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ABSTRACT

The mechanism by which a vertically sheared zonal flow affects large-scale, low-frequency equatorial waves
is investigated with two-level equatorial #-plane and spherical coordinates models.

Vertical shears couple baroclinic and barotropic components of equatorial wave motion, affecting significantly
the Rossby wave and westward propagating Yanai wave but not the Kelvin wave. This difference results from
the fact that the barotropic component is a modified Rossby mode and can be resonantly excited only by westward
propagating internal waves. The barotropic components emanate poleward into the extratropics with a pro-
nounced amplitude, while the baroclinic components remain equatorially trapped. A westerly vertical shear
favors the trapping of Rossby and Yanai waves in the upper troposphere, whereas an easterly shear tends to
confine them in the lower troposphere. As such, their westward propagation is slowed down by both westerly
and easterly shears. When the strength of the vertical shear varies with latitude, both the vertical modes are
locally enhanced in the latitudes of strong shear.

The theory suggests that the vertical shear plays an essential role in emanation of heating-induced internal
equatorial Rossby waves into the extratropics with a transformed barotropic structure. It may also be partially
responsible for trapping perturbation kinetic energy in the upper-troposphere westerly duct and the lower-tro-
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posphere monsoon trough.

1. Introduction

Low-frequency tropical atmospheric waves induced
by condensational heating usually penetrate vertically
the entire troposphere where the background flow often
has prominent vertical and meridional shears. The latter
can potentially alter wave structure, propagation, and
development. Study of the influences of mean flows on
equatorial waves has been one of the fundamental prob-
lems in the tropical dynamics.

The earliest studies of mean flow effects on waves
were stimulated by a need to explain the stratospheric
quasi-biennial oscillation of zonal wind. The focus was
on the interaction of vertically propagating internal
waves with the mean flow. Lindzen (1970) demon-
strated that both the equatorial Kelvin and Yanai
(Yanai and Mauryama 1966) waves propagating in a
vertically sheared zonal flow are absorbed shortly be-
fore reaching the critical levels where their frequencies
are Doppler shifted to zero. Holton (1970) found that
when Kelvin waves pass through a westerly vertical
shear without a critical layer both vertical and latitu-
dinal scales decrease and upward momentum transport
becomes concentrated toward the equator. Boyd
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(1978a) conducted a comprehensive analysis of the ef-
fects of meridional shear of a zonal flow on vertically
propagating waves of small vertical wavelength. Ana-
lytical solutions were obtained using a one-dimensional
model in latitude. These solutions were further applied
to a realistic tropical atmosphere (Boyd 1978b). The
Kelvin waves were found to be negligibly influenced
by even the strongest shears, whereas a shear with an
observed strength may strikingly change vertical wave-
lengths of synoptic-scale Rossby waves and Yanai
wave.

Another impetus for the study of mean flow effects
stems from a need to interpret the global atmospheric
response to tropical heating. The observed teleconnec-
tion patterns (e.g., Wallace and Gutzler 1981; Horel
and Wallace 1981) were suggested to result from trans-
mission of tropical perturbations, in the form of a
Rossby wave train, from tropical heat source into ex-
tratropics (Hoskins and Karoly 1981; Webster 1981).
Webster (1972) showed that the response has a baro-
clinic structure in the vicinity of the heat source but
becomes equivalent barotropic away from the forcing
region. Without vertical variation of the mean state,
however, the thermally forced barotropic mode has a
rather small amplitude (Lim and Chang 1983). Kasa-
hara and Silva Dias’s (1986) numerical experiments
manifested that the vertical shear of mean flows permits
a coupling of external and internal modes so that a sig-
nificant barotropic response is generated. Lim and
Chang (1986) examined the impacts of vertical shear,
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differential damping, and planetary boundary layer on
the characteristics of the atmospheric response to spec-
ified internal heating. All three factors were found to
enable the transfer of energy from internal mode to
external mode motion. Their analysis, however, was
based on an f-plane model in which the motion is as-
sumed to be meridionally invariant so that neither equa-
torial waves nor midlatitude Rossby waves exist. These
simplifications preclude the model’s applicability to
tropical wave motions. It remains to be revealed why
equatorial tropospheric waves that have a predominant
baroclinic structure transform themselves into a baro-
tropic structure when emanating toward midlatitudes.
There are other wave phenomena that involve effects
of mean flows. The maximum perturbation kinetic en-
ergy in the equatorial upper troposphere tends to co-
incide with-mean westerlies (Murakami and Unninayer
1977; Arkin and Webster 1985), whereas the convec-
tive maxima tend to concur with easterlies (Murakami
and Wang 1993). This implies that the energy sources
for the transient disturbances in the equatorial westerly
duct are remote. Webster and Holton (1982) extended
Charney’s (1969) theory of equatorward propagation
of extratropical rotational waves and suggested that
equatorial westerlies may act as a duct for penetration
of midiatitude rotational mode into the Tropics, causing
regional maxima in perturbation kinetic energy. An al-
ternative explanation proposed by Webster and Chang
(1988) was that the longitudinal convergence of the
equatorial zonal flow shrinks the zonal wavelength of
the Rossby waves so that their phase speed and group
velocity vanish locally, producing an energy conver-
gence to the east of the equatorial westerlies (the wave
energy accumulation is thus not in phase with westerly
maximum) . Hoskins and Jin (1991 ) showed that large-
scale equatorial Rossby waves were weakly dispersive
and tend to move with a Doppler-shifted phase speed
that allows it to ‘‘accumulate’’ to the east of an equa-
torial maximum of 10 m s ' or more. While the above
investigations highlighted the influences of the Dopp-
ler-shift latitudinal shear and longitudinal stretch de-

formation of a basic flow, the possible impact of the.

vertical shear was ruled out. The present study will ex-
plore whether vertical variations of a basic flow con-
tribute to concentration of wave kinetic energy in the
region of an upper-tropospheric westerly duct.

