
amplitude in good agreement with observations. For instance,
NN (black curve) withΘ derived from rawinsonde (red curve) for (a) zonal and
3-day running mean is applied.



Fig. 6. RMS differences of monthlyΘ derived from satellite data using SVR and from NCEP reanalysis for (a) zonal and (b) meridional components. (c) and (d) are the
same as (a) and (b), except for LR. (e) and (f) are the same as (a) and (b), except for NN.

Fig. 5. Same as Fig. 4, except for the rawinsonde station at Jan Mayen, Norway (8.67°W, 70.93°N).
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the time series at Seychelles International Airport (Fig. 4)
demonstrates the reversal of the Indian summer and winter
monsoon. The station at high latitude (Fig. 5 for Jan Mayen,
Norway) does not show any clear seasonal cycle but has
higher frequency variations. ΘLR (not shown in the figures)
and ΘNN often lack sufficient skill in capturing the high and
low extreme values, which generally produces a narrower
range. ΘLR is particularly poor in high latitude compared with
the rawinsonde observations. ΘNN is sometimes deficient in
high-frequency variability, such as the meridional component
during January–April 2002 at Seychelles International Airport
(Fig. 4). The meridional component of ΘNN shows unrealistic
amplitudes in April and May in 2002 at Jan Mayen, Norway
(Fig. 5).

4.2. Comparison with monthly NWP estimates

Among the root-mean-square (RMS) differences between
the three data sets derived from satellite data and from NCEP
reanalysis, the SVR method gives the lowest values in general
(Fig. 6). Relatively large RMS in the zonal component of
ΘSVR is found in the Bay of Bengal and South China Sea,
where strong seasonal variations of the monsoon circulation
dominate. ΘLR has much larger RMS differences than the
other two data sets, especially for the zonal component in the
tropics and the southern ocean. Fig. 7 shows that the temporal
variation of ΘNCEP has significant correlation with ΘSVR over
Fig. 7. Correlation coefficients between monthly Θ derived from satellite data using
(c) and (d) are the same as (a) and (b), except for LR. (e) and (f) are the same as (a
global oceans (with correlation coefficient of over 0.9 in most
areas) for the 4-year monthly mean time series. The zonal
components of ΘLR and ΘNN show low correlation with ΘNCEP

to the west of Japan and to the east along the Kuroshio
extension. In this region, the time series in Fig. 8 shows that the
low frequency variation of ΘSVR agrees with ΘR marginally
better than ΘNCEP, while ΘLR and ΘNN fail to capture the
peaks of westerly in the summers of 2003 and 2004. The
meridional component of ΘLR and ΘNN does not agree with
ΘNCEP very well in the temporal variability in the eastern
tropical Atlantic off the African coast and the eastern Pacific off
Baja California and off Peru (Fig. 7d, f). The zonal component
of ΘLR also shows low correlation with ΘNCEP in the eastern
Pacific and Atlantic, south of the equator, and Gulf Stream. The
reason is that ΘLR poorly predicts the seasonal cycle in these
regions; it fails to capture the strong easterlies during the boreal
spring in the eastern Pacific and Atlantic, and the strong
westerlies during the boreal summer in the Gulf Stream. There
is no rawinsonde station in these regions, except in the Gulf
Stream. The zonal component of Θ for the three satellite-based
data sets and NCEP reanalysis all capture the seasonal cycle of
the rawinsonde observations, but those derived from LR and
NN have lower amplitudes. For the meridional components
south of Baja California and west of Cape Verde of Africa, all
data sets are poor compared to observations, because the
amplitudes and the annual cycles are weak, as demonstrated in
Fig. 9.
SVR and from NCEP reanalysis for (a) zonal and (b) meridional components.
) and (b), except for NN.



Fig. 8. Comparison of monthly Θ derived from satellite data using SVR (green curve), LR (dashed black curve) and NN (solid black curve) with Θ derived from
rawinsonde (red curve) and the NCEP reanalysis (orange curve) for (a) zonal and (b) meridional components at Hachijojima (139.78°E, 33.12°N).
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4.3. Water balance over South America

The best validation of the remote sensing technique is,
perhaps, through application. Liu et al. (2006) showed the
approximate balance of the mass change rate (∂M /∂t) measured
by Gravity Recovery and Climate Experiment (GRACE), for
the continent of South America, with the normal component of
Θ integrated across the entire coast lines of South America (∫Θ)
Fig. 9. Same as Fig. 8, except for rawinsonde station a
minus the climatologic river runoff from the continent (R), in
agreement with conservation principle.