The major purpose of the current study is to assess
the impacts of a vertically sheared zonal flow on low-
frequency, gravest-mode equatorial waves and to illu-
minate the mechanisms by which vertical shears
change wave properties. The roles of a meridional shear
in modification of wave structure and dispersivity are
also reexamined because the formulation of the theo-
retical models and the results are somewhat inconsis-
tent in the previous studies (e.g., Wilson and Mak
1984; Zhang and Webster 1989). The perception
gained from the present analysis is expected to shed
light on some intriguing features of the tropical general
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circulation, such as the emanation of internal waves
from equatorial to extratropical regions and the pertur-
bation energy accumulation in the upper-tropospheric
westerly duct and the lower-tropospheric monsoon
troughs.

Part I of the current paper concentrates on propa-
gation characteristics of vertically standing equatorial
waves in a symmetric and dynamically stable basic
flow. Part Il examines the case in which the basic equa-
torial flow itself is dynamically unstable and examines
the impacts of vertical shear on the instability arising
from the interaction of equatorial waves with conden-
sational heating.

To focus on basic mechanisms by which a mean state
affects gravest-mode equatorial waves, we adopt pro-
totype two-level models on an equatorial S plane and
in spherical coordinates. The two-level model is one of
the most powerful tools for understanding the dynamics
of vertically standing modes with a gravest vertical
structure. Its relevance to tropical motion lies in the fact
that large-scale tropical waves are generated and main-
tained by condensational heating that stimulates pri-
marily the gravest tropospheric baroclinic mode. The
equatorial B-plane model is an extension of Matsuno’s
(1966) model by including a vertically and meridio-
nally varying zonal flow. Its simplicity permits intuitive
physical interpretation of the results. To check the va-
lidity of the equatorial 3-plane approximation, we per-
formed parallel computations using a spherical coor-
dinate model. We demonstrate the qualitative validity
of the equatorial 3-plane model in study of equatorial
wave emanation and its limitations.

2. The model

Consider perturbation motions in a basic tropical
zonal flow that is geostrophic and varies with latitude
and height. Equations governing inviscid, hydrostatic,
perturbation motions on an equatorial # plane and in
pressure (p) coordinates are

Rl LTRSS
%+%+g—:=o, (2.1¢)
2(3)<8(3) o
(2.1d)

where u, v, w, and ¢ represent perturbation zonal and
meridional winds, vertical p velocity and geopotential
height, respectively; S is the static stability parameter
for the dry atmosphere; Q' is the perturbation heating
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rate; and R and C, are the gas constant and specific heat
at constant pressure.

Adopting a two-level model and writing momentum
and continuity equations (2.1a~c) at the middle levels
of the upper and lower troposphere, p, and p,, and the
thermodynamic equation (2.1d) at the level p,
= 0.5(p, + p,) yield

Ou 7z 0w Ok
ot tox  ay ' ap
8
~ Byv = — —5@, (2.22)
2
Qo - O )
£y + i, O + Byu, ay (2.2b)
ou, vy, wy
— + — —_ 5
o oy a0 (2.2¢)
6142 _ _(9_142 v Q@ + 172 —u
ot ax ey TYPTA
8
—pm=-22 o)
X
v, - O __ 9
o + it, P + Byu, = By’ (2.2e)
8“2 6v2 W _
o o =0 (2.2f)

a ad
‘a_t(¢2 =) + ity — (b2 — ) — Byv, (i — i)

ox
+ ApS,wa(l = 1) =0, (2.2g)

where subscripts 1, 2, and m denote levels p,, p,, and
D, Tespectively, and Ap is one-half the pressure depth
of the troposphere. In derivation of (2.2a-g), the ver-
tical pressure velocity at the upper and lower bound-
aries were assumed to vanish, and the heating rate at
level p,, was parameterized as

RQ.,
Cme

which describes a precipitational heating rate that acts
to reduce static stability of the atmosphere from S,, to
(1 = I)S,,. The present study is concerned with a stable
stratification only, that is, the nondimensional heating
coefficient I < 1. In this paper, we assume [ = Q; that
is, the wave motion is adiabatic. For convenience, all
dependent variables are partitioned into a barotropic
and a baroclinic component, namely,

= IS,wn, (2.3)

A, =%(A, +4;), A_=5(A —A4), (24)

N =

where A represents horizontal velocities or geopotential
and A, and A_ are referred to as a barotropic and baro-
clinic mode, respectively. They describe, respectively,
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vertical mean wind and thermal wind motion. For the
baroclinic mode, the geopotential thickness and ther-
mal wind can also be interpreted as upper-tropospheric
perturbation geopotential and wind; the corresponding
lower-tropospheric geopotential and wind are precisely
180° out of phase with their corresponding upper-tro-
pospheric counterparts.

The governing equations were then written in terms
of two vertical (barotropic and baroclinic) modes and
were nondimensionalized using the internal gravity
wave speed C,, = (0.5Ap2S,)""? as a velocity scale,
the Rossby radius of deformation L = (C,/8)"* as a
horizontal length scale, L/C,, as a timescale, C? as a
geopotential scale, and 2Ap(8C,,)""? as a vertical p-
velocity scale. In the present study, we assume C,
= 51 m s~'. The following nondimensional equations
were finally obtained after eliminating w,,:

Du. (& ¢
Dt (y u_v)v+ + Ox
du_  O(Up)
= - -T2 (25
2Ur 5 oy (2.5a)
Dv, 0¢. _ a__u:
D Pyt = mUrgs, (25h)
u, Ov,
. By =0, (2.5¢)
Du_ 0p- Ou. _(9&
Dt_(y_uy)v_+8x_ UTax +6y,
(2.5d)
Du_ op_ v,
ity t = Urass (2.5¢)
D¢_  Bu. Ov_
Dt ox " oy = yv, U, (2.5f)
where
D 0 -0
oot Var
0= (@ + @),
and

For the convenience of theoretical analysis, both the
vertical mean and vertical shear are decomposed as
sums of a constant and a y-dependent function. In a
linear model, the effects of each component can be
identified through choice of specific mean zonal flows.
In the subsequent three sections, we will investigate
three specific basic flows to elucidate how a pure me-
ridional shear, a constant vertical shear, and a com-
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bined vertical—meridional shear affect equatorial wave
dynamics.

3. Change of meridional structure and dispersivity
by meridional shears

Without vertical shears, the barotropic and baroclinic
modes are decoupled. The barotropic mode evolves,
without interaction with the baroclinic mode, in the
form of a nondivergent Rossby wave in an effective 8
(i.e., 8 — U,,) plane, whose behavior is well known.
The baroclinic mode, on the other hand, satisfies the
following modified shallow water equations:

Du_ — 0

Dr y-U)v- = o (3.1a)
Du_ b_
Dr + yu By s (3.1b)
D¢ Ou.  Ov_
Dr + Ee + By =0. (3.1¢)

From the above equations, the meridional structure
of a zonally propagating baroclinic mode

(u_, v, ¢-) =R(U,V, @)™ (32)

is governed by a set of ordinary differential equations
with variable coefficients. By eliminating U and &, one
ends up with a single equation for V:

1 [~ 20,
Vyy + ;7 [2Uy - 1—:-‘2‘,—2]‘/),

1- U, N 20,(y — U,)

c’ 1—¢"

+ [—k2(1 —c'?) -

-y(y— Uy)]v =0, (33)

where ¢’ =
speed.

At the meridional boundaries y = y, and —y,, the
perturbation meridional wind is required to vanish in
consistency with the equatorial-trapped nature of the
low meridional index modes. This is somewhat un-
realistic. However, a parallel study with a spherical co-
ordinate model (see the appendix) shows that when the
half-width of the equatorial $S-plane channel is about
four times the Rossby radius of deformation the gravest
meridional mode—XKelvin wave, Yanai wave, and n
= 1 Rossby wave—are not appreciably affected by the
finiteness of the boundaries, consistent with our pre-
vious experience (Wang and Rui 1990). Since the
present study deals with the gravest equatorial waves,
the proposed boundary conditions are adequate.

Equation (3.3), along with the meridional boundary
conditions, consists of an eigenvalue problem whose
solution can be obtained by a shooting method (Langer

olk — U is the Doppler-shifted phase
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1960) or matrix inversion. To check the validity of the
numerical computation, we use both methods.

To simulate the observed meridional variation of the
mean zonal wind (Fig. 1a), two idealized profiles are
examined (Fig. 1b): one has easterlies near the equator
that will be referred to as the equatorial easterly (EE)
profile, and the other has westerlies near the equator
(EW profile hereafter). These profiles are similar to
those used by Zhang and Webster (1989).

The presence of meridionally sheared flow EE and
EW makes the baroclinic Rossby mode (n = 1) more
tightly trapped near the equator compared with that in
a resting atmosphere (Fig. 2). The trapping is stronger
in mean flow EE due to the larger meridional shear
between y = 2 and y = —2. The direction of the mean
flow does not affect the trapping. The tight equatorial

(a) Annual mean at 200mb
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FiG. 1. (a) Annual-mean zonal flows at 200 hPa along 120°E (solid
line) and 120°W (dashed line). The data are derived from the Euro-
pean Centre for Medium-Range Weather Forecasts global analyses
for the period 1979-85. (b) Idealized mean zonal flows with merid-
ional shear. The profile that includes equatorial easterlies is marked
as EE (solid line), and the profile that has equatorial westerlies as
EW (dashed line).
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FiG. 2. Meridional structures of the Rossby wave (n = 1) with a
wavelength of 5000 km, in the presence of meridionally sheared flow
EE (dashed) and EW (dotted). Solid curves are for waves in a resting
atmosphere. Curves in the three panels represent the amplitude of
baroclinic (a) geopotential, (b) zonal wind, and (c) meridional wind.
The profiles have been normalized by their corresponding maxima,
but the zonal wind and the meridional wind have the same scale.

trapping gives rise to a large latitudinal gradient in geo-
potential thickness, and as a result, the zonal thermal
wind is enhanced near the equator. The impact of me-
ridional shear on equatorial trapping is more significant
for short waves. For planetary-scale waves (zonal
wave-number 1-4), modifications are negligible (fig-
ure not shown). The result here is consistent with that
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of Wilson and Mak (1984) but qualitatively different
from that of Zhang and Webster (1989). The differ-
ence originates from the fact that the present model
deals with the gravest baroclinic mode, which is pre-
sumably excited by internal heating, whereas Zhang
and Webster’s model describes an external mode for
which their model’s free-surface sloping associated
with the mean zonal flow affected perturbation pres-
sure, resulting in a weaker equatorial trapping and a
dependence of trapping on the direction of mean flow.

In zonal flow EE, the westward phase speed of the
baroclinic Rossby mode is faster than that without
mean flows, whereas in zonal flow EW, the Rossby
waves shorter than 10 000 km move eastward, while
longer waves move westward (Fig. 3a). This is pri-
marily due to the Doppler-shift effect of the basic flow.
In the vicinity of the latitude where geopotential thick-
ness reaches maximum amplitude, the basic zonal flow
speed appears to be indicative of the strength of the
Doppler-shift effects. From Fig. 2, for a Rossby wave
with wavelength of 5000 km, the maximum amplitude
of geopotential occurs at nondimensional y = 1 and 0.7
for EW and EE, respectively. The corresponding
speeds at these latitudes are 13 m s ' for EW and -3
ms~' for EE (Fig. 1b). Obviously, these values are
consistent with the magnitude of the Doppler-shified
speed for wavelength 5000 km (or k = 1.88) (Fig. 3a).

Because the degree of equatorial trapping increases
with decreasing wavelength, one anticipates a more
significant modification of phase speed for short waves
by the Doppler-shifted effects in flow EE, as indicated
in Fig. 3a. It follows that the wave dispersivity and
group speed would be modified accordingly, as shown
in Figs. 3b and 3c. The Doppler-shift effect has a major
impact on the group velocity. These results are consis-
tent with the conclusion derived from numerical mod-
eling of the equatorial Rossby waves by Hoskins and
Jin (1991).

The meridional shear also reinforces equatorial trap-
ping for the baroclinic Kelvin mode (figure not
shown). In addition, the degree of equatorial trapping
increases with decreasing wavelength: shori waves tend
to be more tightly trapped to the equator than long
waves. For the given two mean flow profiles, which
have a minimum at the equator, the shorter waves are
then expected to have a smaller eastward Doppler-
shifted speed. This implies that shorter waves may have
a slower eastward propagation speed. The compuied
Doppler-shifted phase speed for Kelvin waves in zonal
flow EE and EW indeed shows an increase of phase
speed with wavelength as we envisioned (figure not
shown). Therefore, nondispersive equatorial Kelvin
waves becomes weakly dispersive due to the modifi-
cation of their meridional structure and nonuniform
zonal advection by meridionally sheared flows.