AM
At

¼
Z

H� R ð11Þ

The Θ used by Liu et al. (2006) is derived by the same SVR
technique, except without the use of u850 as input parameter.
t Sal Island, Amilcar Cabral (22.95°W, 16.73°N).



Fig. 10. Annual variation of hydrologic parameters over South America: mass change rate ∂M/∂t (red line), total moisture transport across coastlines into the continent
∫Θ estimated from satellite data using SVR (solid green line), ∫Θ−R (dashed green line, where R is climatological river discharge), ∫Θ estimated from the earlier
version of SVR without u850 (solid black line), and the respective ∫Θ−R (dashed black line).
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Using both ΘLR and ΘNN result in too much moisture inflow
into the continent to balance ∂M /∂t and R. The addition of u850
as input parameter slightly improve the balance as shown in
Fig. 10.

5. Discussion

In this study, an improved approach using SVR to estimate
Θ over the global ocean from combined satellite observations,
including us measured by QuikSCAT, u850 derived from MISR
and geostationary satellites, and W from SSM/I, is presented.
The statistical model is constructed through SVR by mapping
the input parameters, which are us, u850,W, time and location, to
the target data calculated from rawinsondes and the NCEP
reanalysis. The results are validated against independent
rawinsonde observations and compared with data sets produced
based on LR and NN. The SVR algorithm reduces both the
mean bias and the standard deviation from the observations,
outperforming the other two data sets. It captures not only the
seasonal changes but also the synoptic and intraseasonal var-
iations of the observations; the agreement is in both phase and
amplitude, and in both low and high latitude oceans. A common
deficiency in the previous data sets is their inability to produce
the extreme values, and therefore they do not have the full
spectrum of variability in the observations.

The monthly meanΘ derived from the three methods is also
compared with the NCEP reanalysis. Although NWP reanalysis
may have considerable uncertainties in simulating water cycle,
they are often used to estimate moisture transport. OverallΘSVR

correlates better with the NCEP reanalysis than ΘLR and ΘNN

in seasonal variations. It also has the smallest RMS differences
from the reanalysis data. The RMS bias of ΘLR in the zonal
component is much larger than the other data sets. ΘLR also
shows large differences from the NCEP reanalysis for the zonal
component over the Kuroshio and Gulf Stream extensions, and
in the eastern Pacific and Atlantic south of the equator.ΘNN has
larger correlation discrepancies from the NCEP reanalysis in the
meridional component. All three methods show poor correlation
for the meridional components south of Baja California and
west of Cape Verde of Africa, when the amplitude is weak and
without clear annual cycles.

The advantage of SVR method in the retrieval of Θ from
spacebased observations is clearly demonstrated. The rationale
of the better performance by SVMs is discussed in many studies
(e.g., Cortes & Vapnik, 1995; Gretton et al., 2001). It is briefly
summarized here. First, the approach is relatively easy to use,
because there are only a few parameters to adjust. The sparse
setting of SVR, with the data training only based on the support
vectors, avoids overfitting of the training data. By using the
standard quadratic programming algorithms (Vapnik, 1995),
only one global optimum is achieved. Mapping inputs into the
high-dimensional feature space and introducing kernel function
can solve the nonlinear relationship between inputs and outputs
by turning a nonlinear regression to a linear fitting.

The present algorithm includes u850 as an additional input
parameter, which marginally improves the water balance over
South America, compared with an earlier algorithm using SVR.
Because W can be measured by spacebased microwave
radiometers, retrieval of Θ essentially becomes the problem
of estimating ue. Directly mapping us to ue only uses the
vertically coherent part of wind profile. It is not sufficient over
those areas when the surface wind is decoupled from the upper
level and adding winds above the boundary layer should
improve the methodology. The impact of adding the upper level
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wind will be evaluated comprehensively over the global ocean,
and optimization of the SVR algorithm will be further
investigated.
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