In addition to the latitude-dependent zonal advec-
tion, the meridional shear affects wave properties by
changing environmental vorticity gradient. The change
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Fic. 3. Nondimensional (a) phase speed, (b) eigenfrequency, and
(c) group speed of Rossby wave (n = 1) as a function of nondimen-
sional zonal wavenumber k in meridionally sheared flow EE (dashed)
and EW (dotted), compared to those in a resting atmosphere (solid).
A wavelength of 9400 km corresponds to k = 1.0.

of the meridional wave structure depends on the sign
and strength of the mean flow vorticity gradient. To
demonstrate this dependence, additional computations
were performed in which the zonal flows have signs
opposite of those shown in Fig. 1 (referred to as case
—EE and —EW, respectively). Of interest is that the
Kelvin waves in a reversed zonal flow become less
- trapped (Fig. 4). This indicates that waves are more
trapped to the equator if U,, > 0 (case EE and EW),
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whereas they are less trapped when U,, < 0 (case —EE
and —~EW) in the vicinity of the equator. The Coriolis
force associated with zonal wind is no longer in perfect
geostrophic balance with pressure gradient force due to
modification of the § parameter by relative vorticity
gradient (—U,,) of the zonal flow. Consequently, the
motion associated with Kelvin waves is no longer
purely zonal: ageostrophic, meridional winds appear
off the equator. The ratio of maximum meridional wind
to maximum zonal wind is approximately one-half in
the —EE case and one-sixth in the —EW case.

4. Excitation of barotropic mode and change of
vertical structure by vertical shear

Upon knowing the effect of the pure meridional
shear, we consider a basic zonal flow without meridi-
onal variation. Assume the vertical shear of the zonal
flow is a constant. In this case, the barotropic and baro-
clinic modes are coupled by the vertical shear [Eqgs.
(2.5a—f)]. Since the barotropic mode is nondivergent
[Eq. (2.5¢)], it is convenient to introduce a barotropic
streamfunction ¢, so that

Kelvin wave WL=5,000 km

baroclinic geopotential

0.6 —
0.4}
o2t
o= . \ e
-0.2 v
-0.4} N
-0.6

4 -2 0 2 - 4
nondimensional y

baroclinic meridional wind

FiG. 4. (a) As in Fig. 2a and (b) as in Fig. 2c except for equatorial
Kelvin waves in meridionally sheared flow —EE and —EW. The
zonal flows in profiles —~EE and —EW have opposite signs of profiles
EE and EW (Fig. 1), respectively.
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o A
=T, Uy = 4.1
u oy VT ox (4.1)
The barotropic and baroclinic modes then satisfy
D _, o 9* 0 0%u._
— + — = U —_— . —— _ -
Di v ¥ o ’”(ay2 )’ 2Urgy
(4.2a)
Du_ ad_ Ou,
— -yt —=— , .
pr " Ox Ur Ox (4.20)

2U7

__%_ k2_i
ycl(l_CIZ) C’

WANG AND XIE

455
Dv_ Od_ ov,
D + yu_ + By = —-Uy o (4.2¢)
Do Ou_ v
Dr + o + o = yv,Ur. (4.2d)
Wave solutions of the form
(u_,v_,¢_, ) =R, (U, V, ®, T)e'*~0 (43)

satisfy a set of ordinary differential equations for the
meridional structure functions, which can be derived
by substituting (4.3) into (4.2). Further eliminating ®
and U from the resulting equations yields

2U%

+ Cl(l — CIZ)]‘P

2¢'y 2c¢’!

T ke' |1
ikUr
C’

1
V,, — [y2 + k2 (1 —¢'?) - ;]V=

where ¢’ = U — c.

The meridional boundaries were located at y = 4 and
—4 (about 60° latitude). The boundary conditions and
the numerical methods for solving (4.4a) and (4.4b)
are the same as those used in the meridional shear case.
The vanishing of the barotropic meridional wind im-
plies a constant barotropic streamfunction along the
meridional boundaries.

a. Rossby wave and westward propagating Yanai
wave

The forcing terms on the rhs of Eq. (4.4a) and (4.4b)
indicate an interaction between the baroclinic and baro-
tropic modes in the presence of vertical shear. It is in-
teresting to recognize that for a constant vertical shear
one of the vertical modes may have a structure that is
independent of the sign of vertical shear but the re-
maining vertical mode must then have a structure de-
pendent on the sign of shear; that is, the structure in a
westerly shear should be exactly 180° out of phase with
that in an easterly shear. Either vertical mode can be
the candidate independent of the sign of shear. For in-
stance, if we assume ¢y = U7, the baroclinic mode (V)
vyould not depend on the sign of vertical shear, because
i is an even function of the shear. In this case, however,
the barotropic mode () must reverse its sign when
vertical shear does. Equally valid is a reversed argu-
ment. It is important to point out that no matter which
mode is assumed to be independent of the sign of shear
the two vertical modes are in phase in westerly shears,
whereas they are 180° out of phase in easterly shears.

iUr[ 1+
__Z[ —c'? Vyy+1 —c'? V)’_(kz_ I_C,Z)V], (4—4a)

[T, —2yc' ¥, — (K*(1 —c'?) + ¢’ —y»)¥],

(4.4b)

Based on this fact, in the following analysis we pre-
sume that the baroclinic mode structure is invariant
with regard to the sign of the vertical shear.

Figure 5 shows meridional structures of the baro-
clinic and barotropic modes in the presence of vertical
shear for the Rossby wave of the gravest meridional
mode. The structures of the baroclinic modes are iden-
tical in easterly and westerly shears with the same
strength (Fig. 5a). A moderate vertical shear of U;
=5ms™' or Ur = —5 ms™' makes the baroclinic mode
slightly less equatorially trapped, especially for the
zonal and meridional winds at the latitudes about one
Rossby radius of deformation away from the equator.
The meridional structure of the barotropic mode in an
easterly shear is 180° out of phase with that in a west-
erly shear (Fig. 5b). Unlike the equatorially trapped
pattern of the baroclinic mode, the barotropic geopo-
tential expands poleward with largest amplitudes lo-
cated near y = *3 (three times the Rossby radius of
deformation). The zonal winds, in a geostrophic bal-
ance with meridional geopotential gradients, reach
maximum around y = +2 and y = —2, as well as at
the equator. The large meridional variation of the zonal
wind implies a salient relative vorticity pattern associ-
ated with the barotropic mode. Because the barotropic
mode is nondivergent, the meridional variation of the
meridional wind (Jv/8y) must be in quadrature with
the longitudinal variation of the zonal wind (Ju/0x).
Therefore, the meridional winds maximize or minimize
on the latitudes where zonal wind vanishes. On the
other hand, the zonal wind reaches extrema at the lat-
itudes where the meridional wind vanishes (Fig. 5b).
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(b)- Barotropic Rossby mode
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FiG. 5. Meridional structures of the (a) baroclinic and (b) barotropic Rossby mode (n = 1) calculated using an equatorial 8-
plane model. Solid, dashed, and dotted curves represent cases with vertical shears of Uy = 0, —57', and 5 m s~'. The upper,
middle, and lower panels show the geopotential, zonal wind, and meridional wind.

Because the barotropic mode associated with Rossby
waves is not equatorially trapped, it is necessary to
check the applicability of the equatorial 5-plane model.
Figure 6 shows the meridional structures computed us-
ing spherical coordinates model. Comparison of Figs.
5 and 6 suggests that the f-plane results are qualita-
tively valid even for the untrapped barotropic mode.
However, errors increase in high latitudes. The maxi-
mum geopotential perturbation of the barotropic mode
is located at y = 3 (about 45°) in the S-plane model

while it is shifted to about 57° in the spherical coordi-
nate model (Figs. 5b and 6b). Due to the feedback of
the barotropic mode, the baroclinic mode has signifi-
cant amplitude around 60° (Fig. 6a).

The barotropic Rossby mode shown in Fig. 5b has
an amplitude comparable to that of the baroclinic
Rossby mode. Even in the vicinity of the equator, the
geopotential and zonal wind of the two modes exhibit
similar magnitudes. Ratios of the maximum amplitude
of the barotropic versus baroclinic mode in geopoten-
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FIG. 6. As in Fig. 5 except computed from a spherical coordinates model.

tial (¢./¢_), zonal (u,/u_), and meridional (v,/v_)
winds all increase with increasing strength of the ver-
tical shear, especially in the geopotential height field
(Fig. 7). However, the ratios do not depend on the sign
of vertical shear. The relative strength of the barotropic
mode also tends to be stronger for shorter Rossby
waves, as depicted by the downward tilt of the contours
with decreasing wavelength in Fig. 7. The amplitude
of the barotropic geopotential height exceeds its baro-
clinic counterpart when the magnitude of U; exceeds
about 3 m/s (Fig. 7a). In the real atmosphere, Uy is
often larger than this value. One, therefore, anticipates

a dominance of the barotropic response for the equa-
torial Rossby waves, especially for shorter waves and
in the extratropics.

The comparative amplitudes of the iwo vertical
modes have an important ramification for the Rossby
wave’s vertical structure. When the meridional struc-
tures of the two modes are nearly in phase, the pertur-
bation attains a greater amplitude at the upper tropo-
sphere and a smaller amplitude at the lower troposphere
because A, = A, + A_and A, = A, — A_[Eq. (2.4)1.
This is the case in a westerly shear, where the meridi-
onal variations of geopotential (zonal and meridional



458

(o) Ratio of barotropic & baroclinic geopotential

L e——

4ﬁ———?.2-—___________

e —

S'EMh_\

. M\A\
—0.4

1 =02

20 18 16 14 12 10

Vertical shear (m/s)

5 (b) Ratio of borotropic & baroclinic zonal wind
U

Vertical shear (m/s)
¢
, -
b
N

(c) Ratio of barotropic & boroclinic meridional wind
——-0.6

0.8

Vertical shear (m/s)
n_<

N

!
/ .

20 18 16 14 12 10
Waveiength (1000 km)

FiG. 7. Ratios of the maximum amplitudes of barotropic vs baro-
clinic mode for the n = 1 Rossby wave, as a function of wavelength
and magnitude of vertical shear.

winds as well) for the two vertical modes tend to be in
phase (Fig. 5). As aresult, the perturbation is confined,
to certain degrees, to the upper troposphere in the Trop-
ics (Fig. 8a). On the other hand, in a zonal flow with
an easterly vertical shear, the perturbation tends to be
confined to the lower troposphere (Fig. 8b) because the
baroclinic mode is nearly completely out of phase with
the barotropic mode (Fig. 5). The asymmetry in the
vertical structure results from the difference between
the barotropic and baroclinic responses with regard to
the sign of the vertical shear. Outside the Tropics (] y|
> 2), the Rossby wave is barotropic due to the equa-
torial trapping of the baroclinic mode.

The westward propagation of the Rossby waves
tends to be slowed down by the existing vertical shear,
regardless of the sign of the shear (Fig. 9). Short waves
are slightly more affected. This can be interpreted as
follows. As shown earlier in Fig. 8, a westerly shear
favors trapping perturbation in the upper troposphere.
As such, the ‘‘steering’’ level for the perturbation is
raised up above the middle level where the mean zonal
flow vanishes; that is, the steering flow is eastward
(Fig. 10a). The easterly shear, however, tends to re-
strain perturbation to the lower troposphere, and the
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-corresponding steering level is thus lowered down be-

low the middle level; thus, the steering flow is also
eastward (Fig. 10b). In both easterly and westerly
shears, the eastward steering of the mean flow would
slow down the westward propagation of Rossby waves.
The modification of phase speed depends on strengths
of the vertical shear and wavelength. For a given shear,
the structures of shorter waves are more significantly
modified and so are their phase speeds.

For westward propagating Yanai waves, there is also
a considerable response in barotropic geopotential, al-
though responses in barotropic wind fields are rela-
tively weak (figure not shown). Overall, the effects of
vertical shear on the westward propagating Yanai wave
is significant and analogous to those on Rossby waves
except that the barotropic mode near the equator is
dominated by the baroclinic counterpart.

b. Kelvin wave

In contrast to the significant effects on Rossby wave,
vertical shears have little impact on equatorial Kelvin
waves. The structure of the baroclinic mode is hardly
affected by the vertical shear (figure not shown). A
barotropic mode is excited, but its amplitude is at least
one order of magnitude smaller than the corresponding
baroclinic counterpart. Therefore, no appreciable
change in the total perturbation field is found due to
the presence of vertical shears.

Why are the Rossby waves strongly modified by ver-
tical shears, while the Kelvin waves are little affected?
This is due to the difference in excitation of the baro-
tropic mode: the baroclinic Rossby mode is much more
efficient in generating the barotropic mode than the
baroclinic Kelvin mode. This difference may be ex-
plained as follows.

The barotropic mode is governed by nondimensional
vorticity equation, Eq. (4.2a), which can be recast to

Dg, _ oD_ 9L
Dt ”++UT<ay ax>' 45)
(A) (B) (C) (D)

Term (A) includes rate of local change and mean
flow advection of barotropic vorticity. When U = 0 (as
the cases here), the term ( A) represents the rate of local
change of barotropic vorticity. Term (B) is the merid-
ional advection of the planetary vorticity by barotropic
motion. Terms (C) and (D) denote a forcing induced
by the combined effect of the baroclinic motion and
vertical shear. This forcing will be referred to as baro-
clinic forcing that is proportional to the magnitude of
the vertical shear. It is associated with the meridional
gradient of baroclinic divergence and longitudinal gra-
dient of baroclinic vorticity. Equation (4.5) indicates
that the barotropic mode is a nondivergent vorticity
wave that is maintained by barotropic planetary vortic-
ity advection (the S effect) and the baroclinic forcing.
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Zonal phase(n)

() Ur

3

variation of baroclinic vorticity and the meridional
variation of baroclinic divergence have comparable
amplitudes, thus, both have a competitive contribution
to baroclinic forcing (figure not shown). Although the

strength of the forcing varies with wavelength, numer-

Zonal phase(n)
FiG. 8. Horizontal structures of the n = 1 Rossby wave with a wavelength of 10 000 km. Geopotential and flow

patterns in the upper and lower troposphere are displayed for (a) U, = 5m s

For a Rossby wave, the baroclinic divergence is at
least an order of magnitude smaller than the baroclinic
vorticity. The baroclinic forcing owes its origin pri-
marily to the longitudinal stretch of baroclinic vorticity.
On the other hand, for a Kelvin wave, the longitudinal
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Rossby wave (n=1)

!
o
—-—

Phase speed
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Wavelength (1000 km)

FiG. 9. Nondimensional phase speed as a function of wavelength
for the Rossby wave (n = 1), with vertical shear of Uy = =5 ms™'
(solid line) and U, = O (dashed line). Note the vertical mean zonal
flow (U) vanishes in these calculations in order to identify the influ-
ence of vertical shear.

ical computations indicate that the preceding state-
ments are valid for all waves that have a wavelength
longer than a few thousands kilometers. Note that in
the Tropics between y = —2 and y = 2 the magnitude
of the total baroclinic forcing is similar for both Rossby
and Kelvin waves (Figs. 11a and 12a).

Although the baroclinic forcing for the Rossby and
Kelvin waves is comparable, the forced barotropic
Rossby mode is much stronger than the barotropic Kel-
vin mode. To find out the cause, let us examine hori-
zontal structures of the fields of barotropic vorticity,
barotropic planetary vorticity advection, baroclinic
forcing, and barotropic vorticity tendency for Rossby
waves (Fig. 11) and Kelvin waves (Fig. 12) in a mod-
erate easterly shear. Notice that the zonal phase of the
barotropic planetary vorticity advection is shifted 90°
to the west compared to the barotropic vorticity field
for both Rossby and Kelvin waves. This is consistent
with the phase relationship between the barotropic vor-
ticity €. and meridional wind v, . The vorticity ten-
dency associated with the planetary vorticity advection

favors the barotropic mode propagating westward. The

baroclinic forcing, however, is 180° out of phase with
the barotropic planetary vorticity advection for both
waves, that is, it is located one-quarter of a wavelength
east of the barotropic vorticity field (Figs. 11a and
12a). This implies that the barotropic vorticity ten-
dency generated by the baroclinic forcing promotes an
eastward propagation. The total local change of baro-
tropic vorticity must be congruous with the wave’s
propagation, namely, it is phase-shifted by one-quarter
of a wavelength to the west (east) of the barotropic
Rossby (Kelvin) mode (Figs. 11d and 12d). In order
to maintain the vorticity tendency required by the west-
ward propagation of the Rossby mode, the barotropic
planetary vorticity advection must overcome the op-
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posing tendency induced by the baroclinic forcing.
That requires a strong v,, or equivalently, a strong
barotropic motion (note that for nondivergent baro-
tropic motion its strength is fully represented by v, ).
Conversely, in order to maintain the vorticity tendency
required by the eastward propagation of the Kelvin
mode, the baroclinic forcing must overcome the baro-
tropic planetary vorticity advection. That puts a strict
limit on the magnitude of v, ; thus, the barotropic mo-
tion must be sufficiently weak. In summary, the baro-
tropic mode is, in nature, a Rossby-like vorticity wave,
its excitation by baroclinic Rossby wave forcing is a
resonant response in the sense that the resounding re-
sponse occurs only when the baroclinic forcing moves
in harmony with the propagation of the intrinsic baro-
tropic mode.

It is worthwhile to mention that the baroclinic forc-
ing for the Rossby wave has considerable magnitude
in high latitudes, whereas it is confined to the Tropics
in the Kelvin wave case (Figs. 11a and 12a). This is
because the maximum amplitude for the baroclinic Kel-
vin mode is at the equator, whereas for baroclinic
Rossby waves, it is at one to two Rossby radii of de-
formation away from the equator (Fig. 6). The differ-
ence in the strength of baroclinic forcing in the extra-
tropics may also contribute to the enhancement of high-
latitude barotropic response.

5. Effects of meridional variation of the vertical
shear

In general, the zonal flow has both meéridional and
vertical variations. To simplify the problem, consider
the following mean flow:

U=U+Uny), Upy=U~-Uy), (51)

where U is a constant and Uy is a function of y. Here,
we have neglected meridional variation of the vertical
mean flow but retained meridional variation of the ver-
tical shear. Using a similar approach as used in section
4, one can obtain the following governing equations:

(a) Westerly shear " (b) Easterly shear

——-p
upper-tropo-
spheric trapping
of perturbation
— steering o
— steering
lower-tropo-
spheric trapping
of perturbation

i 2

=0 U=0
FiG. 10. Schematic diagram displaying steering level in (a) a

westerly vertical shear and (b) an easterly vertical shear for Rossby
waves.
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Nondimensional vy
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(c) Barotropic planetary vorticity advection
4

Nondimensional x

Nondimensional x

FiG. 12. As in Fig. 11 except for a Kelvin wave.

Using (4.3) in (5.2) and eliminating U and ® from the
resulting equations yields '

’ k
V,, — <a2 + k* + y? - i;)V

k
= ; UT‘I’yy + ZlkyUT\Ily +

k2
+ ikUp — — U4 —
a

Ur

k2y2
a

k2
; (a2 + kz)UT] ‘II,

(5.32)

al‘Il)’y + aZ‘Ily + a;¥ = a4Vyy + asVy + agV,

where

a=ik(U - ¢),

v
21 N
02 o0
0_\; 0 L;
21 o0 02
] S Y S G
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
(b) Borotropic vorticity (d) Tendency of barotropic vorticity
e 4o
0— 9 —o 0.0
21 2
------ 4 COD S Nelo.05 ! Q
0 N 0 0 0 N
) Sel.057 ’ ( @ o057
-2 24
0—0 "~ 0—~—0
-4 — . v . -4 — — ,
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(5.3b)

a, = a(a® + k?) + 2ak*U%,

a

= 2ak*U,U} — 2ik*yU?Z,

a, = —(a* + k*)(k*a — ik) — 2k*aU,U%
— 2ik*U% — 4ik3yU;U} — 2ak*U}?,
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as = (02 - kz)UT’
as = ZGZU} + 2lkayU1‘,
as = (a*® + k*)(k*Ur + U%) + 2ikaUy + 2ikayU}.

Consider two cases in which U = 0 but U; are, re-
spectively, symmetric and asymmetric about the equa-
tor:

UTS=S,<1 —cos%) y

UTA = sz<1 — cos 719—3:—1—)) ,

U7'=

where S, = 41 ms~'and S, = 44 ms™'. The two
vertical shear profiles are displayed in Fig. 13. The me-
ridionally averaged shear in both cases equals 5m s ™',
so that results can be compared with those derived in
the constant vertical shear case (Ur = 5ms™').

Structures of the baroclinic and barotropic Rossby
modes in a symmetric shear (Ur = UTS) bear great
similarity to those in a constant shear (Uy = 5ms™'),
except that the baroclinic mode for the former is
slightly weaker between y = =2 but stronger poleward
(Figs. 14a and 14c). This difference is due primarily
to the fact that the vertical shear UTS is smaller near
the equator while larger than 5 m s™' poleward of y
= *1.5. The larger vertical shear in the midlatitudes
enhances the baroclinic response in the higher latitudes.

With an asymmetric shear (U; = UTA), both the
baroclinic and barotropic modes exhibit an asymmetry
in their meridional structure (Fig. 14b), which results
from latitudinal variations of the strength of vertical
shear. The shear UTA has maxima near y = —2 and y
= 3. For the baroclinic mode the maximum shears en-
hance cyclonic (anticyclonic) flows south of the equa-
tor and wave perturbation in the northern extratropics.
For the barotropic mode, intensified wind and geopo-
tential perturbation is also found when local vertical
shear is enhanced. It is concluded that as the vertical
shear varies with latitude the shear strength in situ is
important to modification of the low-frequency equa-
torial waves.

6. Conclusions and discussion
a. Conclusions

Effects of a basic zonal flow with vertical and me-
ridional shears on vertically standing, low-frequency
equatorial waves (the Kelvin wave, the Rossby wave
with a gravest meridional structure, and the westward
propagating Yanai wave) are investigated using simple
two-level models on an equatorial 8 plane and spheri-
cal coordinates. The simplicity of the S-plane model
allows for a better understanding of the mechanism by
which basic flows alter wave dynamics.
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10

Vertical shear (m/s)

Fic. 13. Profiles of meridionally varying vertical shears with a

symmetric (UTS) and an asymmetric (UTA) structure. Latitudinal
average of both curves equals 5 m s™*.

The vertical shear of a mean zonal flow was found
to have profound influences on the equatorial Rossby
wave and westward propagating Yanai wave. Meridi-
onal shears, however, have only a moderate modifica-
tion on low-frequency equatorial waves. This is due to
the fact that vertical shears couple the baroclinic and
barotropic modes; their interaction canses marked
changes in wave characteristics, whereas meridional
shears do not.

In the presence of a moderate vertical shear, the
baroclinic Rossby mode acts to force the barotropic
mode. With a westerly (easterly) shear, positive (neg-
ative) barotropic vorticity is generated in the region of
the longitudinal stretch of baroclinic vorticity. The in-
tensity of the barotropic mode increases with increasing
vertical shear. In contrast, with the same shear, a baro-
clinic Kelvin mode can stimulate only a rather weak
barotropic mode. This fundamental difference results
from the rotational nature of the barotropic mode,
which, in the absence of forcing, is a Rossby wave
maintained by an effective 8 parameter (S — i,,). Be-
cause of the intrinsic nature of the barotropic mode, it
can only be resonantly excited by a westward propa-
gating baroclinic mode but not by an eastward propa-
gating one.

In the presence of vertical shear, the baroclinic
Rossby mode is slightly less equatorially trapped.
However, the barotropic Rossby mode extends pole-
ward with zonal wind and geopotential extrema occur-
ring in the extratropics. This implies that a tropical
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barotropic and baroclinic Rossby modes are nearly
in phase in a westerly shear (i.e., westerlies increas-
ing with height) whereas they are precisely 180° out
of phase in an easterly shear. It follows that the ver-
tical shear creates a vertical asymmetry in the struc-
tures of the Rossby wave and westward propagating
Yanai waves: the waves in a westerly shear have a
larger amplitude in the upper troposphere, whereas
the waves in an easterly shear have a greater ampli-
tude in the lower troposphere. This results in a raised
(lowered) steering level for the waves in a westerly
(easterly ) shear. The mean flow steering is thus east-
ward in both westerly and easterly shears if the ver-
tical mean flow vanishes. The propagation of the
Rossby wave is thus slowed down by vertical shear
regardless of its sign.

It is shown that both the barotropic and baroclinic
Rossby modes respond sensitively to the meridional
variation of the vertical shear. The responses are en-
hanced in the latitudes where the vertical shear is
strengthened, suggesting the importance of the regional
vertical shear in modification of the in situ wave char-
acteristics.

The vorticity and meridional vorticity gradient as-
sociated with a meridional shear can alter the wave
refractive index and thus the degree of equatorial trap-
ping for equatorial waves. Longer waves are less af-
fected than shorter waves. Due to the wavelength-de-
pendent modification of the meridional structure and
the nonuniform zonal advection by meridionally
sheared flows, Kelvin waves become weakly disper-
sive, and the Rossby waves also experience noticeable
changes in their dispersivity.

b. Discussion

One of the fundamental impacts of the vertical shear
is the excitation of prominent barotropic Rossby wave
motion through an interaction with the gravest baro-
clinic Rossby mode. This is relevant to the explanation
of the emanation of equatorial waves toward midlati-
tudes. The energy emanation was suggested as result-
ing from the reduction of the equatorial trapping scale
of the Rossby waves in equatorial westerlies (Zhang
and Webster 1989). We have shown that the direction
of the mean flow does not affect meridional structure
of the internal waves. The meridional shear enhances
the trapping of the equatorial Rossby waves and cannot
generate a barotropic Rossby wave component. Based
on our analysis, we infer that the emanation of equa-
torial waves is associated with an excitation of the baro-
tropic Rossby mode, which is caused by a combined
effect of vertical shear and the zonal stretch of the vor-
ticity associated with baroclinic mode. The baroclinic
Rossby mode is presumably stimulated directly by the
equatorial internal heating. The meridional variation of
divergence and longitudinal variation of vorticity as-
sociated with the baroclinic mode acting on the vertical
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shear of the mean flow represent an excitation mecha-
nism for the barotropic (external) motion. This view
of emanation explains how an internal equatorial heat-
ing can generate a salient extratropical barotropic re-
sponse. Although tropical heating may initiate both
eastward propagating Kelvin wave and westward prop-
agating Rossby waves on a synoptic scale or longer,
the intrinsic rotational nature of the barotropic motion
endorses a resonant mode selection; that is, only a west-
ward propagating baroclinic Rossby mode can activate
a large-amplitude barotropic motion that extends inio
the extratropics.

Another fundamental impact of the vertical shear
on the equatorial Rossby wave is that a westerly (east-
erly) vertical shear favors trapping wave kinetic en-
ergy to the upper (lower) troposphere. This may be
pertinent to interpretation of the in-phase relationship
between the transient kinetic energy and the equatorial
mean zonal flow in the upper troposphere, as observed
by Murakami and Unninayer (1977) and Arkin and
Webster (1985). Over the regions of upper-level
westerlies (easterlies), the mean zonal flow is char-
acterized by westerly (easterly) shear because of the
dominance of the upper-tropospheric zonal winds.
The vertical structure of the Rossby wave can be so
modified by the vertical shear that the wave kinetic
energy tends to be confined in the upper-tropospheric
westerlies. On the other hand, in a region of upper-
level easterlies (easterly shear), the upper-level per-
turbation kinetic energy may be reduced due to the
concentration of the perturbation in the lower tropo-
sphere. It is plausible, therefore, that the in-phase re-
lationship between upper-tropospheric perturbation
kinetic energy and time-mean zonal flow may be a
result of the transformation in vertical modal structure
between the regions of easterly and westerly shear
along the equator. In order to verify the present theory,
it would be interesting to compute transient kinetic
energy in the lower troposphere and check whether
they have maxima in the easterly shear region and
minima in the westerly shear region. It would also be
interesting to explore the transition of the vertical
structure of equatorial waves from regions of easterly
to westerly shear.

The investigation in this paper is confined to
neutral waves in a moderate vertical shear. It should
be pointed out that strong vertical shears can result
in dynamically unstable Rossby waves even in an
adiabatic, stably stratified atmosphere. This type of
dynamic instability and the effects of sheared flow
on diabatic equatorial waves will be reported in
Part II.
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APPENDIX
Governing Equations in Spherical Coordinates

Consider a basic zonal flow that varies with latitude
and height and satisfies the gradient wind balance. The
governing equations for inviscid, hydrostatic, pertur-
bation motions in spherical pressure (p) coordinates are

@+ QE+~3’7 d(ucosgo) __6_¢
ar " ox p cospdy Toax’
(Ala)
O _ v 2utanp 09
6t+u8x+<f+—a >u-— ay ’ (Alb)
Ou O cos<p)
Ox + cospdy 8p =0, (Alp)
0(08\, 0 () [, 2ftang
3t(3p>+u3x(3p> (f+ a >
ou RQ’
Xv-—+ Sw=— , (Ald
ap o MY

where a is earth’s radius, ¢ is latitude, fis the Coriolis

parameter, and other symbols have the same definition

as in Egs. (2.1a-d).

All dependent variables were split into barotropic
and baroclinic modes defined by (2.4), and the gov-
erning equations were nondimensionalized using the
velocity scale C,, = (0.5Ap?S,,)""?, horizontal length
scale L = a, timescale a/C,,, geopotential scale CZ,
and vertical p-velocity scale 2ApC,,/a. Introducing a
barotropic streamfunction as (4.1), equations analo-
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gous to (4.2) for a constant vertical shear in sphencal
coordinates are
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where
f= -g- 2Q sing + U tanp, (A3a)
7= E‘f— 20 sing + 20 tan, (A3b)
£ = g— 2Q cosp + U sec?p. (A3c)

Seeking wave solutions of the form (4.3) and elimi-
nating ® and U leads to

22 22 2
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where ¢’ = U — ¢,
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